Title: When do Frustration-free Spin Chains Become Entangled?

Date: Apr 12, 2012 09:00 AM

URL: http://pirsa.org/12040112

Abstract: TBA

Pirsa: 12040112 Page 1/63

Pirsa: 12040112 Page 2/63

Frustration-free spin chains

$$H = \sum_{i=1}^{n-1} \Pi_{i,i+1}$$

Interactions = projectors

Ground state of H = zero eigenvector of every projector

Frustration-free spin chains

Example 1: Heisenberg chain (d=2)

$$\Pi = |\Psi^-\rangle\langle\Psi^-|, \quad |\Psi^-\rangle \sim |01\rangle - |10\rangle$$

Ground states = symmetric subspace of $(\mathbb{C}^2)^{\otimes n}$

How entangled can be ground states of frustration-free quantum spin chains?

Focus on `nice' spin chains:

- Small local dimension (qubits or qutrits)
- Unique ground state
- Spectral gap is not too small (polynomial in 1/n)
- Translational invariance (optional)

Pirsa: 12040112 Page 5/63

Ground state entanglement S(n) for FF qudit chains

Create long-range singlets using courier particle 5. Irani 2010 $S(n) \sim n$

Random FF spin chains with projectors of fixed rank = r, Movassagh et al 2010 Conjectured highly entangled ground states for

$$d \le r \le d^2/4$$

AKLT state, parent Hamiltonians of PEPS and MPS S(n) = O(1)

Unentangled ground states, J. Chen et al 2010 S(n) = 0

2

≥4

Ground state entanglement S(n) for FF qudit chains

Create long-range singlets using courier particle 5. Irani 2010 $S(n) \sim n$

Random FF spin chains with projectors of fixed rank = r, Movassagh et al 2010 Conjectured highly entangled ground states for

$$d \le r \le d^2/4$$

AKLT state, parent Hamiltonians of PEPS and MPS S(n) = O(1)

Unentangled ground states, J. Chen et al 2010 S(n) = 0

2

ain = strings of left and right brackets possibly separated by zeros

Basis states of a qutrit $\stackrel{}{\longleftarrow} |l
angle$ Left bracket [|r
angle Right bracket]

Basis states of a chain = strings of left and right brackets possibly separated by zeros

Def. A string S over the alphabet 0,1,r is balanced iff

(i) any initial segment of S has at least as many I's as r's

(ii) total number of I's = total number of r's

Pirsa: 12040112 Page 10/63

Def. A string S over the alphabet 0,1,r is balanced iff

(i) any initial segment of S has at least as many l's as r's

(ii) total number of I's = total number of r's

Example: balanced strings of length 4

llrr	l00r	lrlr
lr00	l0r0	0lr0
0l0r	00lr	0000

Pirsa: 12040112 Page 11/63

Def. A string S over the alphabet 0,1,r is balanced iff

- (i) any initial segment of S has at least as many l's as r's
- (ii) total number of l's = total number of r's

Example: balanced strings of length 4

 $\begin{array}{ccc} llrr & l00r & lrlr \\ lr00 & l0r0 & 0lr0 \\ 0l0r & 00lr & 0000 \end{array}$

Example of unbalanced string: $\underline{l0lrrr}llr$

Pirsa: 12040112 Page 12/63

Balanced strings = Motzkin paths

 $llrr \\ lr00 \\ 0l0r$

l00r

l0r0

00lr

lrlr

0lr0

0000

Pirsa: 12040112 Page 13/63

Def. The Motzkin state of n qutrits $|\mathcal{M}_n\rangle$ is the uniform superposition of all balanced strings of length n.

$$|\mathcal{M}_2\rangle \sim |00\rangle + |lr\rangle$$

$$|\mathcal{M}_3\rangle \sim |000\rangle + |lr0\rangle + |l0r\rangle + |0lr\rangle$$

$$|\mathcal{M}_4\rangle \sim |0000\rangle + |00lr\rangle + |0l0r\rangle + |l00r\rangle + |l01r0\rangle + |l01r0\rangle + |l01r0\rangle + |l1r0\rangle + |l1rr\rangle + |l1rr\rangle.$$

Pirsa: 12040112 Page 14/63

Why the Motzkin state is highly entangled?

Entanglement between A and B stems from the locally unmatched brackets.

A and B may have p extra left and right brackets, 0≤p≤n/2.

Pirsa: 12040112 Page 15/63

Why the Motzkin state is highly entangled?

