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Abstract: Winter's measurement compression theorem stands as one of the most important, yet perhaps less well-known coding theorems in quantum
information theory. Not only does it make an illuminative statement about measurement in quantum theory, but it also underlies severa other
general protocols used for entanglement distillation or local purity distillation. The theorem provides for an asymptotic decomposition of any
guantum measurement into an "extrinsic* source of noise, classical noise in the measurement that is independent of the actual outcome, and
"intrinsic" quantum noise that can be due in part to the nonorthogonality of quantum states. This decomposition leads to an optimal protocol for a
sender to 1) simulate many instances of a quantum measurement acting on many copies of some state and 2) send the outcomes of the measurements
to areceiver using as little classical communication as possible while still having a faithful simulation. The protocol assumes that the parties have
access to some amount of common randomness, which is a strictly weaker resource than classical communication. & nbsp; In this talk, we provide a
full review of Winter's measurement compression theorem, detailing the information processing task, providing examples for understanding it,
overviewing Winter's achievability proof, and detailing a new approach to its single-letter converse theorem. We then overview the Devetak-Winter
theorem on classical data compression with quantum side information, providing new proofs of the achievability and converse parts of this theorem.
From there, we outline a new protocol that we call "measurement compression with quantum side information,” a protocol announced in prior work
on trade-offs in quantum Shannon theory. This protocol has several applications, including its part in the "classically-assisted state redistribution”
protocol, which is the most genera protocol on the static side of the quantum information theory tree, and its role in reducing the classical
communication cost in atask known as local purity distillation. We finally outline a connection between this protocol and recent work on entropic
uncertainty relations in the presence of quantum memory. &nbsp; Thisisjoint with Patrick Hayden, Francesco Buscemi, and Min-Hsiu Hsieh.
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Overview

*Review Winter's measurement compression protocol

*Introduce a new variation of the protocol

*Review classical data compression with QSI

*Introduce measurement compression with QSI

Page 3/99



Pirsa: 12040103

Overview

*Review Winter's measurement compression protocol
*Introduce a new variation of the protocol

*Review classical data compression with QSI
*Introduce measurement compression with QSI

*Outline some applications of MC-QSI
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POVMs

Recall:

Quantum state is a positive, unit trace operator p

p =0, Tr{p} =1
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POVMs

Recall:

Quantum state is a positive, unit trace operator p
p =0, Tr{p} =1

Positive operator-valued measure is a collection A = {A } such that

> Ap =1, Vr:A, >0
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POVMs

Recall:

Quantum state is a positive, unit trace operator p
p =0, Tr{p} =1

Positive operator-valued measure is a collection A = {A } such that

> Ap =1, Vz:A, >0

Probability of getting outcome x when performing A on pis

px(x) = Tr{A.p}
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POVMs

Quantum state is a positive, unit trace operator p

p =0, Tr{p} =1

Recall:

Positive operator-valued measure is a collection A = {A } such that

> Ap =1, Vz:A, >0

Probability of getting outcome x when performing A on pis

px(x) = Tr{A.p}

p—
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Decomposing POV Ms

Just as density operators can represent
so can POVMs represent

Consider decomposing A as a random selection of a
measurement according to M combined
with a noisy post-processing pXIW(x|w):

= > pau(m) T pxyw (x|w)
Tre
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Decomposing POV Ms

Just as density operators can represent
so can POVMs represent

Consider decomposing /A as a random selection of a
measurement according to M combined
with a noisy post-processing pXIW(x|w):

Ao = S pra(m) T pxiw (z]w)
Tr:

JAV =

/7« P X|w
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What are the communication costs of
simulating quantum measurements?
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What are the communication costs of
simulating quantum measurements?

Example ConS|der the followmg POVM

1
12 1
2
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What are the communication costs of
simulating quantum measurements?

Example ConS|der the followmg POVM

1
12 1
2

This measurement decomposes as a random choice of Pauli X or Z

1 _ _ 1
{5 {10)€0[, 1)L}, 5 {1+ (+I |—><—!}}
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What are the communication costs of
simulating quantum measurements?

