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Frustration-free spin chains

H’i,i—l—l
®@ ® @ oo o o o (CHen
n—1
H = E IL; ;41
1—1

Interactions = projectors

Ground state of H = zero eigenvector of every projector
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Frustration-free spin chains

I1; i1
o O O oo o o o (CH®™
Example 1: Heisenberg chain (d=2)
I = |w— ) (v |, |¥) ~[01)—[10)

Ground states = symmetric subspace of (C2)®”
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How entangled can be ground states of
frustration-free quantum spin chains ?

Focus on "nice’ spin chains:

Small local dimension (qubits or qutrits)

Unique ground state

Spectral gap is not too small (polynomial in 1/n)

Translational invariance (optional)
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Ground state entanglement S() for FF qudit chains

d
I Create long-range singlets using courier particle
21 ¢+ S. Irani 2010 S(n) ~n

Random FF spin chains with projectors of fixed
rank = », Movassagh et al 2010
Conjectured highly entangled ground states for

d<r < (12/4

AKLT state, parent Hamiltonians of PEPS and MPS
S(n) = O(1)

Unentangled ground states, J. Chen et al 2010
S(n) =0
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Ground state entanglement S() for FF qudit chains

d
I Create long-range singlets using courier particle
21 ¢+ S. Irani 2010 S(n) ~n

Random FF spin chains with projectors of fixed
rank = », Movassagh et al 2010
Conjectured highly entangled ground states for

(i§T§d2/4

AKLT state, parent Hamiltonians of PEPS and MPS
S(n) = 0O(1)

Unentangled ground states, J. Chen et al 2010
S(n) =0
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|O> Vacuum

Basis states of a qutrit Z> Left bracket [

7"> Right bracket ]

ain = strings of left and right brackets
possibly separated by zeros
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|O> Vacuum

Basis states of a qutrit l> Left bracket [

7’> Right bracket ]

Basis states of a chain = strings of left and right brackets
possibly separated by zeros
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Def. A string S over the alphabet O, ,r is balanced iff

(i) any initial segment of S has at least as many I's as r's
(i) total number of I's = total number of r's
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Def. A string S over the alphabet O,l,r is balanced iff

(i) any initial segment of S has at least as many I's as r's
(i) total number of I's = total number of r's

Example: balanced strings of length 4

Lirr [OO7r lrir
[00 [O7r0 Olr0
0l0r 00lr 0000
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Def. A string S over the alphabet O,l,r is balanced iff

(i) any initial segment of S has at least as many I's as r's
(i) total number of I's = total number of r's

Example: balanced strings of length 4

Lirr [OO7r lrir
[00 (OO 0lr0
Ol0r 00lr 0000

Example of unbalanced string: [Olrrriir
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Balanced strings = Motzkin paths

Llrr [OO7r lrir
[rO00 [Or0O Olr0O
0l0r O0lr 0000



Def. The Motzkin state of n qutrits |[M) is the uniform
superposition of all balanced strings of length n.

[Mz) ~ [00) + [ir)
| M) ~ |000) + |Ir0) + |107) + |0lr)

IM4) ~  |0000) + |00lr) + |0l07) + [1007)
+10ir0) + |[I1070) + [Ir00) + |llrr) + |lrir).
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Why the Motzkin state is highly entangled ?

|
0

| I l
[ [ T [ 0 [ T T T
® © © © & © © © © o
A -

Entanglement between A and B stems from the locally
unmatched brackets.
A and B may have p extra left and right brackets, Ospzn/2.
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Why the Motzkin state is highly entangled ?

|
0

| | l
[ [ i [ 0 [ T T T
® © ® © © © © © © o
A =

Entanglement between A and B stems from the locally
unmatched brackets.
A and B may have p extra left and right brackets, Ospn/2.

(Ma)  ~  (]00) + |ir))a ® (|00) + |ir)) B p=0
+(|0Z) + |10)) A & (|O7) + [r0)) B p=1
+|ll>A 03 |T7’>B. p:Z
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Parent Hamiltonian

n—1

H = |ry(r|y + [0 + D> T 41

J=1

Il projects onto a 3-dimensional subspace of C° & C*
spanned by states

|0l) — |10), |Or) — |[rO), |00) — |ir)
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Parent Hamiltonian

n—1

H = |ry(r|y + [1)(n + D> T 41

J=1

Il projects onto a 3-dimensional subspace of C° & C*
spanned by states

|0l) — |10), |Or) — |r0), |00) — |ir)

Theorem. The Motzkin state is the unique ground state
of Hwith zero energy. The spectral gap of H is po/y(1./n).
Entanglement entropy of one-half of the chain is