Entanglement between A and B stems from the locally unmatched brackets.

A and B may have p extra left and right brackets, 0≤p≤n/2.

$$\begin{split} |\mathcal{M}_4\rangle &\sim &(|00\rangle + |lr\rangle)_A \otimes (|00\rangle + |lr\rangle)_B & \text{p=0} \\ &+ (|0l\rangle + |l0\rangle)_A \otimes (|0r\rangle + |r0\rangle)_B & \text{p=1} \\ &+ |ll\rangle_A \otimes |rr\rangle_B. & \text{p=2} \end{split}$$

Parent Hamiltonian

$$H = |r\rangle\langle r|_1 + |l\rangle\langle l|_n + \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

 Π projects onto a 3-dimensional subspace of $\,\mathbb{C}^3\otimes\mathbb{C}^3$ spanned by states

$$|0l\rangle - |l0\rangle, \quad |0r\rangle - |r0\rangle, \quad |00\rangle - |lr\rangle$$

Parent Hamiltonian

$$H = |r\rangle\langle r|_1 + |l\rangle\langle l|_n + \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

 Π projects onto a 3-dimensional subspace of $\,\mathbb{C}^3\otimes\mathbb{C}^3$ spanned by states

$$|0l\rangle - |l0\rangle, \quad |0r\rangle - |r0\rangle, \quad |00\rangle - |lr\rangle$$

Theorem. The Motzkin state is the unique ground state of H with zero energy. The spectral gap of H is poly(1/n). Entanglement entropy of one-half of the chain is

$$S(A) \approx \frac{1}{2}\log n + 0.14(5)$$

Spectral gap Δ

Rigorous bounds:

$$\Delta = O(n^{-1/2})$$

$$\Delta = \Omega(n^{-c}), \quad c \gg 1.$$

Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go from s to t by a sequence of local moves

$$0l \leftrightarrow l0, \quad 0r \leftrightarrow r0, \quad 00 \leftrightarrow lr$$

Lemma. A string is balanced iff it is equivalent to 0^n

← Local moves preserve balanceness

Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go from s to t by a sequence of local moves

$$0l \leftrightarrow l0, \quad 0r \leftrightarrow r0, \quad 00 \leftrightarrow lr$$

Lemma. A string is balanced iff it is equivalent to 0^n

- Local moves preserve balanceness
- ⇒ Any balanced non-zero string must contain

$$lr$$
 or $l0...0r$

Use local moves to annihilate the pair /r
Use induction in the number of brackets

Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go from s to t by a sequence of local moves

$$0l \leftrightarrow l0, \quad 0r \leftrightarrow r0, \quad 00 \leftrightarrow lr$$

Equivalence classes of strings:

$$c_{p,q} \equiv \underbrace{r \dots r}_{p} \underbrace{0 \dots 0}_{n-p-q} \underbrace{l \dots l}_{q}.$$

Lemma. Any string is equivalent to one and only one string $c_{p,q}$ for some integers p,q.

Pirsa: 12040112 Page 23/63

$$c_{p,q} \equiv \underbrace{r \dots r}_{p} \underbrace{0 \dots 0}_{n-p-q} \underbrace{l \dots l}_{q}.$$

Lemma. Any string is equivalent to one and only one string $c_{p,q}$ for some integers p,q.

Hence any equivalence class has a form

$$C_{p,q} = \{ s \in \{0, l, r\}^n : s \sim c_{p,q} \}$$

$$c_{p,q} \equiv \underbrace{r \dots r}_{p} \underbrace{0 \dots 0}_{n-p-q} \underbrace{l \dots l}_{q}.$$

Lemma. Any string is equivalent to one and only one string $c_{p,q}$ for some integers p,q.

Hence any equivalence class has a form

$$C_{p,q} = \{ s \in \{0, l, r\}^n : s \sim c_{p,q} \}$$

Any string in $C_{p,q}$ can be uniquely written as

$$s = \underbrace{brbr \dots br}_{p} b \underbrace{lblb \dots lb}_{q}$$

 Π projects onto a 3-dimensional subspace of $\mathbb{C}^3\otimes\mathbb{C}^3$ spanned by states

$$|0l\rangle - |l0\rangle, \quad |0r\rangle - |r0\rangle, \quad |00\rangle - |lr\rangle$$

Define a Hamiltonian
$$\hat{H} = \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

