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Motivation for the topics of this
week’s lectures

e Gravitational Wave Astrophysics — source
simulations

— compact object mergers
e Studies of dynamical, strong-field gravity

e Examples:

— higher dimensional gravity : instability of 5D black
strings
— critical collapse
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Gravitational Wave Astrophysics

LIGO/VIRGO/GEO/TAMA

ground based laser interferometers

LIGO Hanford

LISA
space-based laser interferometer (hopefully
with get funded for a 20?? Launch)

-

ALLEGRO/NAUTILUS/AURIGA/...
resonant bar detectors

ALLEGRO

AURIGA

Pulsar timing network, CMB anisotropy
e Ty

Jfrom WMAP

The Crab nebula ... a supernovae
remnant harboring a pulsar
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Overview of expected gravitational wave sources
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Binary Compact Object Mergers

e Binary black hole (BH), neutron star (NS), and BH-NS mergers

— expected to be the strongest source of gravitational waves in the universe

— the binary BH is the “cleanest” system, described exactly by vacuum GR

* in any astrophysical system, there will be a certain amount of matter (possibly
circumbinary disk, ambient gas, CMB photons, ...), though for the most part is
expected to be very low mass relative to the black holes and hence dynamically
insignificant

— With NS’s, micro rgrsics must be approximated, and the sky’s the limit as

to how complicated this can be

» neutron star structure (crust, multi-component superfluid core, at nuclear
densities with uncertain equations of state, magnetic fields, etc.)

* radiation and neutrino physics, nuclear processes, magnetic fields, etc. play a
role

Pirsa: 12040052
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Binary Compact Object Mergers

e Binary black hole (BH), neutron star (NS), and BH-NS mergers

— final stages of merger within GR, plus “"messy” astrophysics requires
numerical solution

* No stmetries : need a general 3+1 evolution code, which brings several new
problems to the fore

— ADM is only weakly hyperbolic in 3+1 : nmeed reformulations

— Allfinite-difference/spectral numerical Cauchy solution methods can only
satisfy the Einstein constraint equations to within truncation error, and the
vast majority (100’s ) of mathematically well-posed reformulations admit
exponentially growing “constraint violating” solutions

» given truncation errors, no way the seeds of these modes ~an he
eliminated in a numerical code

“nice” gauges, boundary conditions, methods of dealing with BH singul
work well in spherical (or axi) symmetry often don’t extend to the gene
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Binary Compact Object Mergers

e Binary black hole (BH), neutron star (NS), and BH-NS mergers

— At minimum (vacuum), two orders of magnitude of relevant spatio-
temporal length scales that need to be resolved:

e spatial scales: smallest BH radius ~2M,; intermediate orbital radius ~
20M; largest “wave zone” ~ 200M

» temlporal scales : spatial scales/characteristic speed (1!) ~ spatial
scales

— Including matter (NS/NS, BH/NS), and depending on the kinds of

guestions one needs to answer (effects of microphysics,
M/neutrino signatures of events, delayed collapse of
“hypermassive” neutron stars following NS/NS mergers, formation
of accretion disks/jets, etc?, can increase the effective

dimensionality of the problem, and add many orders of magnitude
to the scales that need to be resolved

— Need efficient algorithms (AMR), and terascale and
upwards computing resources
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Sample binary BH merger NIl R

e (Code overview:
Harmonic evolution with excision and constraint damping

2th order finite difference discretization, equations discretized in second
order form

Berger and Oliger style adaptive mesh refinement (AMR), parallel
evolution

Kreiss-Oliger dissipation used for stability

Spatially compactified coordinates, i.e. the slices end at spatial infinity,
with Dirichlet (Minkowski) conditions imposed on the metric there

 this is purely to have the physically correct outer boundary conditions
imposed; the gravitational waves never reach the boundary, and the
resolution becomes very coarse approaching it

Using Cook-Pfeiffer [PRD 70 (2004)] quasi-circular initial data
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Lapse Function

Initial black holes are close to
non-spinning Schwarzschild black
holes; final black hole is a Kerr
black hole with spin parameter
~0.7, and ~4% of the total initial
rest-mass of the system is
emitted in gravitational waves
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Gravitational Waves