Example ConS|der the followmg POVM

1
2 1
2

This measurement decomposes as a random choice of Pauli X or Z

EROICNEPIeTY

1 _ _
{5 to)ol. DAl

Retfterence

Protocol:

N
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Another Example: Pentagon States

Example. Take a slice of the Bloch sphere that includes its center.
Consider 5 states that form a pentagon on the slice.
With appropriate weightings, these sum to the identity and form a POVM

Andreas Winter. "Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Another Example: Pentagon States

Example. Take a slice of the Bloch sphere that includes its center.
Consider 5 states that form a pentagon on the slice.
With appropriate weightings, these sum to the identity and form a POVM

"

Measurement decomposes as a random choice of 3-outcome measurements:

Andreas Winter. "Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Another Example: Pentagon States

Example. Take a slice of the Bloch sphere that includes its center.
Consider 5 states that form a pentagon on the slice.
With appropriate weightings, these sum to the identity and form a POVM

N

Measurement decomposes as a random choice of 3-outcome measurements:

Andreas Winter. "Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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ldeal Information Processing Task
for Measurement Compression

Go to the IID setting:

R,
Reference

Alice

Bob X,

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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ldeal Information Processing Task
for Measurement Compression

Go to the IID setting:

R,
Reference

Alice

Bob X,

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050

Pirsa: 12040103 Page 19/99



Faithful Simulation

A measurement simulation is | if its action on an IID state is
indistinguishable from the true measurement:

Definition 1 (Faithful simulation for purification) A sequence of proto-
cols provides a faithful sirnulation of the POVM A on the source p, if for a
purification |¢,) of the source, the states on the reference and source systems
after applying the rmeasurerment maps are e-close in trace distance for all e > 0
and sufficiently large n:

| (id & Mpaen) (057) — (id @ Mz,.) (657) ]|, < e (1)

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measuremenls.
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Faithful Simulation

A measurement simulation is if its action on an IID state is
indistinguishable from the true measurement:

Definition 1 (Faithful simulation for purification) A sequence of proto-
cols provides a faithful sirnulation of the POVM A on the source p, if for a
purification |¢,) of the source, the states on the reference and source systems
after applying the rmeasurerment maps are e-close in trace distance for all e > 0
and sufficiently large n:

|(id @ Mpen) (¢57) — (1d @ Mz.) (057)]], < e (1)

Mpoen (o) = Z Tr {Azrno} |2™) (™|,
Mz, (@) =D Tx {/in} |z™) (2™ .

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Measurement Compression Theorem

Theorem 1 (Measurement compression theorem) Letl p be a source state

and A a POVM to simulate on this state. A protocol for faithful sirnulation
of the POVM is achicvable with classical communication rate I? and cormmon

randommness rate S ¢f and only if the following sel of inequalities hold

R=>1(X;R),
R+ .S >H(X),

where the entropies are with respect to a state of the following form:
-~ X o R oo AAY LRA
> ) (x| @ Tra { (LT AD) "7},
A

and O is some purification of the state p.

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050

Pirsa: 12040103

Page 24/99



Measurement Compression Theorem

Theorem 1 (Measurement compression theorem) Lel p be a source state

and A a POVM to simulate on this state. A protocol for faithful sirmulation
of the POVM is achievable with classical communication rate I? and cormmon

randommness rate S ¢f and only if the following setl of inequalities hold

R=>1(X;R),
IR+ .S > H(X),

where the entropies are with respect to a state of the following form:
~ .. AX o T R o AAY 4IRA
> ey (x| @ Tra { (LT AD) @ },
A

and O is some purification of the state p.

This holds for a “feedback” simulation in which
Alice also gets the output of the simulated measurement.

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Measurement Compression Theorem

Theorem 1 (M(..‘.Zlb‘ll[‘(‘.lll(!ll Groenewold's |nformation galn (1 971
and A a POVM to sirmulate on this state. A protocol Jor farthiful strnutatiorn
of the POVM is achicvable with classical communiglition rate I? and cormmon
randommness rate S if and only if the following self inecqualities hold

R=>1(X;R),
IR+ .S > H(X),

where the entropies are with respect to a state of the following form:
-~ 1X o T R oo AAY L IRA
> ey (x| @ Tra { (LT AD) o't ),
A

and O is some purification of the state p.

This holds for a “feedback” simulation in which
Alice also gets the output of the simulated measurement.

