Title: The Direct Detection of sub-GeV Dark Matter: First Limits and Future Prospects

Date: Apr 17, 2012 01:00 PM

URL: http://pirsa.org/12040104

Abstract: Direct dark matter (DM) detection experiments almost always focus on Weakly Interacting Massive Particles (WIMPs), which have a mass in the 1--1000 GeV range. However, what if DM is not a WIMP? In this talk, new direct detection strategies for DM particles with MeV to GeV mass will be presented. In this largely unexplored mass range, DM can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. I will present the first direct detection limits on DM as light as a few MeV, using XENON10 data. Theoretically interesting models can already be probed. Significant improvements in sensitivity should be possible with dedicated experiments, opening up a window to new regions in DM parameter space.

Pirsa: 12040104 Page 1/233

Pirsa: 12040104 Page 2/233

The Direct Detection of sub-GeV Dark Matter

Rouven Essig

YITP, Stony Brook

Perimeter Institute, April 17, 2012

with:

J. Mardon, T. Volansky (1108.5383)

A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky (submitted to PRL)

+ work in progress

Pirsa: 12040104 Page 3/233

The Direct Detection of sub-GeV Dark Matter (yes, it is possible)

Rouven Essig

YITP, Stony Brook

Perimeter Institute, April 17, 2012

with:

J. Mardon, T. Volansky (1108.5383)

A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky (submitted to PRL)

+ work in progress

Pirsa: 12040104 Page 4/233

Lots of evidence for dark matter

X-ray: NASA/CXC/CfA/M.Markevitch et al. Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al. Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Pirsa: 12040104 Page 5/233

• What is dark matter?

Pirsa: 12040104 Page 6/233

• What is dark matter?

⇒ clearly, an important question...

Pirsa: 12040104 Page 7/233

• What is dark matter?

 \Longrightarrow clearly, an important question...

• Major experimental efforts are underway

⇒ real chance of success in coming years...

Pirsa: 12040104 Page 8/233

What is dark matter?

 \Longrightarrow clearly, an important question...

Major experimental efforts are underway

⇒ real chance of success in coming years...

But are we looking everywhere we can and should?

Pirsa: 12040104 Page 9/233

 Most searches focus on Weakly Interacting Massive Particles:

e.g. neutralino

Pirsa: 12040104 Page 10/233

 Most searches focus on Weakly Interacting Massive Particles:

e.g. neutralino

mass ~ 1 - 1000 GeV

Butt what iff DM is lighter tilham this???

Hlow do we detect that??

Pirsa: 12040104 Page 11/233

 Most searches focus on Weakly Interacting Massive Particles:

e.g. neutralino

mass ~ 1 - 1000 GeV

But what if DM is lighter than this??

How do we detect that??

Pirsa: 12040104 Page 12/233

can naturally obtain correct abundance from thermal freeze-out

Pirsa: 12040104 Page 13/233

can naturally obtain correct abundance from thermal freeze-out

$$\Omega h^2 \simeq 0.1 \left(\frac{3 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle} \right)$$

Pirsa: 12040104 Page 14/233

can naturally obtain correct abundance from thermal freeze-out

$$\Omega h^2 \simeq 0.1 \left(\frac{3 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle} \right)$$

$$\langle \sigma v \rangle \sim \frac{\pi \, \alpha_{\rm weak}^2}{m_{\rm dm}^2} \sim \frac{\pi \, \alpha_{\rm weak}^2}{(100 \, {\rm GeV})^2}$$

 comes along for free in some attempts to explain Higgs hierarchy problem

Pirsa: 12040104 Page 15/233

 can naturally obtain correct abundance from thermal freeze-out

$$\Omega h^2 \simeq 0.1 \left(\frac{3 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle} \right)$$

$$\langle \sigma v \rangle \sim \frac{\pi \, \alpha_{\rm weak}^2}{m_{\rm dm}^2} \sim \frac{\pi \, \alpha_{\rm weak}^2}{(100 \, {\rm GeV})^2}$$

- comes along for free in some attempts to explain Higgs hierarchy problem
- eminently testable:
 indirect detection

 - colliders
 - direct detection

This Talk

Focus on Direct Detection

Pirsa: 12040104 Page 17/233

"Direct" Detection

Pirsa: 12040104 Page 18/233

Take a detector with lots of nuclei (e.g. Germanium, Xenon, Nal, ...)

Atom

Pirsa: 12040104 Page 19/233

Take a detector with lots of nuclei (e.g. Germanium, Xenon, Nal, ...)

and wait... until...

Atom

Pirsa: 12040104 Page 20/233

Take a detector with lots of nuclei (e.g. Germanium, Xenon, Nal, ...)

and wait... until...

Pirsa: 12040104 Page 21/233

Take a detector with lots of nuclei (e.g. Germanium, Xenon, Nal, ...) and wait... until...

depending on material, recoil can produce: phonons scintillation ionization

Pirsa: 12040104 Page 22/233

(it's very confusing...)

Pirsa: 12040104 Page 23/233

(it's very confusing...)

Pirsa: 12040104 Page 24/233

(it's very confusing...)

Cross section to scatter off nucleons

Pirsa: 12040104 Page 25/233

(it's very confusing...)