1
S(A) =~ 5 log n + 0.14(5)
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Spectral gap A

Dl SN Exact diagonalization for 3<n=<13.
-3t \‘"n.u
Seo.  log A = —0.68 — 2.91 - logn
4 \\"n
\‘s‘\
-5 \"‘x
\‘\‘
\\s
-6 S\
§‘~
\.s‘.b
" A A k‘t
1.5 2.0 25 logn
Rigorous bounds: A = O(n1?)
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Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go
from s to + by a sequence of local moves

0l < 10, Or < 70, 00 <> Ir

Lemma. A string is balanced iff it is equivalent to 0"

<  Local moves preserve balanceness
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Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go
from s to t+ by a sequence of local moves

Ol «— [0, Or <« r0, 00 <« Ir

Lemma. A string is balanced iff it is equivalent to 0"

<~  Local moves preserve balanceness

—  Any balanced non-zero string must contain

lr or [0O...0r

Use local moves to annihilate the pair /r
Use induction in the number of brackets
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Local description of the Motzkin state

Def. Strings s and t are equivalent, s~t, iff one can go
from s to t+ by a sequence of local moves

Ol «— 10, Or <« r0, 00 <« Ir

Equivalence classes of strings: |
q 9 {O, l’ ,r,}‘n,

/m\

VA

On

Balanced strings
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Cpig =710 .0l ..L.

P n—p—q q

Lemma. Any string is equivalent to one and only one
string cy, o for some integers pq.
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Cpig =710 .0l ..L.

P n—p—q q

Lemma. Any string is equivalent to one and only one
string c, o for some integers pq.

Hence any equivalence class has a form

Cpqg =15 {0,l,7}" : s ~cp.q}
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Cpig =710 .0l ..L.

P n—p—q q

Lemma. Any string is equivalent to one and only one
string c, o for some integers pq.

Hence any equivalence class has a form

Cpqg={s€{0,l,r}" : s ~cpgy}
Any string in C, o can be uniquely written as

s =brbr...brblblb...lb

.

P q
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Il projects onto a 3-dimensional subspace of C® & C*
spanned by states

n—1

Define a Hamiltonian H = E IT; j4+1

J=1
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Il projects onto a 3-dimensional subspace of C® & C*
spanned by states

0) —|20),  |07) — |r0), [00) — |ir)

n—1
Define a Hamiltonian H = E IT; j4+1
J=1

Ground subspace of H is spanned by states

1Cp.q) ~ Z | s)

s€Clyp g

Contains the Motzkin state |AM,,) = |Co.o)
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IT projects onto a 3-dimensional subspace of C3 2 C3
spanned by states

0) —20), |07) — |r0), [00) — |ir)

n—1
Define a Hamiltonian H = E IT; j4+1
J=1

Ground subspace of H is spanned by states

|Cp.q) ~ Z | s)

.‘-;'EC?,_Q

Contains the Motzkin state |AM1,,) = |Co.o)
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I+ remains to exclude the unwanted ground states with
non-zero p or q.

Cpg=1r...170...00...1.
? \k_v_J\.k_v_J\ /

P n—p—q q

The class Cq g is the only class in which strings never
start from r and never end by |.
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I+ remains to exclude the unwanted ground states with
non-zero p or q.

Cpg=1r...170...00...1.
? \k_v_J\k_v_J\ /

P n—p—q q

The class Cq g is the only class in which strings never
start from r and never end by |.

Adding energy penalty for strings starting from r or
ending by | gives the desired parent Hamiltonian:

n—1

H = |r)(r|1 + ) {n + D> T4

J=1
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n/2 n/2
® ®© ®© © ¢ o © o © 9

A B

Schmidt decomposition of the Motzkin state:

n/2

|Mn> = |éO,()> _— Z \/ A;r) Ié(),p>A X lép,()>B

p=0

Here |Cp.q) is the normalized superposition of all
strings in the class C, , and

PAq
_ |Cop(n/2)]?
C(),()(n)

Ap are the Schmidt coefficients
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1
Entanglement entropy: S(A) =~ 5 logn + 0.14(5)

T
por
p = 7Y
3
0.12 : ; . :
§ Schmidt coefficients
0.1} § for n=256 y N 1
---------------- R R 1 0 T2 @ —~
.« 17 Y
e | S - L p \/E
) ) )‘p —~ p2e—.3p /mn
<% 0.06f
0.04}
0.02}
o —
0 5 %10 15 20 25 30 35
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1
Entanglement entropy: S(A) =~ 5 logn + 0.14(5)

T2
e
p = Y
3
0.12 . . . .
; Schmidt coefficients
0.1} : for n=256 y N 1
---------------- o R 1 0 T2 < —~
- | . P
0.08 . | . - § P \/ﬁ
_ ) )‘p ~ p2e—.5p /n
<< 0.06}
0.0a}
0.02}
o -
0 5 %10 15 20 25 30 35
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Spectral gap: lower bound

