Title: Magic, Precise, and Electroweak

Date: May 29, 2012 01:00 PM

URL: http://pirsa.org/12050009

Abstract: Precision timepieces are marvels of human ingenuity. Over the past half-a-century, precision time-keeping has been carried out with atomic clocks. I will review a novel and rapidly developing class of atomic clocks, optical lattice clocks. At their projected accuracy level, these would neither lose nor gain a fraction of a second over estimated age of the Universe. In other words, if someone were to build such a clock at the Big Bang and if such a timepiece were to survive the 14 billion years, the clock would be off by no more than a mere second. What can we do with this new-found precision? How can we exploit this exquisite ability to listen carefully for probing new physics?
br>In the second part of my talk I will overview atomic searches for new physics beyond the Standard Model of elementary particles. I will report on a refined analysis of table-top experiments on violation of mirror symmetry in atoms. This analysis sets new constraints on a hypothesized particle, the extra
br>Z-boson. Our raised bound on the Z' masses improves upon the Tevatron results and carves out a
br>lower-energy part of the discovery reach of the Large Hadron Collider.

Pirsa: 12050009 Page 1/56

Pirsa: 12050009 Page 2/56

Atomic physics

3 Nobel prizes over the past decade

Attendance of APS meetings Division Of Atomic, Molecular And Optical Physics

2

Pirsa: 12050009

Theoretical atomic physics group @ Reno

3

Pirsa: 12050009

Listening to an atom

- Coulomb forces + Quantum Electro-Dynamics=> a relatively simple interpretation
- ☐ Unprecedented control over internal and external degrees of freedom precision 16-digit spectroscopy

429 228 004 229 873.65 (37) Hz

Campbell et al., Metrologia 45 (2008)

4

Pirsa: 12050009 Page 5/56

Listening to an atom

- Coulomb forces + Quantum Electro-Dynamics=> a relatively simple interpretation
- ☐ Unprecedented control over internal and external degrees of freedom precision 16-digit spectroscopy

429 228 004 229 873.65 (37) Hz

Campbell et al., Metrologia 45 (2008)

4

Pirsa: 12050009 Page 6/56

Listening to an atom

- Coulomb forces + Quantum Electro-Dynamics=> a relatively simple interpretation
- ☐ Unprecedented control over internal and external degrees of freedom precision 16-digit spectroscopy

429 228 004 229 873.65 (37) Hz

Campbell et al., Metrologia 45 (2008)

4

Pirsa: 12050009 Page 7/56

Outline

Part I (precise & electroweak) Search for "new" physics

Part II (magic & precise)
Atomic clocks

5

Pirsa: 12050009 Page 8/56

Large Hadron Collider

"The grandest scientific instrument ever built"

- □27 km (17 mile) long tunnel
- ☐Straddles borders of Switzerland and France
- □\$6 bln price tag

-8

Pirsa: 12050009 Page 9/56

Atomic parity violation (APV)

Parity transformation:

$$\mathbf{r}_{i} \rightarrow -\mathbf{r}_{i}$$

 $[H_{atomic}, P]=0 \Rightarrow$ Atomic stationary states are eigenstates of Parity

Electromagnetic

Conserve parity

Electroweak

Do not conserve parity

Z-boson exchange spoils parity conservation

What is the strength of electroweak coupling of quarks and electrons?

10

Pirsa: 12050009 Page 10/56

Parity-violating 75-65 amplitude in Cs

$$\langle 7S_{1/2} | D | 6S_{1/2} \rangle \equiv 0$$

$$D = \sum_{i=1}^{N} -e \, \mathbf{r}_{i}$$

$$\mathbf{D} = \sum_{i=1}^{N} -e \, \mathbf{r}_{i}$$

Electric-dipole transition is forbidden by the parity selection rules

Weak interaction leads to an admixture of states of opposite parity

$$\underline{E}_{\text{PV}} = \overline{\langle 7S_{1/2} | D | 6S_{1/2} \rangle} \neq 0$$

11

Page 11/56

Weak charge extraction

$$E_{PV} = k_{PV} \, Q_{W}$$

12

Pirsa: 12050009 Page 12/56

extra Z bosons (Z')

- □Copious in grand unified theories and string theories
- □Potential carriers of the "fifth" force of Nature
- □LHC: the cleanest signal of new physics

$$e^{-}$$
 Z_0
 $u(d)$
 $u(d)$
 e^{-}
 $u(d)$
 $u(d)$

Pirsa: 12050009 Page 13/56

13

extra Z bosons (Z')

- □ Copious in grand unified theories and string theories
- □Potential carriers of the "fifth" force of Nature
- □LHC: the cleanest signal of new physics

$$e^{-}$$
 Z_0
 $u(d)$
 $u(d)$
 $u(d)$
 $u(d)$
 $u(d)$

APV is uniquely sensitive to Z'

$$Q_W^{\text{inferred}} - Q_W^{SM} \approx \left(\frac{0.736 \text{ TeV}/c^2}{M_{Z_X'}}\right)^2$$
 Marciano & Rosner

13

Pirsa: 12050009 Page 14/56

Theoretical progress

Pirsa: 12050009 Page 15/56

Theoretical progress

Pirsa: 12050009 Page 16/56

$$\sigma_{Q} = \sqrt{\left(\sigma_{\text{expt}}\right)^{2} + \left(\sigma_{\text{theor}}\right)^{2}}$$

$$\sigma_{\text{expt}} = 0.35\% < \sigma_{\text{theor}} = 0.5\%$$

How to reduce σ ?