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050

Pirsa: 12040103

Page 26/99



Measurement Compression Region

R A

h

H(X|R) S

Notable rate pairs correspond to measurement compression
and Shannon com preSSion (a!so Shannon compression combined with ¢. comm. to comm. rand.)

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Achievability

Resource inequality for measurement compression:

I (X;R)|lc—c|l+ H(X|R)|ce] = (A (p))

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Achievability

Resource inequality for measurement compression:

I (X;R)|lc—c|l+ H(X|R)|ce] = (A (p))

Consider POVM A and state p leads to the following ensemble:
px(x) = Tr{A,p}
1

[3:17 N ﬁA.’IT ﬁ

px ()

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Achievability

Resource inequality for measurement compression:

I (X;R)|c—cl+ H(X|R)|ce] = (A (p))
Consider POVM A and state p leads to the following ensemble:

px(x) = TI‘{A,,./)}

Pa ( )fA P

Can think that the goal is to “steer” the reference to be as above

—1/2 —1/2}

px (x)pr p

Do this with vV Imeasurement {p

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/07109050
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Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

—_ onl (X R
I»C| ~ 2 ( ) |£| |M| ~ 2?),_[[(‘*()

|M| ~ 2'7LH(A\'|11’,)

Andreas Winter. “"Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

—_~ onl (X ;R
[»C| ~ 2 ( ) |£| |M| ~ 2?1,_[[()()

|M| ~ 2'7LH(;Y|11’,)

Exploit the :
to guarantee that

1 :
~ —_~ D1
|£| E, :f):zr'”'(i,'rn,) ~ P

Andreas Winter. “"Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

—_~ onl (X ;IR
[»C| ~ 2 ( ) |£| |M| ~ 27),_[[()()

|M| ~ 27&H(;\'|11’,)

Exploit the
to guarantee that

1 )
E ~ —~ D1
|£| l /):I:f”'(ze"”') — [)

Andreas Winter. “"Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050

Pirsa: 12040103 Page 38/99



Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

I'C| —_— 27),1()(;11’,)

T~

LM ~ 27),_[[(‘*()
|M| ~ 2'7LH(AX‘|,11’,) | | | |

Exploit the :
to guarantee that

1 :
~ —_~ D1
|£| E, :f):zr'”'(i,'rn,) ~ P

This first condition is helpful in constructing a POVM for each m

Andreas Winter. “"Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

—_~ onl (X IR
I»C| ~ 2 ( ) |£| |M| ~ 27),_[[()()

|M| ~ 27LH(A\'|11’,)

Exploit the
to guarantee that

1 _
-~ —~ D1
|£| E, :f):zr'”'(i,'rn,) ~ P

This first condition is helpful in constructing a POVM for each m

1

{l.m s @™ (I, m) = 2™}| ~ pxn (a™)

| L] M

Andreas Winter. “"Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Achievability (Ctd.)

Select |L||M| codewords x”(/,m) according to p,.(x") where

—_ onl (X IR
[»C| ~ 2 ( ) |£| |M| ~ 2?),_[[(‘*()

|M| ~ 2'7LH(J(|11’,)

Exploit the
to guarantee that

1 -
-~ —~ D1
|£| E, :f):zr'”'(l,'rn,) ~ P

This first condition is helpful in constructing a POVM for each m

1

{Lm s @™ (1, m) = 2™} = pxn (™)

| L] [ M

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050
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Single-Letter Converse
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Single-Letter Converse

Single-letter converse — the rates in the theorem are optimal

R = I(X:R)
R+ S = H(X)
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Single-Letter Converse

Single-letter converse — the rates in the theorem are optimal

R = I(X;R)
R+ S= H(X)

Happens more often in QIT when resources are hybrid
(quantum and classical)
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Single-Letter Converse

Single-letter converse — the rates in the theorem are optimal

R = I(X,R)
R+ S = H(X)

Happens more often in QIT when resources are hybrid
(quantum and classical)

Main steps are just to think about the most general protocol
for this task and exploit
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Non-feedback Measurement
Compression

Wilde, Hayden, Buscemi, and Hsieh (2012).
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Nonfeedback Measurement Compression

