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Abstract: In the de Broglie-Bohm pilot-wave theory, an ensemble of fermions is not only described by a spinor,& nbsp; but also by a distribution of
position beables. If the distribution of positions is different from the one predicted by the Born rule, the ensemble is said to be in quantum
non-equilibrium. Such ensembles, which can lead to an experimental discrimination between the pilot-wave theory and standard quantum
mechanics, are thought to quickly relax to quantum equilibrium in most cases. &nbsp; In this talk, | will look at the Majorana equation from the
point of view of the pilot-wave theory and | will show that it predicts peculiar tragjectories for the beables; they have to move luminally at all times
and they usually undergo complex helical trajectories to give the illusion that their motion is subluminal. The nature of the Mgjorana trajectory
suggests that relaxation to quantum equilibrium could only be partial and that quantum non-equilibrium could still survive at length scales below the
Compton wavelength.&nbsp; | investigate this claim, thanks to some numerical simulations of the temporal evolution of non-equilibrium
distributions,& nbsp; for three-dimensional confined systems governed by the Dirac and Mgjorana equations.
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The de Broglie-Bohm pilot-wave theory

Standard quantum mechanics: ¥(t, X)

Element of an ensemble in the dBB PWT: (%(t, X), X(t))
Ensemble: (¢(t, X), p(t, X))

Guidance equation for X(t), chosen in such a way that

p(t, X) = |%(t, X)|2 (QUANTUM EQUILIBRIUM)

dX  J(t,X)
dt — |w(t,X)2

if that holds for some initial time fp. =

2-slit experiment:
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Quantum non-equilibrium and relaxation to quantum equilibrium

» QNE and relaxation to quantum equilibrium:

plto, X) # |%(to, X)|? = p(t, X) ~ |(t, X)|2

» Standard QM as a special case of the dBB PWT
» New physics of quantum non-equilibrium.

<_} ' w\'}» I

«Nx <>

Figure: Left figure, from (Valentini & Westman, Proc. R. Soc. A, 461, 253— (2005).)
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The Majorana equation and its relevance today

» Majorana’ s work (quoting Peter Woit):

Majorana’s most important scientific work appeared in a 1932 Nuovo Cimento
paper motivated by the desire to find a replacement for the Dirac equation that
would solve the problem of its negative energy states (a problem which
disappeared in 1932 with the discovery of the positron). In this paper, Majorana
investigated for the first time infinite dimensional representations of the Lorentz
group, ones whose role in physics, if any, remains mysterious. As part of this work,
he discovered the possibility of a real representation of the Clifford algebra and
thus a version of the Dirac equation in which a particle is its own anti-particle.

» By-product of Majorana’s work, the Majorana equation.
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» Relevance today in many domains (neutrino physics, SUSY, condensed matter,
quantum information). F.Wilczek, Nature Physics 5, 614 - 618 (2009)
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Nature of the Majorana trajectory + relaxation to QE? Today’s question.
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Outline

Relativistic wave equations

Pilot-wave theory for the Majorana equation

Relaxation simulations for the Dirac and Majorana equations
Conclusion
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The Dirac equation

The Dirac equation is
(iv"0u — m)y(t, X) =0,

where the y-matrices satisfy the relations {vy*,~"} = 2n*", where
n*Y = diag(1, —-1,—-1,-1).
The conserved 4-current is given by

=Py,

where ¢ = 1140,
A particular representation of the ~-matrices is the Weyl representation:

J " 0 ok
T =\ 0

—

where o# = (I, &) and 6# = (I, —&).
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The Dirac equation: plane-wave solutions

The positive and negative-energy plane wave solutions are denoted by
u(B)e—EPIH+iB-X and v(p)eEM)+iPX where E(B) = /|B|2 + m2. In the Weyl

representation, if one introduces the rlght handed and left-handed eigenstates of
helicity xg(B) and x.(B), the plane-wave solutions can be given by

() = (\/ Ez—;xﬁ(ﬁ))

EPxa(P)
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The Dirac equation: charge conjugation

Dirac equation for an electron with a vector potential:
yH(i0, + eA )Y —mp =0.
Dirac equation for the charge conjugate:
Y (i10u — €A )Y () — Mp) =0 .

Charge conjugation:
X V(o) = IPP* .
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The Majorana spinor
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The Majorana spinor

» ‘Real’ solution 1p?
» |t doesn’t change under charge conjugation:

Yme) = VP = vm - (13)

» Start from a Dirac solution and add its charge-conjugate:

1 ,
M= (¥p + iv°Yh) . (14)

» Pure imaginaryjMajorana representation of the v-matrices. In the Majorana
representation:

~

Dmeey = Uiy - (15)
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Pilot-wave theory for the Majorana equation

Majorana spinor: ¥m = 5 (vp + %p(e)) = 5 (%0 + iIV*¥p).
PWT: Complete description (y¥um(t, X), Xu(t))

4-current: - - Jy
It = B o = Bov" v + Re (Fo7"Yo(o)) -

ji = 24photyn LIGHT-LIKE 4-CURRENT.