Theoretical uncertainty is limited by an accuracy of solving the basic correlation atomic-structure problem

15

Pirsa: 12050009 Page 17/56

Why is it so difficult?

Cs atom: correlated motion of 55 electrons 55x3=165 coordinates
For a coarse 10-point grid per dimension

16

Pirsa: 12050009 Page 18/56

Requirements to atomic-structure calculations

Weak interaction occurs in the nucleus

$$\frac{v}{c} \sim \alpha Z \approx 0.5$$
 for Cs

Ab initio relativistic calculations based on Dirac equation

Calculations should have uncertainty better than 0.35%

Hartree-Fock calculations are off by 50% for important atomic properties

Many-body perturbation theory

Treat interaction beyond the Hartree-Fock as a perturbation

Technically difficult task: 100 Gb of storage, several weeks of CPU time

17

Pirsa: 12050009 Page 19/56

Pauli's letter

Only lesking details are invening.

2. Pauli

18

Pirsa: 12050009 Page 20/56

Pauli's letter

18

PV amplitude

$$E_{PV} = \sum_{n} \frac{\langle 7S_{1/2} | D | nP_{1/2} \rangle \langle nP_{1/2} | H_{W} | 6S_{1/2} \rangle}{E_{6S} - E_{nP_{1/2}}} + \text{c.c.}(6S \leftrightarrow 7S)$$

$$H_W = Q_W \times \frac{G_F}{\sqrt{8}} \gamma_5 \, \rho_n(r)$$

Accuracy is important

19

Pirsa: 12050009 Page 22/56

Theoretical accuracy: weak interaction

20

Pirsa: 12050009 Page 23/56

Theoretical progress

Pirsa: 12050009 Page 24/56

22

Implications: extra Z bosons (Z')

Specific example: Z'_{χ} in SO(10) GUT

$$Q_W^{\text{inferred}} - Q_W^{SM} \approx \left(\frac{0.736 \text{ TeV}/c^2}{M_{Z_\chi^*}}\right)^2$$
 Marciano & Rosner

Our result implies:

$$M_{Z_{x}^{'}} > 1.4 \text{ TeV/c}^{2}$$

[84% CL]

Direct search at Tevatron collider:

$$M_{Z_{y}^{'}} > 0.82 \text{ TeV/c}^2$$

LHC March 2012:

$$M_{Z'} \ge 2 \text{ TeV/c}^2$$

LHC discovery reach 5 TeV @ full luminosity

24

Pirsa: 12050009

Implications: Running of EW coupling

25

Pirsa: 12050009 Page 26/56

Implications: Running of EW coupling

25

Pirsa: 12050009 Page 27/56

Bigger picture (running)

26

Pirsa: 12050009 Page 28/56

Implications: Dark forces?

Exchange by weakly-coupled light particles

$$H_{W} \to \gamma_{5} \times \left\{ Q_{W}^{SM} \frac{G_{F}}{\sqrt{8}} \rho_{n} (r_{e}) + \alpha_{X} \frac{e^{-M_{X}r_{e}}}{r_{e}} \right\}$$

Plug it in into the APV amplitude calculations => new limits on "dark couplings" of electrons to quarks

Interesting effects are expected when $1/M_X$ ~ radius of the 1s shell ($M_X > a$ few MeV)

27

Pirsa: 12050009 Page 29/56

Implications: Dark forces?

Exchange by weakly-coupled light particles

$$H_{W} \to \gamma_{5} \times \left\{ Q_{W}^{SM} \frac{G_{F}}{\sqrt{8}} \rho_{n} (r_{e}) + \alpha_{X} \frac{e^{-M_{X}r_{e}}}{r_{e}} \right\}$$

Plug it in into the APV amplitude calculations => new limits on "dark couplings" of electrons to quarks

Interesting effects are expected when $1/M_X$ ~ radius of the 1s shell ($M_X > a$ few MeV)

27

Pirsa: 12050009 Page 30/56

"New physics" summary

- ☐ Perfect agreement with the Standard Model
- □Lower limit on mass of Z' is raised
- □Running of electroweak coupling confirmed over energy span of four orders of magnitude
- Applications of developed codes: van der Waals interaction, atom-wall interaction, lifetimes, exotic nuclear moments, **atomic clocks** ...

28

Pirsa: 12050009 Page 31/56

"New physics" summary

- ☐ Perfect agreement with the Standard Model
- □Lower limit on mass of Z' is raised
- ■Running of electroweak coupling confirmed over energy span of four orders of magnitude
- Applications of developed codes: van der Waals interaction, atom-wall interaction, lifetimes, exotic nuclear moments, **atomic clocks** ...