Invariant subspaces:

((C:S)®H, S 69 Hp,q

P.qd

H,., s spanned by strings in the equivalence class (', ,
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Spectral gap: lower bound

Invariant subspaces:

(C3)®n _ 69 Hp,q

pP,q

H, ., is spanned by strings in the equivalence class ', ,

We need a polynomial lower bound for

- Spectral gap inside the balanced subspace 7 o

* Ground state energy inside any unbalanced subspace 7, ,
with non-zero p or q
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Spectral gap: lower bound

Invariant subspaces:

(C3)®n _ 69 Hp,q

P.q

H, ., is spanned by strings in the equivalence class ', ,

We need a polynomial lower bound for

- Spectral gap inside the balanced subspace 7 o

* Ground state energy inside any unbalanced subspace 7,
with non-zero p or q
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Spectral gap: lower bound

Invariant subspaces:

(C3)®n _ 69 Hp,q

P.qd

H, ., is spanned by strings in the equivalence class ', ,

We need a polynomial lower bound for

Spectral gap inside the balanced subspace H g

Ground state energy inside any unbalanced subspace 7, ,
with non-zero p or q

We can ignore the boundary terms IT'> <?"| 1 + |l> <l|n
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Step 1: treat different types of local moves separately
using the perturbation theory

H = ZHJ-.J'+1 = Ho +V

J

0
Ho = > T34,
J
implements local moves

Ol — 10 Or «— r0

I1Y projects onto
|0Z) — |10)
|07) — |r0)

Spectral gap 1/n?
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Step 1: treat different types of local moves separately
using the perturbation theory

H=>» Tjjj1=Ho+V

_ rnt
Ho = E H_(,'),_,-+1 v = E':H:j,j+1
J /
implements local moves implements local moves
0l — 10 Or < r0 00 <« Ir
I1° projects onto 1t projects onto
|0Z) — [10) 100) — |ir)
|07) — |r0)

Spectral gap 1/n?
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Define H, = Hg + €V, O<e<1

Ground subspace of He does not depend on ¢ for £>0

gap(H) = gap(H.) because H > H,

Pirsa: 12040112 Page 40/63



Define H., = Hg + €V, O<e<1

Ground subspace of He does not depend on ¢ for £>0

gap(H) = gap(H.) because H = H.

Projection Lemma [KKR 04] Define the first-order
effective Hamiltonian

Heg = 1o V1o
acting on the ground subspace of Hg. If the spectral gaps

of Hy and H_¢¢ are polynomial in 1/n then the spectral
gap of He is also polynomial in 1/n for sufficiently small .
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Define H., = Hg + €V, O<e<1

Ground subspace of He does not depend on ¢ for £>0

gap(H) = gap(H.) because H = H.

Projection Lemma [KKR 04] Define the first-order
effective Hamiltonian

Heg = 1o V1o
acting on the ground subspace of H,. If the spectral gaps

of Hy and H_¢¢ are polynomial in 1/n then the spectral
gap of He is also polynomial in 1/n for sufficiently small ¢.

1
Sufficiently small: € ~ TV min {gap(Ho), gap(Hes) }
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Ground states of Hg = Dyck words

Lllrrr

llrr

Lirirr

Pirsa: 12040112

lr

Llrrir

lrir

lrillrr

lririr

(balanced strings of left
and right brackets with

Nno zeros)
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Ground states of Hy = Dyck words

Lllrrr

lrr

Llrirr

Pirsa: 12040112

lr

Llrrir

lrir

lrilrr

lririr

(balanced strings of left
and right brackets with

Nno zeros)
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Ground states of Hg = Dyck words (balanced strings of left
and right brackets with
Nno zeros)

Lllrrr
Dyck graph:

llrr [ Llrirr

Vertices = Dyck words
OF—Ur A Urrlr

17l Edges = insertions/removals

ALE) lrillirr of consecutive Ir pairs

lririr

First-order effective Hamiltonian H_;; describes a
random walk on the Dyck graph
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Ground states of Hg = Dyck words (balanced strings of left
and right brackets with
Nno zeros)

Llirrr
Dyck graph:

lrr K lrirr

\ Vertices = Dyck words
? lr A Urrlr

Il Edges = insertions/removals

Tery N 71177 of consecutive Ir pairs

Ilririr

First-order effective Hamiltonian H_¢; describes a
random walk on the Dyck graph

It suffices to prove the rapid mixing property of the walk.
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Step 2: Use the canonical paths theorem [Sinclair 1992]
to prove the rapid mixing property.

We need to connect any pair of vertices s,¢ on the Dyck graph by
a canonical path ~y(s,t) such that no edge of the graph is used
by too many paths.