Guidance equation:

o (X i
vM(r,x):fM( ) with [Vy| = 1.

it X) [z=x(1)

Majorana equation VERSUS Majorana particle:

IR 1 M [ s s IEatriBF . At s (e [B.F
d’M(f,X)z Z/dSP\/E (Cs(P)Us(p)e IEgt IDX+C;(p)VS(p)eIEp! apx)
s p

V(2m)3

(19)
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Example: plane-wave solution

We consider a right-handed particle moving in the positive z-direction with momentum
pz. Then the Dirac spinor is
\/ E—p
2E

0 e—iEf—-—l:pzi’.'
E+p
2L

1,i’D(fa’?) = \/

Therefore the velocity field is

L jy=dore=(1,0,0,%). 1)

Therefore, in the corresponding pilot-wave theory, if the particle is of the Dirac type, the
particle moves along a straight line with uniform velocity (0, O, F;_;’ ).
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Example: plane-wave solution
For the corresponding Majorana solution, the spinor is given by

1
2 ("/’D . 1n!}D(c)) .

1 )
(¥p + iN?9p) = v,

¢M=\/

Total currentj,ﬁ; is given by

m m . p
1, = 2Ft — 2 ~ L sin(2Et -2 LA
(1, ECOS( t—2pz2), = sin (2Et — 2p;z), E)

Solution (assuming Xx(0) = (0,0, 0)):

omt m® 1 p
2mS|n(2 5 t),2mcos(2 5 t) — om’ Er)

Helical trajectory whose radius is the Compton wavelength of the particle

1

Figure: The mass is m = 5 and p, = 3. The beables start from the origin and t € [0, 100].

I
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Superposition of plane waves for Dirac (blue) and Majorana (red)
solutions

State:
1
V3

where py = (1,0,1), po = (—=1,-2,—1) and g3 = (1, —-1,1).
Mass m = 10. Initial position (0,0, 0). t € [0, 1000].

P(t, X)

(e‘f'-:"u;q(ﬁ;) + e B2l yp(By) + eige—fEaiuR(ﬁa)) , (25)
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Superposition of plane waves for Dirac (blue) and Majorana (red)
solutions ZOOM

State:

Y(t, X) =

(e_fE1rUR(51)+9'I4e_iE2{UR(52) +e’99‘fE3‘uR(53)) , (26)

1
V3
where py = (1,0,1), P2 = (=1,-2,-1) and p3 = (1, —1,1).
Mass m = 10. Initial position (0, 0,0). t € [0, 1000].

S

b
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HELICAL TRAJECTORY AGAIN WITH COMPTON WAVELENGTH DIAMETER.
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Varying the mass

Mass 36, 18,9, 6 for At = 1200, 600, 300, 200.
Helical trajectory with helix diameter = Compton wavelength.
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Relaxation, chaos, node and vorticity

<} u\'i}
f:‘"u)» -4&»

S

The following quantity

lv(t, X)|?

is also conserved along a trajectory.
Coarse-graining: a(t, X) and |+(t, X)|2.
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Example: plane-wave solution
For the corresponding Majorana solution, the spinor is given by

1

1 )
(¥p + iN?9p) = v,

T;bM:\/

5 ("/’D + 1X}D(c)) .
Total currentj,ﬁ; IS given by

(1, ‘:cos (2Et — 2p,2), — 'g sin (2Et — 2p,2), g) .

Solution (assuming Xx(0) = (0,0, 0)):

(1) = (- sin(z”:r), " os@™n— 1 Py

2m 2m E’ o2mE
Helical trajectory whose radius is the Compton wavelength of the particle

L

Figure: The mass is m = 5 and p, = 3. The beables start from the origin and t € [0, 100].

I
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Relaxation, chaos, node and vorticity

<} d\’)}
f?fﬁ,*)» *i&»

NS

The following quantity

lv(t, X)|?

is also conserved along a trajectory.
Coarse-graining: a(t, X) and |(t, X)|2.
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Distribution of nodes (scalar case and Dirac spinor)

DIRAC SPINOR.
NONRELATIVISTIC CASE. P

Y2
Y3
P4

» Nodes where

Re(yq) = Im(Pq) = ...
Re(vs) = Im(¢s) =0.  (28)

» 8 conditions!