Real component of the Newman
Penrose scalar y,, which in the
wave zone is proportional to the
second time derivative of the usual
plui-polarization

046600 300
(t-

The plus-component
the same simulation,
axisnormal to the or
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Gravitational Waves

Real component of the Newman
Penrose scalar y,, which in the
wave zone is proportional to the
second time derivative of the usual
plus-polarization

4 P | P | i 1 L
0'-*:()() =400 -300 =200 -100 0
(t-t. M

CAH

The plus-component of the wave from
the same simulation, measured on the
axis normal to the orbital plane
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Gravitational Waves

Real component of the Newman
Penrose scalar y,, which in the
wave zone is proportional to the
second time derivative of the usual
plus-polarization
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Gravitational Waves

Real component of the Newman
Penrose scalar y,, which in the
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Gravitational Waves
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Gravitational Waves

Real component of the Newman
Penrose scalar y,, which in the
wave zone is proportional to the
second time derivative of the usual
plus-polarization
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Sample mesh structure

t=23 M

O |

0:95

Lapse &, z=0 slice
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Sample mesh structure

t=23M

E 1

0.45

Lapse «, z=0 slice, NOTE change of color scale
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Motivation: why study higher dimensional gravity?

e [f string theory is providing the correct path to a consistent theory of
nature valid at Planck scales, the universe is fundamentally higher
dimensional

Even if string theory is not correct, there has recently been a lot of
work using the holographic dual correspondences of string theo
(AdS/CFT in particular) to describe many aspects of conventiona
non-gravitational 4D physical processes in terms of higher
dimensional gravity

— superconductors, superfluidity, quark-gluon plasmas, etc.

— interestingly, the gravitational dual to all the processes studied to
date involves black holes

Much interesting geometry in higher dimensional Ricci-flat Lorentzian
manifolds, in particular the zoo of “black objects” — black spheres,
rings, strings, saturns, drops, ...
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Higher dimensional black holes

e As with 4D black holes, much has been learnt via analytical methods (exact
solutions, perturbative studies, global methods) about higher dimensional
BH's

- have many properties in common with their 4D counterparts, e.g.

» can be defined using global (event horizons) or local (isolated horizons)
properties of the spacetime

contain geometric singularities

quasi-stationary processes are governed by the usual laws of black hole
mechanics

a cou?le of studies have shown the usual link between gravitational collapse

and black hole formation, and critical phenomena at threshold

* Hawking radiate at the semi-classical level
-~ however, a few properties are drastically different, including
» 1o strict uniqueness of stationary solutions

* many black objects are unstable to perturbations

» Also as with 4D black holes, to study dynamics in the non-linear regime
often requires numerical methods, and same basic approaches carry over to
higher dimensions

Pirsa: 12040052
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Black Strings

e Black strings are a particularly simple class of higher
dimensional black hole solutions

— in N spacetime dimensions, the metric is 4D Schwarzschild X
(N-4)D Euclidean flatspace; €.g. for N=5, in Schwarzschild
coordinates

7) 7 ]. 7 7 7 P
ds* =—(1-2m/r)dt’ + —————dr* + r’dQ’ + dw’

(1—-2m/r)

— here m is interpreted as mass per unit length; a segment of
length Aw—L of the spacetime has asymptotic mass AM—mL
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Gregory-Laflamme instability

e Gregory and Laflamme /PRL 70 (1993)] first showed that
black strings are linearly unstable to long-wavelength
perturbations

il Qt/m+iuw/m
(_g P (g() + CS}: e

— Image from
R. Gregory and R. Laflamme,
Nucl.Phys.B428 (1994)

— the D=4 curve corresponds to
the 5D black string, and the
critical wavelength above which
modes are unstable is

A ~14.3m

C
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End-state of the instability?

e Much debate over end-state of the
instability

— from an entropic argument the string
should bifurcate into a sequence of
spherical black holes, however this
cannot happen without the appearance
of a naked singularity — a generic
example of cosmic censorship violation

Horowitz and Maeda [PRL &7, 131301
(2001)] proved that black string
horizons cannot shrink to zero cross-
sectional radius in finite affine time of
the generators of the horizon