DAMA/LIBRA (Nal)

Pirsa: 12040104 Page 26/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

Pirsa: 12040104 Page 27/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

XENON-100 (Xe)

Pirsa: 12040104 Page 28/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

XENON-100 (Xe)

XENON-10 (Xe)

Pirsa: 12040104 Page 29/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

XENON-100 (Xe)

XENON-10 (Xe)

CRESST-1 (CaWO₄)

Pirsa: 12040104 Page 30/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

XENON-100 (Xe)

XENON-10 (Xe)

CRESST-1 (CaWO₄)

DAMIC (Si, CCD's)

Pirsa: 12040104 Page 31/233

(it's very confusing...)

DAMA/LIBRA (Nal)

CoGeNT (Ge)

XENON-100 (Xe)

XENON-10 (Xe)

CRESST-1 (CaWO₄)

DAMIC (Si, CCD's)

+ many more experiments

Pirsa: 12040104 Page 32/233

Experiments are optimized for WIMPs

nuclear recoil energy

$$E_{\rm nr} \sim \frac{1}{2} \,\mu \, v^2$$

$$\mu = \begin{array}{c} \text{reduced} \\ \mu = \begin{array}{c} \text{WIMP-nucleus} \\ \text{mass} \end{array}$$

v = WIMP velocity

Pirsa: 12040104 Page 33/233

Experiments are optimized for WIMPs

nuclear recoil energy

$$E_{\rm nr} \sim \frac{1}{2} \,\mu \, v^2$$

$$\begin{array}{rl} \text{reduced} \\ \mu = & \text{WIMP-nucleus} \\ & \text{mass} \end{array}$$

v = WIMP velocity

$$\sim \frac{1}{2} (50 \text{ GeV}) (10^{-3})^2$$

$$\sim 25 \text{ keV}$$

"easy" to detect

Pirsa: 12040104

But...

Pirsa: 12040104 Page 35/233

But...

What if it's not a WIMP ???

Pirsa: 12040104 Page 36/233

Pirsa: 12040104 Page 37/233

• haven't seen them despite years of searching....

Pirsa: 12040104 Page 38/233

- haven't seen them despite years of searching....
- many new physics models have non-WIMP DM

Pirsa: 12040104 Page 39/233

- haven't seen them despite years of searching....
- many new physics models have non-WIMP DM
- many other ways to get correct DM abundance

Pirsa: 12040104 Page 40/233

- haven't seen them despite years of searching....
- many new physics models have non-WIMP DM
- many other ways to get correct DM abundance
- still no new physics at the LHC...

Pirsa: 12040104 Page 41/233

- haven't seen them despite years of searching....
- many new physics models have non-WIMP DM
- many other ways to get correct DM abundance
- still no new physics at the LHC...

don't let a paradigm blind you to other experimental opportunities!

Pirsa: 12040104 Page 42/233

So instead of considering only this...

Pirsa: 12040104 Page 43/233

What if DM is here?

mass ~ MeV - GeV

Pirsa: 12040104 Page 44/233

Direct Detection of sub-GeV DM

- constraints
- direct detection
- future

Pirsa: 12040104 Page 45/233

Direct Detection of sub-GeV DM

- constraints
- direct detection
- future

Pirsa: 12040104 Page 46/233

Direct Detection of sub-GeV DM

- \rightarrow
 - constraints
 - direct detection
 - future

Pirsa: 12040104 Page 47/233

Pirsa: 12040104 Page 48/233

Several possible constraints:

Pirsa: 12040104 Page 49/233

Several possible constraints:

• free streaming

light DM can wash out small-scale structure

Pirsa: 12040104 Page 50/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background

Pirsa: 12040104 Page 51/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background

DM annihilation products can distort CMB

Galli et.al. Slatyer, Padmanabhan, Finkbeiner

Pirsa: 12040104 Page 52/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background

DM annihilation products can distort CMB

disfavors standard freeze-out below ~10 GeV

Galli et.al. Slatyer, Padmanabhan, Finkbeiner

Pirsa: 12040104 Page 53/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

Pirsa: 12040104 Page 54/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

see also Deniverville, Pospelov, Ritz (2011)

But: constraints are model dependent & can be avoided

Pirsa: 12040104 Page 55/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

see also Deniverville, Pospelov, Ritz (2011)

But: constraints are model dependent & can be avoided Examples:

Pirsa: 12040104 Page 56/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

see also Deniverville, Pospelov, Ritz (2011)

But: constraints are model dependent & can be avoided

Examples:

light asymmetric DM

e.g. Kaplan et.al. (2009), Falkowski et.al. (2011)

see also Lin, Yu, Zurek (2011)

Pirsa: 12040104 Page 57/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

see also Deniverville, Pospelov, Ritz (2011)

But: constraints are model dependent & can be avoided

Examples:

- light asymmetric DM
- freeze-out within a hidden sector (WIMPless DM)

see also Lin, Yu, Zurek (2011)

e.g. Kaplan et.al. (2009), Falkowski et.al. (2011)

e.g. Feng & Kumar (2008)

Pirsa: 12040104 Page 58/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background
 - + other indirect constraints (e.g. dwarf galaxies)

see also Deniverville, Pospelov, Ritz (2011)

But: constraints are model dependent & can be avoided

Examples:

- light asymmetric DM
- freeze-out within a hidden sector (WIMPless DM)
- freeze-in

see also Lin, Yu, Zurek (2011)

e.g. Kaplan et.al. (2009), Falkowski et.al. (2011)

e.g. Feng & Kumar (2008)

e.g. Hall et.al. (2009)

Pirsa: 12040104 Page 59/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background etc.
- DM self-interactions

Pirsa: 12040104 Page 60/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background etc.
- DM self-interactions

Bullet cluster:
$$\frac{\sigma}{m_{
m DM}}\lesssim 1~{
m cm}^2/{
m g}$$
 Markevitch et.al. (2003)

Pirsa: 12040104 Page 61/233

Several possible constraints:

- free streaming
- Cosmic Microwave Background etc.
- DM self-interactions

Bullet cluster:
$$\frac{\sigma}{m_{
m DM}}\lesssim 1~{
m cm}^2/{
m g}$$
 Markevitch et.al. (2003)

Halo shapes:
$$\frac{\sigma}{m_{
m DM}} \lesssim 0.02~{
m cm}^2/{
m g}$$
 Miralda-Escude (2000)

Pirsa: 12040104 Page 62/233

Answer:

Yes!