 Π projects onto a 3-dimensional subspace of $\mathbb{C}^3\otimes\mathbb{C}^3$ spanned by states

$$|0l\rangle - |l0\rangle, \quad |0r\rangle - |r0\rangle, \quad |00\rangle - |lr\rangle$$

Define a Hamiltonian
$$\ \hat{H} = \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

Ground subspace of \hat{H} is spanned by states

$$|C_{p,q}\rangle \sim \sum_{s \in C_{p,q}} |s\rangle$$

Contains the Motzkin state $|\mathcal{M}_n\rangle = |C_{0,0}
angle$

 Π projects onto a 3-dimensional subspace of $\mathbb{C}^3\otimes\mathbb{C}^3$ spanned by states

$$|0l\rangle - |l0\rangle, \quad |0r\rangle - |r0\rangle, \quad |00\rangle - |lr\rangle$$

Define a Hamiltonian
$$\hat{H} = \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

Ground subspace of \hat{H} is spanned by states

$$|C_{p,q}\rangle \sim \sum_{s \in C_{p,q}} |s\rangle$$

Contains the Motzkin state $|\mathcal{M}_n\rangle = |C_{0,0}
angle$

It remains to exclude the unwanted ground states with non-zero p or q.

$$c_{p,q} \equiv \underbrace{r \dots r}_{p} \underbrace{0 \dots 0}_{n-p-q} \underbrace{l \dots l}_{q}.$$

The class $C_{0,0}$ is the only class in which strings never start from r and never end by I.

It remains to exclude the unwanted ground states with non-zero p or q.

$$c_{p,q} \equiv \underbrace{r \dots r}_{p} \underbrace{0 \dots 0}_{n-p-q} \underbrace{l \dots l}_{q}.$$

The class $C_{0,0}$ is the only class in which strings never start from r and never end by I.

Adding energy penalty for strings starting from r or ending by I gives the desired parent Hamiltonian:

$$H = |r\rangle\langle r|_1 + |l\rangle\langle l|_n + \sum_{j=1}^{n-1} \Pi_{j,j+1}$$

Schmidt decomposition of the Motzkin state:

$$|\mathcal{M}_n\rangle \equiv |\hat{C}_{0,0}\rangle = \sum_{p=0}^{n/2} \sqrt{\lambda_p} |\hat{C}_{0,p}\rangle_A \otimes |\hat{C}_{p,0}\rangle_B$$

Here $|\hat{C}_{p,q}\rangle$ is the normalized superposition of all strings in the class $\mathcal{C}_{\mathbf{p},\mathbf{q}}$ and

$$\lambda_p = rac{|C_{0,p}(n/2)|^2}{C_{0,0}(n)}$$
 are the Schmidt coefficients

Spectral gap: lower bound

Invariant subspaces:

$$(\mathbb{C}^3)^{\otimes n} = \bigoplus_{p,q} \mathcal{H}_{p,q}$$

 $\mathcal{H}_{p,q}$ is spanned by strings in the equivalence class $\,C_{p,q}$

Spectral gap: lower bound

Invariant subspaces:

$$(\mathbb{C}^3)^{\otimes n} = \bigoplus_{p,q} \mathcal{H}_{p,q}$$

 $\mathcal{H}_{p,q}$ is spanned by strings in the equivalence class $\,C_{p,q}$

We need a polynomial lower bound for

- \cdot Spectral gap inside the balanced subspace $\,\mathcal{H}_{0,0}$
- · Ground state energy inside any unbalanced subspace $\,\mathcal{H}_{p,q}\,$ with non-zero p or q

Spectral gap: lower bound

Invariant subspaces:

$$(\mathbb{C}^3)^{\otimes n} = \bigoplus_{p,q} \mathcal{H}_{p,q}$$

 $\mathcal{H}_{p,q}$ is spanned by strings in the equivalence class $\,C_{p,q}$

We need a polynomial lower bound for

- \cdot Spectral gap inside the balanced subspace $\,\mathcal{H}_{0,0}$
- · Ground state energy inside any unbalanced subspace $\,\mathcal{H}_{p,q}\,$ with non-zero p or q

Spectral gap: lower bound

Invariant subspaces:

$$(\mathbb{C}^3)^{\otimes n} = \bigoplus_{p,q} \mathcal{H}_{p,q}$$

 $\mathcal{H}_{p,q}$ is spanned by strings in the equivalence class $\,C_{p,q}$

We need a polynomial lower bound for

- · Spectral gap inside the balanced subspace $\,\mathcal{H}_{0,0}$
- · Ground state energy inside any unbalanced subspace $\mathcal{H}_{p,q}$ with non-zero p or q