Connections between horizon dynamics
and fluid mechanics suggest instability is
gualitatively akin to the Raleigh-Plateau
instability of a thin stream of fluid, which
does pinch off [Cardoso and Dias, PRL
96 (2006)].
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Numerical evolution of 5D black strings work with L. Lehner,
PRL 105 (2010)

e (Code overview:

— Harmonic evolution with excision and constraint dampin?(; in particular
coordinates are harmonic with respect to 5D Cartesian-like coordinates

SO(3) symmetry imposed — reduces simulation to 2+1D evolution

4t order finite difference discretization, Runge-Kutta time integration ;
6th order Kreiss Oliger dissipation [Ca/abrese etal., CQG 21 (2004)]

Berger and Oliger style adaptive mesh refinement (AMR), parallel
evolution

Using initial data as constructed in Chioptuik et al. [PRD 68, 044001
(2003)], describing a black string perturbed by a small gravitational
wave

At outer boundary impose Djrichl/et conditions, with the metric fixed to
that of the initial data

» not physically correct, hence we placed the outer boundary
sufficiently far away from the horizon to be out of causal contact
with it over the length of the simulation (t~230m)
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z) = (R(£),2(5))

R(&) is the areal radius of that point on the
horizon, and Z¢&) is defined so that the
proper fength of the curve in the flat space
Is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R

note that time is “slowing down”
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Embedding Diagram of -
Apparent Horizon Unstable 5D
Black String

t=182.012 4

map the geometric 1D shape of each
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note that time is “slowing down”
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String

t=214.307 _

-

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z) = (R(£),2(5))

R(&) is the areal radius of that point on the
horizon, and Z(&) is defined so that the
proper fength of the curve in the flat space
Is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R

note that time is “slowing down”

Pirsa: 12040052 Page 40/65




Embedding Diagram of
Apparent Horizon Unstable 5D
Black String

t=225.563

map the geometric 1D shape of each -
t=x=y=constant slice of the apparent

horizon to a flat (R,Z) Euclidean space; i.e.

in parametric form

(R,Z) = (R(£),Z(5))

R(&) is the areal radius of that point on the
horizon, and Z(&) is defined so that the
proper fength of the curve in the flat space
Is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R

note that time is “slowing down”
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String

t=228.290

map the geometric 1D shape of each -
t=x=y=constant slice of the apparent

horizon to a flat (R,Z) Euclidean space; i.e.

in parametric form

(R,Z) = (R(£),Z(5))

R(&) is the areal radius of that point on the
horizon, and Z(&) is defined so that the
proper fength of the curve in the flat space
Is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R

note that time is “slowing down”
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z)=(R(£),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(¢) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
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map the geometric 1D shape of each
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horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z) = (R(£),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(¢) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R

Pirsa: 12040052 Page 44/65




Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

t=139.06

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z) = (R(&),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(&) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z)=(R(£),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(¢é) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

t=180.09

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z)=(R(&),Z(&))

proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

R(&) is the areal radius of that point on the
horizon, and Z(¢é) is defined so that the

color is mapped to R 0.0035
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

t=204.52

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z)=(R(£),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(¢é) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R 0.0035
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Embedding Diagram of
Apparent Horizon Unstable 5D
Black String, close-up and in
“real time”

t=226.92

map the geometric 1D shape of each
t=x=y=constant slice of the apparent
horizon to a flat (R,Z) Euclidean space; i.e.
in parametric form

(R,Z)=(R(£),Z(&))

R(&) is the areal radius of that point on the
horizon, and Z(¢é) is defined so that the
proper fength of the curve in the flat space
is identical to that of the corresponding
curve in the physical geometry

the movie shows this curve spun around
R=0to form a surface for visual aid

color is mapped to R 0.0035
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Critical phenomena in gravitational collapse

Discovered in 1993 by Choptuik, critical phenomena refers to interesting
be||'|1avior observed at the threshold of black hole formation in gravitational
collapse

The question Choptuik was trying to answer was, “can one form black holes
of arbitrarily small mass in scalar field collapse?” (yes!/)

In the process he discovered behavior that bears striking resemblance to
crit!ccal phenomena observed at phase transitions in statistical mechanical
systems:

—~ power law scaling of order parameters (such as the black hole mass M) near
threshold