Suppose that POVM {A} has a decomposition as
A, = E Px|W (x|w) M,
w

Wilde, Hayden, Buscemi, and Hsieh (2012).
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Non-feedback Measurement
Compression

Simulation is such that Alice does not require measurement output

R,
Reference

Bob / [)

Wilde, Hayden, Buscemi, and Hsieh (2012).
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Nonfeedback Measurement Compression

Achievability follows by employing a variation of
Winter's measurement compression protocol:

I (W;R)|lc—c]l+1(W; X|R)|ce] = (A (p))

No need for as much common randomness consumption
because Bob simulates pX|W(X|W) locally

Total rate of
is then (W ; X | R)
for a total classical cost of (W ; XR)
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Nonfeedback Measurement Compression

Achievability follows by employing a variation of
Winter's measurement compression protocol:

I (W;R)|lc—c]l+1(W; X|R)|cec] = (A (p))

No need for as much common randomness consumption
because Bob simulates pX|W(X|W) locally

Total rate of
is then (W ,; X | R)
for a total classical cost of /(W ; XR)

Single-letter converse follows from a technique
similar to that of Paul Cuff (arXiv:0805.0065)
adapted to the quantum case
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Nonfeedback Measurement Compression

Theorem 1 (Non-feedback measurement compression theorem) Letl p
be a source state and N a quanturn instrwment to sirmulate on this state:

N (p) 2:;’\.-"“, (p) o |x) (o e

A protocol for faithful simulation of the quantum instrumentd is achicvable with
classical communication rate I? and common randomness rate S of and only if
1?2 and S are in the rate region given by the union of the following regions:
R>=1IW:R),
[+ S =1 (W; XI?),

where the entropies are with respect to a state of the following form.:

N % . N IS B T p Vs
2 Pxiw (xlw) |w) {(w) o |x) (= &0 Tr 4 { (I, .‘=_,-'\/I,,“,) ((;'J:, A ,L

 I7.A
(1),“

decompositions of the original instrurment N° of the form:

s some purification of the stalte p, and the union 1s wilth respecl Lo

N (p) Z Pxw (wlw) M, (p) e |x) (.:'|'\- .

such that I? %% X s a guanturn Markov chain.

Pirsa: 12040103 Page 52/99



Nonfeedback Measurement Compression

Theorem 1 (Non-feedback measurement compression theorem) Letl p
be a source state and N a quanturn instrwment to sirmulate on this state:

N (p) l:d-"\.-"“,‘ (p) o |x) (o o~

A protocol for faithful simulation of the quantum instrumentd is achicvable with
classical communication rate I? and common randomness rate S of and only if
12 and S are in the rate region given by the union of the following regions:
R=>=1IW:R),
[+ S =1 (W; XI?),

where the entropies are with respect to a state of the following form.:

N 5% . N IS B T p Vs
2 Pxiw (xlw) |w) ()| o |a) (= &0 Tr 4 { (I, .‘=_,-'\/I,,“,) ((;'J:, A ,L

 17.A
(1),“

decompositions of the original instrurment N of the form:

s some purification of the stalte p, and the union is wilth respecl Lo

N (p) Z Pxw (wlw) M, (p) e |x) (.:'|'\' "

such that I? %% X s a guanturn Markov chain.
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Nonfeedback Measurement Compression

Theorem 1 (Non-feedback measurement compression theorem) Let p
be a source state and N a quanturn instrwment to sirmulate on this state:

N (p) Z:,,-"\.-"",‘ (p) o |x) (& =

A protocol for faithful sirmmulation of the quanturm instrumentd is achicvable witlh
classical communication rate I? and common randomness rate S of and only if
12 and S are in the rate region given by the union of the following regions:
R>=1IW:R),
[+ S =1 (W; XI?),

where the entropies are with respect to a stale “the [following form.:

= 5 . X T } y WP
> _ pxw (z|w) |w) (w|” & [x) (z & Tra NI = _,-'\/I““,) ((,-'::," A b,
oI, 2

Cen Total cost can be lower

b, s some purification of Lhe sltale (o, wrea Gree wiveome S Wit 1TeSpect Lo

decompositions of the original instrurment N of the form:

N (p) Z Pxw (wlw) M, (p) e |x) (.:'|'\- .

o, T

such that I? %% X s a gquanturn Markov chair.
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Nonfeedback Measurement Compression