28

Pirsa: 12050009 Page 32/56

Pirsa: 12050009 Page 33/56

Part II (magic & precise)

Atomic clocks

29

Pirsa: 12050009 Page 34/56

Part II (magic & precise)

Atomic clocks

$$v_{\rm clock} = \frac{E_e - E_g}{h}$$

29

Pirsa: 12050009

Pirsa: 12050009 Page 36/56

Pirsa: 12050009 Page 37/56

Pirsa: 12050009 Page 38/56

Pirsa: 12050009 Page 39/56

Pirsa: 12050009 Page 40/56

Pirsa: 12050009 Page 41/56

Applications

GPS:: Global Positioning System
Digital networks (cell phones, internet, ...)
Fundamental physics

31

Pirsa: 12050009 Page 42/56

SI definition of the second

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. This definition refers to a cesium atom at rest at a temperature of 0 K.

32

Pirsa: 12050009 Page 43/56

SI definition of the second

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. This definition refers to a cesium atom at rest at a temperature of 0 K.

Pirsa: 12050009

32

US timekeepers: NIST Cs fountain clock

33

Pirsa: 12050009 Page 45/56

US timekeepers: NIST Cs fountain clock

33

Pirsa: 12050009 Page 46/56

US timekeepers: NIST Cs fountain clock

Can we shrink these clocks?

33

Pirsa: 12050009 Page 47/56

Lattice clocks

Why the fountain clocks are large?

 $\Delta v \Delta t \ge 1$

frequency resolution $\propto \frac{1}{\text{interrogation time}}$

34

Pirsa: 12050009 Page 48/56

Lattice clocks

Why the fountain clocks are large?

$$\Delta \nu \Delta t \ge 1$$

frequency resolution
$$\propto \frac{1}{\text{interrogation time}}$$

Trap atoms

Optical lattice: counter-propagating laser beams = standing wave

$$V(z) = -\frac{1}{2} \alpha \left(\omega_L \right) E^2 \left(z \right)$$

dynamic polarizability

34

What about the primary Cs standard?

Lattice clocks work with optical transitions: $\sim 10^{14}\,\mathrm{Hz}$ Too fast for counting electronics : need expensive frequency combs

36

Pirsa: 12050009 Page 50/56

Further reading on lattice clocks

APS » Journals » Rev. Mod. Phys. » Volume 83 » Issue 2

< Previous Article | Next Article >

Rev. Mod. Phys. 83, 331-348 (2011)

Colloquium: Physics of optical lattice clocks

Abstract

References

No Citing Articles

Download: PDF (2,425 kB) Buy this article Export: BibTeX or EndNote (RIS)

Andrei Derevianko

Department of Physics, University of Nevada, Reno, Nevada 89557, USA

Hidetoshi Katori[†]

Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan

Received 23 July 2010; published 3 May 2011

Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10⁻¹⁸ fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

© 2011 American Physical Society

Pirsa: 12050009

The ultimate clock?

arXiv.org > physics > arXiv:1110.2490

Physics > Atomic Physics

A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, A. Derevianko

40

Pirsa: 12050009 Page 52/56

The ultimate clock?

arXiv.org > physics > arXiv:1110.2490

Physics > Atomic Physics

A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, A. Derevianko

Pirsa: 12050009 Page 53/56

40

The ultimate clock?

arXiv.org > physics > arXiv:1110.2490

Physics > Atomic Physics

A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, A. Derevianko

TABLE I. Estimated systematic error budget for a $^{229}\mathrm{Th}^{3+}$ clock using realized single-ion clock technologies. Shifts and uncertainties are in fractional frequency units $(\Delta\nu/\nu_{clk})$ where $\nu_{clk}=1.8\,\mathrm{PHz}.$ See text for discussion.

Effect	$ Shift (10^{-20})$	Uncertainty (10^{-20})
Excess micromotion	10	10
Gravitational	0	10
Cooling laser Stark	0	5
Electric quadrupole	3	3
Secular motion	5	1
Linear Doppler	0	1
Linear Zeeman	0	1
Background collisions	0	1
Blackbody radiation	0.013	0.013
Clock laser Stark	0	$\ll 0.01$
Trapping field Stark	0	$\ll 0.01$
Quadratic Zeeman	0	0
Total	18	15

TU

Pirsa: 12050009 Page 54/56

Laser-Tuned Nuclear Clock Would Be Accurate for Billions of Years

By Adam Mann March 20, 2012 | 5:28 pm | Categories: Physics

questcequilmanque

You've managed to find the single most depressing scientific endeavor of all time: Spend years of research trying to make an ultra-precise clock more precise. If they succeed, only electrons will notice.

What's the suicide rate among these people?

41

Pirsa: 12050009 Page 55/56

Why do we need better clocks?

New timepieces will lose only 1 second over the age of the Universe

GPS

- □Autopilots for the cars?
- ☐Automated landing of planes
- □Deep-space navigation (DSN network of NASA)

Are constants of nature constant?

42

Pirsa: 12050009 Page 56/56