— universality of the threshold solution
— scale invariance of the threshold solution

Rare example in computational physics where a fundamentally new
phenomena was discovered via purely numerical methods

-~ Even though original example was in spherical symmetry, required AMR to
resolve the exponentially rapid develop of features on small length scales
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

P=<P* =0.00 P==P* 1=0.00

(W
-0.001

t=0.00

p~p*
(tuned to within
I part in 10'9)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

P<<pP* (=15.43 P==P* 1=0.00

t=0.00

p~p*
(tuned to within
I part in 10'9)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

p<<pr* =18.52 p>>p* (=4.03

t=0.00

p~p*

(tuned to within
I part in 10'9)
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

p<<pr* =18.52 p>>p* (=11.47

-0.001 0.001

t=0.00

p~p*
(tuned to within
I part in 10'5)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

p<<pr* =18.52 p>>p* (=11.47

P~pf
(tuned to within
I part in 10'5)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

P<<p* (=18.52 p>>p* 1=11.47

PEvA
(tuned to within
I part in 10'5)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

p<<pr* =18.52 p>>p* (=11.47

p~p*
(tuned to within
I part in 10'9)

Work with M. Choptuil,
S. Liebling, and
E. Hirschmann
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The scalar field threshold solution

Same near critical solution, transformed to spherical polar
coordinates, and using logarithmic radial and time coordinates

t=6.44935

0
[ -7
'/’\ In(r+107)
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Properties of scalar field critical collapse

» the critical solution (scalar field and spacetime geometry) is spherically
symmetric and scale invariant — specifically it is discretely self-similar

- example of a discretely
self similar function

/ (x: T) accumulation point

J(x, b is periodic in
time zwith echoing
period A

7 is related to the
proper time ¢
measured by a central
observer (at radius
r=0) via

7—-In(-1)

x is a dimensionless
variable, related to r
and 7 via

xX=r/1
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Whorr:ns. Stephen W, Hawking firmly believes that
naked angul:rriﬂes are an anathema and should
be prohibited by the laws of classical physics,

And whereas John Preskill and Kip Thorne
regard naked singularities as quantum
gravitational objects that might exist unclothed
by horizons, for all the Universe to see,

Therefore Hawking offers, and Preskill/Thorne
accept, a wager with odds of 100 pounds slirling
to 50 pounds stirling, that when any form of
classical matter or field that is incapable of
becoming singular in flat spacetime is coupled to
general relativity via the classical Einstein
equations, the result can never be a naked
singularity.

The loser will reward the winner with clothing to
cover the winner's nakedness. The clothing is to
be embroidered with a suitable concessionary
message.

L

Stephen W. Hawking  John P. Preskill & Kip 5. Thorne
Pasadena, California, 24 September 1991

:*:'
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Beyond spherical symmetry

 Example in next slide was a (failed) attempt to “break” the
universality conjecture

— 2D, axisymmetric GR code, solved as a constrained evolution

» 4 elliptic equations (3 constraints, + maximal slicing condition, solved
via multigrid), 3 hyperbolics (2" order finite difference + KO
dissipation)

 ADM based, using (2+1)+1 decomposition of metric, and explicitly
enforcing maximal slicing, which prevents hyperbolicity problems of
the 3+1 version of ADM from arising

— first “+1” is symmetry reduction, then a 2+1 space+time decomposition
within the reduced manifold

- Maximal slicing imposed, together with conformal flatness of the 2D
spatial slices

— single CPU, takes from minutes (far from threshold) to days
(close to threshold) for a solution
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Evolution of plane anti-symmetric initial data

Initial data that is reflection anti-symmetric about z=0 (a conserved symmetry)

t=0.320123

p~p*

(tuned to within
I part in 10"5)
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Evolution of plane anti-symmetric initial data

Initial data that is reflection anti-symmetric about z=0 (a conserved symmetry)

t=12.904835

p~p*

(tuned to within
I part in 10'9)
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Aside: AMR grid hierarchy sample

Last frame from the previous animation

AR AN AN TN
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XA NN
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Ry 25, 2:1 refined levels
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NN
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(2:1 coarsened in
figure)

ND)
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O

l"";"‘v'

magnification factor = 500,000
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