Pirsa: 12040104 Page 63/233

Direct Detection of sub-GeV DM

- constraints
- direct detection
 - future

Pirsa: 12040104 Page 64/233

Recall: Heavy DM

Pirsa: 12040104 Page 65/233

Recall: Heavy DM

Pirsa: 12040104 Page 66/233

Light DM $\lesssim 1 \text{ GeV}$

Pirsa: 12040104 Page 67/233

nuclear recoil
$$E_{
m nr} \sim rac{q^2}{2\,m_N}$$
 energy

Pirsa: 12040104 Page 68/233

nuclear recoil
$$E_{
m nr} \sim rac{q^2}{2\,m_N} \, \sim rac{(m_{
m DM}\,v)^2}{2\,m_N}$$

Pirsa: 12040104 Page 69/233

nuclear recoil energy

$$E_{\rm nr} \sim \frac{q^2}{2 \, m_N} \sim \frac{(m_{\rm DM} \, v)^2}{2 \, m_N}$$

$$\sim 1 \text{ eV } \left(\frac{m_{\text{DM}}}{100 \text{ MeV}}\right)^2 \left(\frac{10 \text{ GeV}}{m_N}\right) \left(\frac{v}{300 \text{ km/s}}\right)^2$$

Pirsa: 12040104 Page 70/233

nuclear recoil
$$E_{
m nr} \sim rac{q^2}{2\,m_N} \, \sim rac{(m_{
m DM}\,v)^2}{2\,m_N}$$
 energy

$$\left(\sim 1 \text{ eV}\right) \left(\frac{m_{\text{DM}}}{100 \text{ MeV}}\right)^2 \left(\frac{10 \text{ GeV}}{m_N}\right) \left(\frac{v}{300 \text{ km/s}}\right)^2$$

way too small to excite or ionize an atom or produce enough phonons!

Pirsa: 12040104 Page 71/233

nuclear recoil $E_{
m nr} \sim rac{q^2}{2\,m_N} \, \sim rac{(m_{
m DM}\,v)^2}{2\,m_N}$ energy

$$\left(\sim 1 \text{ eV}\right) \left(\frac{m_{\rm DM}}{100 \text{ MeV}}\right)^2 \left(\frac{10 \text{ GeV}}{m_N}\right) \left(\frac{v}{300 \text{ km/s}}\right)^2$$

way too small to excite or ionize an atom or produce enough phonons!

Pirsa: 12040104

nuclear recoil $E_{\rm nr} \sim 1~{\rm eV}~\left(\frac{m_{\rm DM}}{100~{\rm MeV}}\right)^2~\left(\frac{10~{\rm GeV}}{m_N}\right)~\left(\frac{v}{300~{\rm km/s}}\right)^2$ energy

But, total energy available is much larger!

Pirsa: 12040104 Page 73/233

nuclear recoil
$$E_{
m nr} \sim 1~{
m eV}~ \left({m_{
m DM} \over 100~{
m MeV}} \right)^2 ~ \left({10~{
m GeV} \over m_N} \right) ~ \left({v \over 300~{
m km/s}} \right)^2$$
 energy

But, total energy available is much larger!

$$E_{\rm tot} \sim \frac{1}{2} \, m_{\rm DM} \, v^2 \sim 50 \, \, {\rm eV} \, \left(\frac{m_{\rm DM}}{100 \, {\rm MeV}} \right) \, \left(\frac{v}{300 \, {\rm km/s}} \right)^2$$

Pirsa: 12040104 Page 74/233

nuclear recoil
$$E_{
m nr} \sim 1 \; {
m eV} \; \left({m_{
m DM} \over 100 \; {
m MeV}} \right)^2 \; \left({10 \; {
m GeV} \over m_N} \right) \; \left({v \over 300 \; {
m km/s}} \right)^2$$
 energy

But, total energy available is much larger!

$$E_{
m tot} \sim rac{1}{2} \, m_{
m DM} \, v^2 \, \Biggl(\sim 50 \, {
m eV} \Bigr) \left(rac{m_{
m DM}}{100 \, {
m MeV}} \Bigr) \, \left(rac{v}{300 \, {
m km/s}} \Bigr)^2$$
 much larger !

Pirsa: 12040104 Page 75/233

nuclear recoil
$$E_{
m nr} \sim 1~{
m eV}~ \left({m_{
m DM} \over 100~{
m MeV}}
ight)^2 ~ \left({10~{
m GeV} \over m_N}
ight) ~ \left({v \over 300~{
m km/s}}
ight)^2$$
 energy

But, total energy available is much larger!

$$E_{\rm tot} \sim \frac{1}{2} \, m_{\rm DM} \, v^2 \sim 50 \, \text{eV} \, \left(\frac{m_{\rm DM}}{100 \, \text{MeV}} \right) \, \left(\frac{v}{300 \, \text{km/s}} \right)^2$$

enough energy to <u>excite</u> or <u>ionize</u> an atom, or <u>dissociate</u> molecules!