Lrirr

v(s,t)

llrrir

N iritrr
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Maximum 1
N — 1max w(s)m ().
edge load " wryer w(a)Pla.b) (Zé T
s,T: (a0 y(s.T

m(a) - steady state of the walk

P(a,b) - transition probability from a+to b
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Maximum 1
— ma t).
edge load r (u.,b)é{E w(a)P(a,b) . (}Z)é (5.) Tl a)T(L)
s.t:(ab)e~vy(s,t

mm(a) - steady state of the walk

P(a,b) - transition probability from atob

Canonical paths theorem [Sinclair 1992]
The spectral gap A of the walk P has a lower bound

1

pl?'TL(L:I:
is the maximum length of a canonical path.

A >

where |, 4%
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New result. The Dyck graph has a spanning tree T

with at most four children per node. All Dyck words of

length 2k appear at the level-k of T.

Pirsa: 12040112

Lllrrr

llirr

Lirirr

lr

Llrrir

lrir|-

lrilrr

lririr
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New result. The Dyck graph has a spanning tree T

with at most four children per node. All Dyck words of

length 2k appear at the level-k of T.

Lllrrr

llirr

Lirirr

The number of Dyck words

Llrrir

lrir|

lrilrr

lririr

of length 2k is the Catalan number

Four children per node is optimal |

Pirsa: 12040112
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New result. The Dyck graph has a spanning tree T
with at most four children per node. All Dyck words of
length 2k appear at the level-k of T.

lrir|

The number of Dyck words

Lllrrr

Wrr

Llrirr

Llrrilr

lrilrr

lririr

of length 2k is the Catalan number

Four children per node is optimal |

Pirsa: 12040112

Non-constructive proof
based on polyhedral
description of matchings
in bipartite graphs

1 2k 4k
E+1\ k V'k
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Start at s

Canonical path from s to t

CLatrm)> 8

T Lirirr
Urrlr

Nt ¢

u v

=

Lllrrr
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Grow v

Canonical path from s to t

Lllrrr

Virlr|—

Lirirr

Llrrir

A Irllrr

lririr

Llrr

=

S

llrr

lr
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r

Shrink u

Canonical path from s to t

Lllrrr

5 (D

Virlr|—

Lirirr

Llrrir

— Irllrr

lririr

llrr

lr

S
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Maximum p = max ! Z mw(s)m(t).

edge load (ab)er m(a)P(a,b) s,t: (a,b)E~(s,t)
U (% U v
S . - lr lr — lr lrir » N t

a b
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Maximum p = max ! Z w(s)m(t).

d d ab)e ¥ P ’ b
edage loa ( )E 7'{'(0,) (CL ) s,t:(a,b)evy(s,t)
U (% U bd
S - lr l'r — lr lrir - . t

a b

s must be a descendant of u on the spanning tree
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Maximum

1 Z
p = Imax W(S)ﬂ-(t).
a.b o ’ b
edge load (@p)er m(a)P(a,b) 2 oy
U (% U fd
S . . lT' lfr —_— l’)"' l?"l?" > » t

a

b

s must be a descendant of u on the spanning tree

t must be a descendant of v on the spanning tree

Pirsa: 12040112
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Maximum p = max i Z w(s)m(t).

d d a.b)eE P(a,b
edge loa (a,b)e 7'('(&) (a ) s,t:(a,b)evy(s,t)
") v u v
S - lr lr —— lr lrir - = t

a b

s must be a descendant of u on the spanning tree

t must be a descendant of v on the spanning tree

For fixed length of s,t,u,v the number of terms in the sum is at most

4|s|—|u|+|t|—|v| (each node has at most four children)

The number of Dyck paths of length 2n is 4"/poly(n).

glsl—lul+1t|—v| m(s)m (1)

@) poly(n)

Pirsa: 12040112 Page 60/63



Conclusions
The first example of a FF spin-1 chain with a highly
entangled ground state. Polynomial spectral gap,
translational invariance, logarithmic scaling of the
entanglement entropy.

Open problems:

Generalization to two types of brackets [ ] and { }
Is the logarithmic scaling of S(A) optimal for d=3 ?

Is the linear scaling of the Schmidt rank optimal for d=3 ?
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Conclusions
The first example of a FF spin-1 chain with a highly
entangled ground state. Polynomial spectral gap,
translational invariance, logarithmic scaling of the
entanglement entropy.

Open problems:

Generalization to two types of brackets [ ] and { }
Is the logarithmic scaling of S(A) optimal for d=3 ?

Is the linear scaling of the Schmidt rank optimal for d=3 ?
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(AN UNMATCHED LEFT PARENTHESIS

CREATES AN UNRESOLVED TENSION
THAT WiLL STRY WITH YOU ALL DAY.

http://xkcd com/859/
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