We can ignore the boundary terms $|r
angle\langle r|_1+|l
angle\langle l|_n$

Step 1: treat different types of local moves separately using the perturbation theory

$$H = \sum_{j} \Pi_{j,j+1} = H_0 + V$$

$$H_0 = \sum_j \Pi^0_{j,j+1}$$

implements local moves

$$0l \leftrightarrow l0 \quad 0r \leftrightarrow r0$$

 Π^0 projects onto

$$|0l\rangle - |l0\rangle$$

$$|0r\rangle - |r0\rangle$$

Spectral gap 1/n2

Step 1: treat different types of local moves separately using the perturbation theory

$$H = \sum_{j} \Pi_{j,j+1} = H_0 + V$$

$$H_0 = \sum_j \Pi_{j,j+1}^0$$

implements local moves

$$0l \leftrightarrow l0 \quad 0r \leftrightarrow r0$$

 Π^0 projects onto

$$|0l\rangle - |l0\rangle$$

$$|0r\rangle - |r0\rangle$$

Spectral gap 1/n²

$$V = \sum_{j} \Pi_{j,j+1}^{int}$$

implements local moves

$$00 \leftrightarrow lr$$

 Π^{int} projects onto

$$|00\rangle - |lr\rangle$$

Define
$$H_{\epsilon} = H_0 + \epsilon V, \qquad 0 < \epsilon \le 1$$

Ground subspace of HE does not depend on ϵ for $\epsilon>0$

$$\operatorname{gap}(H) \geq \operatorname{gap}(H_{\epsilon})$$
 because $H \geq H_{\epsilon}$

Define
$$H_{\epsilon} = H_0 + \epsilon V, \qquad 0 < \epsilon \le 1$$

Ground subspace of HE does not depend on ϵ for $\epsilon>0$

$$\operatorname{gap}(H) \geq \operatorname{gap}(H_{\epsilon})$$
 because $H \geq H_{\epsilon}$

Projection Lemma [KKR 04] Define the first-order effective Hamiltonian

$$H_{\text{eff}} = \Pi_0 V \Pi_0$$

acting on the ground subspace of H_0 . If the spectral gaps of H_0 and $H_{\rm eff}$ are polynomial in 1/n then the spectral gap of $H\epsilon$ is also polynomial in 1/n for sufficiently small ϵ .

Pirsa: 12040112 Page 42/63

Define

$$H_{\epsilon} = H_0 + \epsilon V, \qquad 0 < \epsilon \le 1$$

$$0 < \epsilon \le 1$$

Ground subspace of H ϵ does not depend on ϵ for $\epsilon>0$

$$\operatorname{gap}(H) \geq \operatorname{gap}(H_{\epsilon})$$
 because $H \geq H_{\epsilon}$

Projection Lemma [KKR 04] Define the first-order effective Hamiltonian

$$H_{\text{eff}} = \Pi_0 V \Pi_0$$

acting on the ground subspace of H_0 . If the spectral gaps of H_0 and H_{eff} are polynomial in 1/n then the spectral gap of H ϵ is also polynomial in 1/n for sufficiently small ϵ .

Sufficiently small: $\epsilon \sim \frac{1}{\|V\|} \min \left\{ \operatorname{gap}(H_0), \operatorname{gap}(H_{\operatorname{eff}}) \right\}$

(balanced strings of left and right brackets with no zeros)

Pirsa: 12040112 Page 44/63

(balanced strings of left and right brackets with no zeros)

lllrrr

llrr

llrlrr

 \emptyset | lr

llrrlr

lrlr

lrllrr

lrlrlr

(balanced strings of left and right brackets with no zeros)

Dyck graph:

Vertices = Dyck words

Edges = insertions/removals of consecutive Ir pairs

First-order effective Hamiltonian H_{eff} describes a random walk on the Dyck graph

(balanced strings of left and right brackets with no zeros)

Dyck graph:

Vertices = Dyck words

Edges = insertions/removals of consecutive Ir pairs

First-order effective Hamiltonian H_{eff} describes a random walk on the Dyck graph

It suffices to prove the rapid mixing property of the walk.

Step 2: Use the canonical paths theorem [Sinclair 1992] to prove the rapid mixing property.

We need to connect any pair of vertices s,t on the Dyck graph by a canonical path $\gamma(s,t)$ such that no edge of the graph is used by too many paths.