Pirsa: 12040104 Page 76/233

How to detect sub-GeV DM

- ionization
- excitation
- molecular dissociation

Pirsa: 12040104 Page 77/233

How to detect sub-GeV DM

- ionization
- excitation
- molecular dissociation

Pirsa: 12040104 Page 78/233

DM

Atom

Pirsa: 12040104 Page 79/233

Ionization

Signal: single (or few) electron events

Pirsa: 12040104 Page 80/233

Ionization

threshold ~ 1-100 eV

Signal: single (or few) electron events

Pirsa: 12040104 Page 81/233

Ionization

threshold ~ 1-100 eV

Signal: single (or few) electron events

<u>existing</u> technologies can measure ionization, even of a <u>single</u> electron!

Pirsa: 12040104 Page 82/233

Focus on this today

Ionization

threshold ~ 1-100 eV

Signal: single (or few) electron events

<u>existing</u> technologies can measure ionization, even of a <u>single</u> electron!

Pirsa: 12040104 Page 83/233

How to detect sub-GeV DM

- ionization
- excitation
 - molecular dissociation

(brief)

Pirsa: 12040104 Page 84/233

DM

Atom

Pirsa: 12040104 Page 85/233

Pirsa: 12040104 Page 86/233

Excitation

Atom

Excite atom... & look for de-excitation photon

Signal: photons

Pirsa: 12040104 Page 87/233

threshold ~ 1-100 eV

Excitation

Excite atom... & look for de-excitation photon

Signal: photons

Pirsa: 12040104 Page 88/233

threshold ~ 1-100 eV

Excitation

Excite atom... & look for de-excitation photon

Signal: photons

single photon detection currently too noisy... requires more work to determine feasibility

Pirsa: 12040104 Page 89/233

threshold ~ 1-100 eV

Excitation

Excite atom... & look for de-excitation photon

Signal: photons

single photon detection currently too noisy... requires more work to determine feasibility

Pirsa: 12040104 Page 90/233

How to detect sub-GeV DM

- ionization
- excitation
- molecular dissociation

(brief)

Pirsa: 12040104 Page 91/233

DM scattering off nuclei

Break apart molecules

threshold ~ few eV

Signal: individual ions

Pirsa: 12040104 Page 92/233

DM scattering off nuclei

Break apart molecules

threshold ~ few eV

Signal: individual ions

Pirsa: 12040104 Page 93/233

DM scattering off nuclei

Break apart molecules

threshold ~ few eV

Signal: individual ions

still requires more work to see if feasible...

Pirsa: 12040104 Page 94/233

In this talk, we focus on ionization signal

Pirsa: 12040104 Page 95/233

A Proof of Principle

(for ionization signal)

Pirsa: 12040104 Page 96/233

A Proof of Principle

(for ionization signal)

"First direct detection limits on sub-GeV Dark Matter from XENON10"

RE, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky (submitted to PRL)

Pirsa: 12040104 Page 97/233

 e^- bound in atom, w/ binding energy: ΔE

Pirsa: 12040104 Page 98/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = \frac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

Pirsa: 12040104 Page 99/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = \frac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

Pirsa: 12040104 Page 100/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = \frac{1}{2}\,m_{\mathrm{DM}}\,v_{\mathrm{DM}}^2 > \Delta E$$

$$v_{\rm DM} \lesssim 800 \text{ km/s} \implies m_{\rm DM} \gtrsim 3 \text{ MeV} \left(\frac{\Delta E}{10 \text{ eV}}\right)$$

Pirsa: 12040104 Page 101/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = rac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

$$v_{\rm DM} \lesssim 800 \text{ km/s} \implies m_{\rm DM} \gtrsim 3 \text{ MeV} \left(\frac{\Delta E}{10 \text{ eV}}\right)$$

Pirsa: 12040104 Page 102/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = \frac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

$$v_{\rm DM} \lesssim 800 \ {\rm km/s} \implies m_{\rm DM} \gtrsim 3 \ {\rm MeV} \left(\frac{\Delta E}{10 \ {\rm eV}} \right)$$

so lower ΔE is good!

Pirsa: 12040104 Page 103/233

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = rac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

$$v_{\rm DM} \lesssim 800 \ {\rm km/s} \implies m_{\rm DM} \gtrsim 3 \ {\rm MeV} \left(\frac{\Delta E}{10 \ {\rm eV}} \right)$$

so lower ΔE is good!

For Xe, outer shells are 5p: $\Delta E \simeq 12 \; \mathrm{eV}$

5s: $\Delta E \simeq 26 \text{ eV}$

4d: $\Delta E \simeq 76 \text{ eV}$

 e^- bound in atom, w/ binding energy: ΔE

need
$$E_{\mathrm{DM}} = \frac{1}{2} \, m_{\mathrm{DM}} \, v_{\mathrm{DM}}^2 > \Delta E$$

$$v_{\rm DM} \lesssim 800 \text{ km/s} \implies m_{\rm DM} \gtrsim 3 \text{ MeV} \left(\frac{\Delta E}{10 \text{ eV}}\right)$$

so lower ΔE is good!

For Xe, outer shells are 5p: $\Delta E \simeq 12 \; \mathrm{eV}$

5s: $\Delta E \simeq 26 \text{ eV}$

4d: $\Delta E \simeq 76 \text{ eV}$

So in principle we can probe DM as light as a few MeV!