Example plot of trade-off improvement:

min max {J
Wost
k. al

Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor and Andreas Winter. 0912.5537
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Nonfeedback Measurement Compression

Example plot of trade-off improvement:

min max {J
Wost
JLU. X )=«

Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor and Andreas Winter. 0912.5537
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Classical Data Compression
with Quantum Side Information

Devetak and Winter. arXiv:quant-ph/0209029
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Classical Data Compression
with Quantum Side Information

Consider an ensemble of the following form:
{px(x), pz}

Suppose that an information source generates
a classical sequence x” and quantum state p »

Devetak and Winter. arXiv:quant-ph/0209029
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Classical Data Compression
with Quantum Side Information

Consider an ensemble of the following form:
{px(x), pz}

Suppose that an information source generates
a classical sequence x” and quantum state p »

It gives the classical sequence to Alice and the
quantum state to Bob

Question: How much classical communication
is needed for Bob to recover x"?

Devetak and Winter. arXiv:quant-ph/0209029
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Classical Data Compression
with Quantum Side Information

Consider an ensemble of the following form:
{px(x), pz}

Suppose that an information source generates
a classical sequence x” and quantum state p »

It gives the classical sequence to Alice and the
quantum state to Bob

Question: How much classical communication
is needed for Bob to recover x"?

Could just Shannon compress x”7, but we can do better with QSI...

Devetak and Winter. arXiv:quant-ph/0209029
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ldeal Protocol for CDC-QSI

In the ideal protocol, Alice just sends the classical sequence to Bob.
Devetak and Winter. arXiv:quant-ph/0209029
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Actual Protocol for CDC-QSI

X,

1) Alice hashes the classical sequence and sends Bob the hash

2) Bob performs a “gentle” quantum measurement conditional
on the hash value to recover x”
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Actual Protocol for CDC-QSI

X,

1) Alice hashes the classical sequence and sends Bob the hash

2) Bob performs a “gentle” quantum measurement conditional
on the hash value to recover x”
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CDC-QSI Theorem

Theorem 1 (Classical data compression with quantum side information)

Suppose that

— X
ST px (@) |2 @Y @ pP

ts a classical-guantum state that characterizes a classical-quantum source.
the conditional von Neurnann entropy I (X |13) is the srallest possible achicv-

able rate for classical data compression with quantum side information for this

Thern

Souroee;

inf {12 | I? is achievable} — H (X |B).

Devetak and Winter. arXiv:quant-ph/0209029
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CDC-QSI Theorem

Theorem 1 (Classical data compression with quantum side information)

Suppose that

— X
ST px (@) |2 @ @ pP

is a classical-quantum state that characterizes a classical-quanturm source.
the conditional von Neurnann entropy I (X |13) is the srallest possible achicv-

able rate for classical data compression with quantum side information for this

Then

Souroee;

inf {12 | I? is achicevable} — H (X |B).

Intuition:
There are nH(X) bits needed to describe the classical sequence x”

Devetak and Winter. arXiv:quant-ph/0209029
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CDC-QSI Theorem

Theorem 1 (Classical data compression with quantum side information)

Suppose that

— X
ST px (@) |2 @ @ pP

18 a classical-quantum state that characterizes a classical-quantum source. Then
the conditional von Neurnann entropy I (X |13) is the srallest possible achicv-
able rate for classical data compression with quantum side information for this

source:
inf {12 | I1? is achicevable} — H (X |B).
Intuition:

There are nH(X) bits needed to describe the classical sequence x”

Bob can recover n/(X;B) bits about x” by measuring his state p«n

Devetak and Winter. arXiv:quant-ph/0209029
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CDC-QSI Theorem

Theorem 1 (Classical data compression with quantum side information)

Suppose that

— X
ST px (@) |2 @ @ pP

18 a classical-quantum state that characterizes a classical-quantum source. Then
the conditional von Neurnann entropy I (X |13) is the srmallest possible achicv-
able rate for classical data compression with quantum side information for this
source:

inf {12 | I? is achievable} — H (X |B).