Pirsa: 12040112 Page 48/63

$$\begin{array}{ll} \text{Maximum} \\ \text{edge load} \end{array} \quad \rho = \max_{(a,b) \in E} \; \frac{1}{\pi(a)P(a,b)} \sum_{s,t \; : \; (a,b) \in \gamma(s,t)} \; \pi(s)\pi(t).$$

 $\pi(a)$ - steady state of the walk

P(a,b) -transition probability from a to b

$$\begin{array}{ll} \text{Maximum} \\ \text{edge load} \end{array} \quad \rho = \max_{(a,b) \in E} \; \frac{1}{\pi(a)P(a,b)} \sum_{s,t \; : \; (a,b) \in \gamma(s,t)} \; \pi(s)\pi(t).$$

 $\pi(a)$ - steady state of the walk

P(a,b) -transition probability from a to b

Canonical paths theorem [Sinclair 1992]

The spectral gap Δ of the walk P has a lower bound

$$\Delta \ge \frac{1}{\rho \, l_{max}}$$

where I_{max} is the maximum length of a canonical path.

New result. The Dyck graph has a spanning tree T with at most four children per node. All Dyck words of length 2k appear at the level-k of T.

Pirsa: 12040112 Page 51/63

New result. The Dyck graph has a spanning tree T with at most four children per node. All Dyck words of length 2k appear at the level-k of T.

The number of Dyck words of length 2k is the Catalan number

$$C_k = \frac{1}{k+1} {2k \choose k} \sim \frac{4^k}{\sqrt{k}}$$

Four children per node is optimal!

New result. The Dyck graph has a spanning tree T with at most four children per node. All Dyck words of length 2k appear at the level-k of T.

Non-constructive proof based on polyhedral description of matchings in bipartite graphs

The number of Dyck words of length 2k is the Catalan number

$$C_k = \frac{1}{k+1} {2k \choose k} \sim \frac{4^k}{\sqrt{k}}$$

Four children per node is optimal!

Canonical path from s to t

Pirsa: 12040112 Page 54/63

Canonical path from s to t

Pirsa: 12040112 Page 55/63

Canonical path from s to t

Pirsa: 12040112 Page 56/63

$$\rho = \max_{(a,b)\in E} \frac{1}{\pi(a)P(a,b)} \sum_{s,t:(a,b)\in\gamma(s,t)} \pi(s)\pi(t).$$

Pirsa: 12040112 Page 57/63

$$\rho = \max_{(a,b)\in E} \frac{1}{\pi(a)P(a,b)} \sum_{s,t:(a,b)\in\gamma(s,t)} \pi(s)\pi(t).$$

s must be a descendant of u on the spanning tree

$$\rho = \max_{(a,b)\in E} \frac{1}{\pi(a)P(a,b)} \sum_{s,t:(a,b)\in\gamma(s,t)} \pi(s)\pi(t).$$

s must be a descendant of u on the spanning tree t must be a descendant of v on the spanning tree

$$\rho = \max_{(a,b)\in E} \frac{1}{\pi(a)P(a,b)} \sum_{s,t: (a,b)\in\gamma(s,t)} \pi(s)\pi(t).$$

s must be a descendant of u on the spanning tree t must be a descendant of v on the spanning tree

For fixed length of s,t,u,v the number of terms in the sum is at most $4^{|s|-|u|+|t|-|v|} \quad \text{(each node has at most four children)}$

The number of Dyck paths of length 2n is $4^n/poly(n)$.

$$4^{|s|-|u|+|t|-|v|} \cdot \frac{\pi(s)\pi(t)}{\pi(a)} = poly(n)$$

Conclusions

The first example of a FF spin-1 chain with a highly entangled ground state. Polynomial spectral gap, translational invariance, logarithmic scaling of the entanglement entropy.

Open problems:

Generalization to two types of brackets [] and {}

Is the logarithmic scaling of S(A) optimal for d=3?

Is the linear scaling of the Schmidt rank optimal for d=3?

Pirsa: 12040112 Page 61/63

Conclusions

The first example of a FF spin-1 chain with a highly entangled ground state. Polynomial spectral gap, translational invariance, logarithmic scaling of the entanglement entropy.

Open problems:

Generalization to two types of brackets [] and {}

Is the logarithmic scaling of S(A) optimal for d=3?

Is the linear scaling of the Schmidt rank optimal for d=3?

http://xkcd.com/859/