Pirsa: 12040104

The XENON10 experiment

Pirsa: 12040104 Page 106/233

The XENON10 experiment

detector schematic

Pirsa: 12040104 Page 107/233

The XENON10 experiment

detector schematic

Xe liquid (~14 kg)

Pirsa: 12040104 Page 108/233

detector schematic

Pirsa: 12040104 Page 109/233

detector schematic

Pirsa: 12040104 Page 110/233

Pirsa: 12040104 Page 111/233

two-phase xenon time projection chamber

Pirsa: 12040104 Page 112/233

two-phase xenon time projection chamber operated for ~1 year in 2006/2007

Pirsa: 12040104 Page 113/233

heavy DM

Pirsa: 12040104 Page 114/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Pirsa: 12040104 Page 115/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

Pirsa: 12040104 Page 116/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

Pirsa: 12040104 Page 117/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

Pirsa: 12040104 Page 118/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

Pirsa: 12040104 Page 119/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

Pirsa: 12040104 Page 120/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

Pirsa: 12040104 Page 121/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

Pirsa: 12040104 Page 123/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

Pirsa: 12040104 Page 125/233

$$Xe \rightarrow Xe^*$$
, Xe^+

produces photons and electrons

Two types of signal:

S1: prompt scintillation

S2: proportional scintillation (from ionization)

Pirsa: 12040104 Page 126/233

Usual WIMP searches

Pirsa: 12040104 Page 127/233

Usual WIMP searches

$$\left(\frac{S_2}{S_1}\right)_{\text{WIMP}} \ll \left(\frac{S_2}{S_1}\right)_{\gamma}$$

What about light DM?

Pirsa: 12040104 Page 128/233

Pirsa: 12040104 Page 129/233

S1: not measurable

Pirsa: 12040104 Page 130/233

S1: not measurable

Pirsa: 12040104 Page 131/233

S1: not measurable

Pirsa: 12040104 Page 132/233

S1: not measurable

Pirsa: 12040104 Page 133/233

S1: not measurable

S2: small signal

Pirsa: 12040104 Page 134/233

on average, a single electron produces about 27 photo-electrons

Pirsa: 12040104 Page 135/233

on average, a single electron produces about 27 photo-electrons

S1: not measurable

S2: small signal

Pirsa: 12040104 Page 136/233

on average, a single electron produces about 27 photo-electrons

in principle, easy to detect in XENON10

Pirsa: 12040104 Page 137/233

on average, a single electron produces about 27 photo-electrons

in principle, easy to detect in XENON10

Pirsa: 12040104 Page 138/233

on average, a single electron produces about 27 photo-electrons

in principle, easy to detect in XENON10

But XENON10 was set-up to trigger on single e⁻ events (with S1 = 0) for *only 12.5 days* in 2006... only 15 kg-days exposure

Pirsa: 12040104 Page 139/233

on average, a single electron produces about 27 photo-electrons

in principle, easy to detect in XENON10

But XENON10 was set-up to trigger on single e⁻ events (with S1 = 0) for *only 12.5 days* in 2006... only 15 kg-days exposure

P. Sorensen (XENON10) used this data to set limits on ~10 GeV DM from *nuclear recoils*, constraining DAMA/CoGeNT region

Pirsa: 12040104 Page 140/233

P. Sorensen (XENON10) used this data to set limits on ~10 GeV DM from *nuclear recoils*, constraining DAMA/CoGeNT region (2011)

Pirsa: 12040104 Page 141/233

Pirsa: 12040104 Page 142/233

P. Sorensen (XENON10) used this data to set limits on ~10 GeV DM from *nuclear recoils*, constraining DAMA/CoGeNT region (2011)

Pirsa: 12040104 Page 143/233

~500 events w/ 1-, 2-, or 3-electrons are observed

Pirsa: 12040104 Page 144/233

~500 events w/ 1-, 2-, or 3-electrons are observed

Pirsa: 12040104 Page 145/233

~500 events w/ 1-, 2-, or 3-electrons are observed

Pirsa: 12040104 Page 146/233

~500 events w/ 1-, 2-, or 3-electrons are observed

Pirsa: 12040104 Page 147/233

~500 events w/ 1-, 2-, or 3-electrons are observed

blue bands: statistical uncertainty

Pirsa: 12040104 Page 148/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

Pirsa: 12040104 Page 149/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

Pirsa: 12040104 Page 150/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

Origin unclear! Some possibilities:

Pirsa: 12040104 Page 151/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

Origin unclear! Some possibilities:

Photo-dissociation of negatively charged impurities

Pirsa: 12040104 Page 152/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

Origin unclear! Some possibilities:

- Photo-dissociation of negatively charged impurities
- spontaneous emission of e⁻ trapped in potential barrier at liquid-gas interface

Pirsa: 12040104 Page 153/233

~500 events w/ 1-, 2-, or 3-electrons are observed

What are these events ??

virtually no attempt has been made to understand origin of these events!