Intuition:

There are nH(X) bits needed to describe the classical sequence x”

Bob can recover n/(X;B) bits about x” by measuring his state p«n

Alice needs to send the difference n[H(X) — I1(>X;B)] = nH(X|B)

Devetak and Winter. arXiv:quant-ph/0209029
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Achievability

Resource inequality for CDC-QSI:
<[)XB> + H (X |B) |lc — ¢| = </)XX”B>

Wilde, Hayden, Buscemi, Hsieh (2012)
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Achievability

Resource inequality for CDC-QSI:
<,()XB> + H (X |B) |lc — ¢| = </)XX”B>

New proof strategy exactly like classical Slepian-Wolf protocol

Before communicating, Alice throws the typical sequences
into . After doing so, this establishes a code
and our assumption is that Bob knows the assignments.

Wilde, Hayden, Buscemi, Hsieh (2012)
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Achievability

Resource inequality for CDC-QSI:
<,()XB> + H (X |B) |lc — c¢| = </)XX”B>

New proof strategy exactly like classical Slepian-Wolf protocol

Before communicating, Alice throws the typical sequences
into . After doing so, this establishes a code
and our assumption is that Bob knows the assignments.

What's different: Bob receives hash from Alice, and scans over all
of the quantum states consistent with the hash value.
He performs sequential binary projective measurements
asking, “Does my quantum state correspond to the m?™
sequence consistent with the hash™?”

Wilde, Hayden, Buscemi, Hsieh (2012)
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Single-Letter Converse

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality

n i H (L)
H (L|B™)
[ (X", L|B™)
H (X" B") — H (X" LB™)
H (X™|B™), — H(X™X"™).,
H (X" |B"), — ne
nH (X |B) — ne'.

Pirsa: 12040103 Page 77/99



ldeal MC-QSI Protocol

Re lL‘ rence

Alice

Bob

Alice and Bob share many copies of state p?”

Goal is for Alice and Bob to simulate ideal measurement
and for Bob's state not to be disturbed
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ldeal MC-QSI Protocol

]{.L‘[L‘ rence

Alice

Bob

Alice and Bob share many copies of state p*”

Goal is for Alice and Bob to simulate ideal measurement
and for Bob's state not to be disturbed
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Actual MC-QSI Protocol

Use common randomness, an Alice collective measurement,
classical communication, and a Bob collective measurement
to simulate original measurement

R,

Reference

A

}’l i)

A | ice

N

Bob

Hayden, Buscemi, and Hsieh (2012).
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ldeal MC-QSI Protocol

]{L‘[L‘ rence

A | ice

Bob

Alice and Bob share many copies of state p?”

Goal is for Alice and Bob to simulate ideal measurement
and for Bob's state not to be disturbed
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Achievability
Resource inequality for CDC-QSI:
(p™Py + I (X5 R|B) [c — ] + H (X|RB) [cc] = (A (p?P))

Proof strategy combines ideas from MC and CDC-QSI

(though not possible to concatenate protocols with resource Calcu!us)
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Achievability
Resource inequality for CDC-QSI:
(p?PY + I (X; R|B) [c — ¢]| + H (X |RB) [cc] = (A? (p?P))

Proof strategy combines ideas from MC and CDC-QSI

(though not possible to concatenate protocols with resource Calcu!us)

Choose an MC protocol randomly as before. Choose a
hash function randomly as well. Can show there exists
a choice of these that works well.
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Achievability
Resource inequality for CDC-QSI:
(p?PY + I (X; R|B) [c — ¢| + H (X |RB) [cc] = (A? (p?P))

Proof strategy combines ideas from MC and CDC-QSI

(though not possible to concatenate protocols with resource calculus)

Choose an MC protocol randomly as before. Choose a
hash function randomly as well. Can show there exists
a choice of these that works well.

Operation: Alice performs simulation measurement,
hashes the outcome, and sends it to Bob.
Bob receives hash from Alice, and scans over all
of the post-measurement states consistent with the hash value.
He performs sequential binary projective measurements
asking, “Does my quantum state correspond to the m?'
measurement outcome consistent with the hash™?”
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MC-QSI| Theorem

Theorem 1 (Measurement compression with QSI) Let pt P
state shared between a

sitmulate on the

be a source
sender A and a receiver 13, and lel A be a POVM to

A systern of this state. A protocol for faithful sirmulation of the
POVM 1s achievable weth classical cormrmunication rate IR and cornrnon rarndoirn-

ness rate S if and only if the following set of inequalitics hold

R>1(X;R\B),
R+ S>H(X|B),

where the entropies are with respect to a state of the following forrn:

Z | ) (x| @ Tra { (1" = /\,\) pHAB },

and A s sorne purification of the state p™ 5.