» Typically no node, but vorticity even
in the absence of nodes because

P'{pD:

S. Colin, Proc. R. Soc. A 468,
1116-1135 (2012).
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Relaxation simulations for spinors

» Interesting to do a relaxation simulation for any spinor (Dirac, Weyl, Majorana).

» Majorana has additional constraints with respect to Dirac.
More symmetry = more regularity in the trajectory.
Superposition of states with m = 0 in the H-atom.

» Majorana is highly constrained on the Compton wavelength scale. If there is
relaxation, there might still be residual non-equilibrium at the Compton wavelength
scale.

I
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Which system shall we simulate?

(¥o+iveyp)
V2

3D simulations (because Majorana solutions can have nodes in 2D with a 2D

representation ').

Confined system.

Invariance under charge conjugation which excludes a spherical step potential.
Dirac particle with a position-dependent mass (m, M) plus spherical coordinates.
Keep helical nature of the trajectory.

Simulations for 1p and ¥y = and comparison.

Coarse—graining length smaller to the helix diameter.

still use a 4D representation in a 2 + 1 space-time.
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System under consideration

» Dirac equation with position-dependent mass:
iOpp(t, X) = (~id -V + m(|%)B)u(t, X) (30)

with m(r) = mif r < R and m(r) = M otherwise.
» Observables that commute with H: K, J and J; (eigenvalues E, —«h, j(j + 1)h°
and j3h). k is non-zero and « and j are related by x = +(j + ;).

» If we look for eigenstates E such that E2 — m® > 0 and M? — E? > 0, the energy
eigenstates can be expressed in terms of spherical Bessel functions of the first
kind and modified spherical Bessel functions of the second kind of integer order:

. ] . fé 9, )
[ V= (| P (e} (0,0 59

wex! -

e_,a( Jigw) (Pextr) V% (6, 6) )
_’Epf;{,pflm(n pexrr)yj (0, ¢)

» The energy eigenvalues have to be found numerically.
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System under consideration

» Dirac equation with position-dependent mass:
i (t,X) = (=i -V + m(|X])B)¥(t, X) (30)

with m(r) = mif r < R and m(r) = M otherwise.
» Observables that commute with H: K, J and Js (eigenvalues E, —«h, j(j + 1)h®
and j3h). k is non-zero and « and j are related by k = +(j + ;).

» If we look for eigenstates E such that E2 — m® > 0 and M? — E? > 0, the energy
eigenstates can be expressed in terms of spherical Bessel functions of the first
kind and modified spherical Bessel functions of the second kind of integer order:

. : . !5 9, )
[ o= (, B (e (0,0 .

wex! .

e_,a( Jigw) (Pextr) V% (6, 6) )
_’é)rnr,pflm(n pexrr)yj (0, ¢)

» The energy eigenvalues have to be found numerically.

Page 34/43



System under consideration

Superposition of 8 modes. A = 5.

simulation helix radius? | time |

m

1 1 [1/3,1] | 300
1 1.
1

2 [2/3,1 | 200
[2/3,1 | 300

J : phase
1/2 ei5.11905989575681
1/2 ei5.69125859039527
1/2 /0. 7978869834087
1 / 2 eiS. 73890975922526
3/2 g/3-97323032474265
3/2 eiU.61286443954863
3/2 g/1. 74985591686 112
3/2 o/3.43615792623681

Equal weight in the superposition.
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System under consideration

Muajorana trajectory (¢ ¢ [0,200])
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Simulation 1

Y (t pp (t=300)
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Simulation 1

Yp¥p (t = 300) G (t=300)

-2 0

VY (t = 300) Gy (t = 300)
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Simulation 1

U= Py (t=300) Ypp—=pp (t =300)

Figure: max,, = 0.0098, meany, = 0.0018, maxp = 0.0085, meanp = 0.0020 and
diff € [—0.0014, 0.0014]
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Chaos for Dirac and Majorana trajectories

Chaos and Majorana trajectories (¢ € [0,200])

Chaos and Dirac trajectories (¢ € [0,200])

Larger percentage of good trajectories for the Majorana systems.
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Conclusion

lllustration of the peculiar nature of the Majorana trajectory (luminal, helical for the
right set of parameters).

Safe to say that the Majorana non-equilibrium distributions relax more slowly that
the ones guided by a Dirac spinor (related to chaos).

Claim that non-equilibrium is preserved below the Compton wavelength is
unwarranted at this stage.

A part of this work shows that non-equilibrium distributions guided by a Dirac
spinor relax efficiently in 3D.

This is first-qualiitization! In order to study Majorana neutrinos, one has to go to
second quantization.
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