Pirsa: 12040104 Page 154/233

~500 events w/ 1-, 2-, or 3-electrons are observed

90% c.l. upper bounds on rates:

Pirsa: 12040104 Page 155/233

~500 events w/ 1-, 2-, or 3-electrons are observed

90% c.l. upper bounds on rates:

1 e⁻: 34.5 counts/kg/day

2 e⁻: 4.5 counts/kg/day

3 e⁻: 0.83 counts/kg/day

To set limits on DM, must calculate DM-induced ionization rates

Pirsa: 12040104 Page 156/233

~500 events w/ 1-, 2-, or 3-electrons are observed

90% c.l. upper bounds on rates:

1 e⁻: 34.5 counts/kg/day

2 e⁻: 4.5 counts/kg/day

3 e⁻: 0.83 counts/kg/day

To set limits on DM, must calculate DM-induced ionization rates

Pirsa: 12040104 Page 157/233

Pirsa: 12040104 Page 158/233

Scattering Rate \propto

Pirsa: 12040104 Page 159/233

Scattering Rate
$$\propto rac{
m atomic}{
m form-factor} imes rac{
m DM}{
m form-factor} imes \sigma_e$$

$$|f(q)|^2 \qquad \qquad q \sim rac{
m momentum}{
m transfer}$$

Pirsa: 12040104 Page 160/233

Scattering Rate
$$\propto$$
 atomic form-factor \times DM \times σ_e form-factor $|f(q)|^2$ $q \sim$ momentum transfer

$$|f(q)|^2 \sim \sum_{\text{degeneracies}} |\langle \psi_{\text{out}}| e^{i\vec{q}\cdot\vec{r}} |\psi_{\text{bound}}\rangle|^2$$

Pirsa: 12040104 Page 161/233

Scattering Rate
$$\propto$$
 atomic form-factor \times DM \times σ_e form-factor $|f(q)|^2$ $q \sim$ momentum transfer

$$|f(q)|^2 \sim \sum_{\text{degeneracies}} |\langle \psi_{\text{out}}| e^{i\vec{q}\cdot\vec{r}} |\psi_{\text{bound}}\rangle|^2$$

numerical wavefunctions
[Bunge, Barrientos, Bunge]

Pirsa: 12040104 Page 162/233

Scattering Rate
$$\propto \frac{\mathrm{atomic}}{\mathrm{form\text{-}factor}} \times \frac{\mathrm{DM}}{\mathrm{form\text{-}factor}} \times \sigma_e$$

$$|f(q)|^2$$

$$q \sim rac{ ext{momentum}}{ ext{transfer}}$$

$$|f(q)|^2 \sim \sum_{\text{degeneracies}} |\langle \psi_{\text{out}}| e^{i\vec{q}\cdot\vec{r}} |\psi_{\text{bound}}\rangle|^2$$

numerical wavefunctions

[Bunge, Barrientos, Bunge]

Pirsa: 12040104 Page 163/233

Scattering Rate
$$\propto \frac{\text{atomic}}{\text{form-factor}} \times \frac{\text{DM}}{\text{form-factor}} \times \sigma_e$$

$$|f(q)|^2 \qquad \qquad q \sim \frac{\text{momentum}}{\text{transfer}}$$

$$|f(q)|^2 \sim \sum_{\text{degeneracies}} \left| \langle \psi_{\text{out}} | e^{i \vec{q} \cdot \vec{r}} | \psi_{\text{bound}} \rangle \right|^2 \qquad \frac{\text{numerical}}{\text{wavefunctions}}$$
 [Bunge, Barrientos, Bunge]

Pirsa: 12040104 Page 164/233

What are typical *q*?

Pirsa: 12040104 Page 165/233

In general, need DM velocity to be

$$v_{\mathrm{DM}} > v_{\mathrm{min}} = \frac{\Delta E + E_R}{q} + \frac{q}{2 \, m_{\mathrm{DM}}}$$

Pirsa: 12040104 Page 166/233

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

For 10 GeV WIMP-e⁻ scattering to explain DAMA/CoGeNT, need

Pirsa: 12040104 Page 167/233

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

For 10 GeV WIMP-e⁻ scattering to explain DAMA/CoGeNT, need

recoil energy $E_R \sim$ 10 keV \Longrightarrow $q \sim$ 1 MeV $\sim 250\,lpha\,m_e$

[Kopp, Niro, Schwetz, Zupan (2009)]

Negligible!

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

Pirsa: 12040104 Page 169/233

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

For sub-GeV DM-e⁻ scattering with

recoil
$$E_R \sim$$
 10 eV

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

For sub-GeV DM-e⁻ scattering with

$$_{ ext{energy}}^{ ext{recoil}}$$
 $E_R\sim$ 10 eV \implies $q\sim$ few keV

In general, need DM velocity to be

$$v_{\rm DM} > v_{\rm min} = \frac{\Delta E + E_R}{q} + \frac{q}{2 m_{\rm DM}}$$

For sub-GeV DM-e⁻ scattering with

$$E_R \sim$$
 10 eV \implies $q \sim$ few keV $\sim \alpha \, m_e$

Ok!

Scattering Rate
$$\propto \frac{\rm atomic}{\rm form\text{-}factor} \times \frac{\rm DM}{\rm form\text{-}factor} \times \sigma_e$$

$$q \sim \frac{\rm momentum}{\rm transfer}$$

Pirsa: 12040104 Page 173/233

Scattering Rate
$$\propto \frac{\rm atomic}{\rm form\text{-}factor} \times \frac{\rm DM}{\rm form\text{-}factor} \times \sigma_e$$

$$q \sim \frac{\rm momentum}{\rm transfer}$$

Pirsa: 12040104 Page 174/233

Scattering Rate
$$\propto \frac{\rm atomic}{\rm form\text{-}factor} \times \frac{\rm DM}{\rm form\text{-}factor} \times \sigma_e$$

$$q \sim \frac{\rm momentum}{\rm transfer}$$

Depends on DM particle physics model

We'll consider:

Pirsa: 12040104 Page 175/233

Scattering Rate
$$\propto$$
 atomic form-factor \times DM form-factor \times $F_{\rm DM}(q)$ $q \sim$ momentum transfer