Wilde, Hayden, Buscemi, and Hsieh (2012).

Pirsa: 12040103

Page 85/99



Single-Letter Converse

Single-letter converse — the rates in the theorem are optimal

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality
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Single-Letter Converse

Single-letter converse — the rates in the theorem are optimal

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality

Also, we require that the protocol causes only a
negligible disturbance to Bob's state
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Applications of MC-QSI

1) Classically assisted state redistribution
2) Quantum reverse Shannon theorem for a quantum instrument

3) Local purity distillation
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Classically-assisted state redistribution

\ B3 [ ABE

Begin with state /)" that has purification ¢

Perform MC-QSI

Requires [ ( X p3: /2| [3) rate of classical communication

Then perform Quantum State Redistribution
conditional on classical information
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Classically-assisted state redistribution

Reference
[ n t t)(

/
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Quantum Reverse Shannon Theorem

for a Quantum Instrument

We have a reverse Shannon theorem for a quantum channel
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Quantum Reverse Shannon Theorem
for a Quantum Instrument

We have a reverse Shannon theorem for a quantum channel

We have a reverse Shannon theorem for a POVM

What about for a quantum instrument with classical and quantum outputs?

Protocol is to perform measurement compression followed by FQRS:

1 |
[(X;R)[c— c]+ H(X|R)[cc|] + 51 (B'; R|X) [q — q] + 51 (B'; E|X) [qq]

= <( {\1’ » XX o 13 : l);“ > -
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Quantum Reverse Shannon Theorem
for a Quantum Instrument

We have a reverse Shannon theorem for a quantum channel

We have a reverse Shannon theorem for a POVM

What about for a quantum instrument with classical and quantum outputs?

Protocol is to perform measurement compression followed by FQRS:

| |
[(X;R)[c—c]+ H(X|R)ce]+ I (B;5R|X)[q— q] + 51 (B'; E|X) [qq]

> (U f,-‘“:’ *XXeB'E , ;)"“).
Reverse Shannon theorem when QSI is available:
|
(pABY + 1 (X3 R|B)[c — ¢] + H (X|RB) [cc] + 51 (B'; RIBX)[q — q]

1 ) e
{ 5 (I (B, F|X) I (B, B X)) [qq] = ((f“;} X XeB' E /)"”3>
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Local Purity Distillation

- Alice and Bob share a state
Their goal is to distill local pure states
using classical communication and local unitaries

By using MC-QSI, we have the following improvement to Krovi-Devetak 0705.4089

Theorem 1 1The I-way distillable local purity of the state p™P is given by r_.
w5, where

wY (p?7.R) k(p™) +x(p”) + 1,

In the above, we have the defindlions

(<) = logd.. LOWET classical comm. cost

) . | . o e R
P (pA 1) = lim PO (D .A-h)

ardd

I"‘”(p"‘“_ 2) lne\t_\{/()':lf] (Y 2|3 = R}

(_’\ 1317 (,'\4\ & ,fs'l-,') (r \f:’!') )

where 1HAYBE ;o 4 purificalion ({f'jl'\lf. M s a measurerment map corresponding

to the POVAM A. and the maximization is over all POVMs mapping Alice’s
systern A to a classical systern Y.
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Conclusion and Current Work

Measurement compression gives a powerful
for understanding quantum measurement

We have extended Winter's original protocol in two ways:

1) Nonfeedback measurement compression
2) Measurement compression with QSI
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In progress:
Figuring out nonfeedback measurement compression w/ QSI
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Conclusion and Current Work

Measurement compression gives a powerful
for understanding quantum measurement

We have extended Winter's original protocol in two ways:

1) Nonfeedback measurement compression
2) Measurement compression with QSI

In progress:
Figuring out nonfeedback measurement compression w/ QSI

Good open question:

Prove measurement compression theorem so that protocol
does not depend on structure of input state
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