Depends on DM particle physics model

We'll consider: $F_{\rm DM}(q)=1$ (heavy mediator)

Pirsa: 12040104 Page 176/233

Scattering Rate
$$\propto rac{
m atomic}{
m form-factor} imes rac{
m DM}{
m form-factor} imes \sigma_e$$
 $q \sim rac{
m momentum}{
m transfer}$

Depends on DM particle physics model

We'll consider:
$$F_{\rm DM}(q)=1$$
 (heavy mediator)

$$F_{
m DM}(q) \propto rac{1}{q^2}$$
 (light mediator)

Pirsa: 12040104 Page 177/233

Scattering Rate
$$\propto rac{
m atomic}{
m form-factor} imes rac{
m DM}{
m form-factor} imes \sigma_e$$
 $q \sim rac{
m momentum}{
m transfer}$

Depends on DM particle physics model

We'll consider:
$$F_{\mathrm{DM}}(q) = 1$$
 (heavy mediator)

$$F_{
m DM}(q) \propto rac{1}{q^2}$$
 (light mediator)

Pirsa: 12040104 Page 178/233

Scattering Rate $\propto rac{
m atomic}{
m form-factor} imes rac{
m DM}{
m form-factor} imes rac{
m \sigma}{
m e}$

cross section to scatter off free electron

Pirsa: 12040104 Page 179/233

And one more point...

Pirsa: 12040104 Page 180/233

Calculating Ionization Rates

And one more point...

In addition to single-electron events, we can also get events with 2, 3, etc. electrons!

How?

• outgoing e⁻ can ionize further electrons

Pirsa: 12040104 Page 181/233

Calculating Ionization Rates

And one more point...

In addition to single-electron events, we can also get events with 2, 3, etc. electrons!

How?

- outgoing e⁻ can ionize further electrons
- ionizing an inner-shell e⁻ gives a de-excitation photon that can ionize other electrons

Pirsa: 12040104 Page 182/233

Calculating Ionization Rates

And one more point...

In addition to single-electron events, we can also get events with 2, 3, etc. electrons!

How?

- outgoing e⁻ can ionize further electrons
- ionizing an inner-shell e⁻ gives a de-excitation photon that can ionize other electrons

can give stronger constraints than pure single electron events

Pirsa: 12040104 Page 183/233

Pirsa: 12040104 Page 184/233

Pirsa: 12040104 Page 185/233

cross section to scatter off free electron

Pirsa: 12040104 Page 186/233

Pirsa: 12040104 Page 187/233

Dark Matter Mass [MeV]

Momentum-independent DM interaction

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 188/233

Dark Matter Mass [MeV]

Momentum-independent DM interaction

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 189/233

Momentum-independent DM interaction

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 190/233

Pirsa: 12040104 Page 191/233

What is the green region?

Pirsa: 12040104 Page 192/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

Pirsa: 12040104 Page 193/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

Pirsa: 12040104 Page 194/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi \, m_e^2 \, \alpha \, \alpha' \, \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

Pirsa: 12040104 Page 195/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi \, m_e^2 \, \alpha \, \alpha' \, \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

typical $q \sim \alpha m_e \sim \text{few keV}$

Pirsa: 12040104 Page 196/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi m_e^2 \alpha \alpha' \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

typical $q \sim \alpha m_e \sim \text{few keV}$

For
$$q^2 \ll m_{A'}^2 \implies \sigma \propto \text{constant}$$

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi m_e^2 \alpha \alpha' \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

typical $q \sim \alpha m_e \sim \text{few keV}$

For
$$q^2 \ll m_{A'}^2 \implies \sigma \propto {\rm constant}$$

$$\implies F_{\rm DM} = 1$$

Assume DM charged under U(1)', which couples to hypercharge $U(1)_Y$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

Green region:

- DM self-interaction cross section consistent with observations
- $m_{A'}$ > 1 MeV consistent with all constraints
- (to avoid CMB constraints, need e.g. asymmetric DM)

see also Lin, Yu, Zurek (2011)

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

Green region:

- DM self-interaction cross section consistent with observations
- m_{A'} > 1 MeV consistent with all constraints
- (to avoid CMB constraints, need e.g. asymmetric DM)

see also Lin, Yu, Zurek (2011)

Pirsa: 12040104 Page 200/233

Pirsa: 12040104 Page 201/233

Momentum-dependent DM interaction: $F_{
m DM} \propto 1/q^2$

Pirsa: 12040104 Page 202/233

Momentum-dependent DM interaction: $F_{
m DM} \propto 1/q^2$

Pirsa: 12040104 Page 203/233

Momentum-dependent DM interaction: $F_{
m DM} \propto 1/q^2$

Pirsa: 12040104 Page 204/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)_Y$ via kinetic mixing

$$\Delta \mathcal{L} = rac{\epsilon}{2} F^{Y,\mu
u} F'_{\mu
u}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi \, m_e^2 \, \alpha \, \alpha' \, \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

Pirsa: 12040104 Page 205/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)_{\gamma}$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi \, m_e^2 \, \alpha \, \alpha' \, \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

For
$$m_{A'} < 1 \text{ eV} \ll q^2 \Longrightarrow F_{\rm DM} \propto 1/q^2$$

Pirsa: 12040104 Page 206/233

Assume DM charged under U(1)', which couples to hypercharge $U(1)\gamma$ via kinetic mixing

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

DM-electron scattering mediated by hidden-photon A'

$$\sigma = \frac{16 \pi m_e^2 \alpha \alpha' \epsilon^2}{(m_{A'}^2 + q^2)^2}$$

For
$$m_{A'} < 1 \text{ eV} \ll q^2 \Longrightarrow F_{\rm DM} \propto 1/q^2$$

Blue region is consistent with all constraints (DM self-interactions, A' etc.)

Pirsa: 12040104 Page 207/233

Pirsa: 12040104 Page 208/233

in addition,
in dark blue region
correct DM abundance is
obtained from freeze-in

[Hall, Jedamzik, March-Russell, West (2009)]

$$e^+ + e^- \to \mathrm{DM} + \mathrm{DM}$$

 $Z \to \mathrm{DM} + \mathrm{DM}$

[see also Chu, Hambye, Tytgat (2011)]

"accidentally" already sets meaningful limits on DM-electron recoils

Pirsa: 12040104 Page 210/233

"accidentally" already sets meaningful limits on DM-electron recoils

But:

• only a measly 15 kg-days

Pirsa: 12040104 Page 211/233

"accidentally" already sets meaningful limits on DM-electron recoils

But:

- only a measly 15 kg-days
- designed to study nuclear recoils

Pirsa: 12040104 Page 212/233

"accidentally" already sets meaningful limits on DM-electron recoils

But:

- only a measly 15 kg-days
- designed to study nuclear recoils

How well can an experiment do that purposefully looks for sub-GeV DM?

Pirsa: 12040104 Page 213/233

Projected reach for various elements

Pirsa: 12040104 Page 214/233

Projected reach for various elements

Cross section Sensitivity and Event Rate (per kg-year)

1 kg-year

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 215/233

Projected reach for various elements

1 kg-year

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 216/233

Projected reach for various elements

1 kg-year

$$F_{\rm DM} = 1$$

Pirsa: 12040104 Page 217/233

Projected reach for various elements

1 kg-year

 $F_{\rm DM} = 1$

NB: semi-conductors (e.g. Ge)

⇒ reach to very low masses!

Pirsa: 12040104 Page 218/233

⇒ reach to very low masses!

Pirsa: 12040104 Page 219/233

⇒ reach to very low masses!

band-gap only ~ 1 eV (much lower than Xe!)

Pirsa: 12040104 Page 220/233

⇒ reach to very low masses!

- band-gap only ~ 1 eV (much lower than Xe!)
- current thresholds:
 - CDMS: ~300 e-
 - "CDMS-light" (increase voltage) ~ O(few) electrons ?

Pirsa: 12040104 Page 221/233

⇒ reach to very low masses!

- band-gap only ~ 1 eV (much lower than Xe!)
- current thresholds:
 - CDMS: ~300 e⁻¹
 - "CDMS-light" (increase voltage) ~ O(few) electrons ?
 - DAMIC (Si, CCD's): current threshold ~40 eV future: ~4 eV ?

Pirsa: 12040104 Page 222/233

⇒ reach to very low masses!

- band-gap only ~ 1 eV (much lower than Xe!)
- current thresholds:
 - CDMS: ~300 e-
 - "CDMS-light" (increase voltage) ~ O(few) electrons ?
 - DAMIC (Si, CCD's): current threshold ~40 eV future: ~4 eV ?

exciting potential

see also Graham, Kaplan, Rajendran, Walters (2012)

Pirsa: 12040104 Page 223/233

Projected reach for various elements

1 kg-year

$$F_{\rm DM} \propto 1/q^2$$

Pirsa: 12040104 Page 224/233

⇒ reach to very low masses!

- band-gap only ~ 1 eV (much lower than Xe!)
- current thresholds:
 - CDMS: ~300 e-
 - "CDMS-light" (increase voltage) ~ O(few) electrons ?
 - DAMIC (Si, CCD's): current threshold ~40 eV future: ~4 eV ?

exciting potential

see also Graham, Kaplan, Rajendran, Walters (2012)

Pirsa: 12040104 Page 225/233

Of course, this ignores backgrounds...

"Whenever I walk in a room, everyone ignores me."

Pirsa: 12040104 Page 226/233

Backgrounds

- Neutrinos
- Radioactive impurities
- Surface events
- Secondary events
- + stuff we haven't thought about ...

Pirsa: 12040104 Page 227/233

Backgrounds

- Neutrinos
- Radioactive impurities
- Surface events
- Secondary events
- + stuff we haven't thought about ...

No obvious "no-go theorem" here... will have to learn by doing experiments

Pirsa: 12040104 Page 228/233

Backgrounds

- Neutrinos
- Radioactive impurities
- Surface events
- Secondary events
- + stuff we haven't thought about ...

No obvious "no-go theorem" here... will have to learn by doing experiments

Can always use annual modulation of DM signal rate

- larger for light DM (~10%) than for WIMPs!
- perhaps not as convincing as once thought (remember DAMA?)

• but still a powerful signal for DM

Pirsa: 12040104 Page 229/233

Pirsa: 12040104 Page 230/233

- direct detection of sub-GeV DM is possible
- XENON10 sets first limits on DM down to few MeV

Pirsa: 12040104 Page 231/233

- direct detection of sub-GeV DM is possible
- XENON10 sets first limits on DM down to few MeV
- theoretical work required to explore:
 - models of sub-GeV DM
 - other detection methods

Pirsa: 12040104 Page 232/233

- direct detection of sub-GeV DM is possible
- XENON10 sets first limits on DM down to few MeV
- theoretical work required to explore:
 - models of sub-GeV DM
 - other detection methods
- experimentalists needed to build a dedicated experiment

Pirsa: 12040104 Page 233/233