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Abstract: The heterotic standard embedding on a Calabi-Y au threefold yields an E_6 grand unified theory in four dimensions.&nbsp; The gauge
symmetry can be partially broken by turning on discrete Wilson lines, but such models necessarily feature an extended gauge group and exotic light
matter fields.<br>1 will describe the recent construction of compactifications on a new three-generation manifold which solve both these problems
via supersymmetric deformations of the gauge bundle.& nbsp; Such deformations can be interpreted as the supersymmetric Higgs mechanism in four
dimensions, but our top-down construction alows us to keep control of the theory, and perform a reliable computation of the resulting
spectrum.& nbsp; The moduli space breaks up into a number of branches depending on the initial choice of Wilson lines, and on eight of these
branches we find models whose light charged spectrum is exactly that of the minimal supersymmetric standard model: unbroken gauge group
SU(3)xSU(2)xU(1), three generations of quarks and leptons, and one pair of Higgs doublets.
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Heterotic compactification a crash course

Geometric compactification of the Fgx Eg heterotic string to 4D with unbroken
N = 1 supersymmetry requires a triple (X; V7, V2), where
e X is a smooth Calabi-Yau threefold.

e V; is a vector bundle with holonomy group G; C FEs, satisfying
R = Bl = N
’.vJ o— [.u_; =0 N !'] I:‘,r =0 y

i.e., Vi is holomorphic and stable (by Donaldson-Uhlenbeck-Yau).

Green-Schwarz anomaly cancellation implies a topological condition:
c2(TX) —c2(Vh) — c2(V2) = [C] assuming ¢1(V;) =0 .

where C' is the (co)homology class of some holomorphic curve in X, which must be

\\'1'.‘1')])(‘([ |:‘\' a 5-brane (or 5-branes, if it has lIllllli])ll‘ components).
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The geometry of (X; Vi, V3) determines the four-dimensional theory. Focus on one

Esg, i.e., one bundle V', with holonomy group G C Ek.
e The unbroken gauge group is the centraliser of GG in Fg.

e G=SUB)xU(l)y gives Ggmq 2 SU(3)xSU(2)xU(1)y.

However, the hypercharge gauge boson is massive in this case.
Massless matter is determined by cohomology groups of V' and associated bundles:
e Let G = SU(4).

Es D (SU(4) x Spin(10)) /Za

248 = (1,459 (15,1)®(4,16)® (4,16) & (6,10)

e Massless chiral multiplets in the 16 of Spin(10) < HY(X.,V).
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The standard embedding

For any Calabi—Yau threefold X, there is a canonical solution:
Vi = T'X (the tangent bundle of X'), V5 trivial.
Notice that anomaly cancellation is satisfied with ' = 0, i.e., no
five-branes in the vacuum.
This is the ‘standard embedding’ (Candelas et al., 1985). Features:
e Hol(TX) = SU(3) (Calabi-Yau), so gauge group Eg. Decomposition:
Es D (SU(3) x Eg)/Zs

248 = (1.78)®(8,1)® (3.27) @ (3.27)

e There are h'(X.TX) = h*(X.TX*) = h*'(X) chiral 27s and
hW'Y(X.TX*) = h"'(X) chiral 27s.

n . . . . L ] .
So ‘three-generation’ manifolds are those with y = 2(h''! — h*') = +6.
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Heterotic compactification a crash course

Geometric compactification of the Fgx Eg heterotic string to 4D with unbroken
N = 1 supersymmetry requires a triple (X; V7, V2), where
e X is a smooth Calabi—Yau threefold.

e V; is a vector bundle with holonomy group G; C Es, satisfying
R, - Br. .
Fij=F3=0, ¢ F3=0,

l.e., Vi is holomorphic and stable (by Donaldson-Uhlenbeck-Yau).

Green-Schwarz anomaly cancellation implies a topological condition:
c2(TX) —c2(Vh) — c2(V2) = [C] assuming c1(Vi) =0 .

where C' is the (co)homology class of some holomorphic curve in X, which must be

wrapped by a 5-brane (or 5-branes, if it has multiple components).
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The standard embedding

For any Calabi-Yau threefold X, there is a canonical solution:
Vi = TX (the tangent bundle of X'), V5 trivial.
Notice that anomaly cancellation is satisfied with ' = 0, i.e., no
five-branes in the vacuum.
This is the ‘standard embedding’ (Candelas et al., 1985). Features:
e Hol(TX) = SU(3) (Calabi-Yau), so gauge group Eg. Decomposition:
Es D (SU(3) x Fg)/Zs

248 = (1.78)®(8.1)® (3.27) ® (3.27)

e There are h*(X.TX) = h*(X.TX*) = h*'(X) chiral 27s and
hY(X.TX*) = h"'(X) chiral 27s.
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The new models

e We construct a Calabi-Yau threefold X = X /Zi2.

-~

(k' RPN (X) = (8,44) , (A, B*Y)(X) =(1,4) .

Upstairs, we deform TX @0 3@®0O¢ to an irreducible supersymmetric SU(5)

bundle, equivariant under Z2.

Downstairs, SU(5) is broken to G'sm by Wilson lines.

Discrete parameters in the above construction lead to several hundred

branches. Eight of these give the light spectrum of the MSSM.

(The construction can also be viewed as follows:
The standard embedding on X, augmented with Wilson lines, gives gauge groups
like GsmxU(1)xU(1) or SU(4)xSU(2)xU(1)xU(1). These are then Higgsed to

Gsm. I can explain the equivalence later.)
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Several heterotic string compactifications with the MSSM spectrum have been

found already. Distinguishing features of our models:
e A minimal hidden sector: no five-branes, and no hidden matter.

e Only five geometric moduli, and a similar number of vector bundle moduli.
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Outline

The manifold
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~

X as a QlCY

—~

There are various ways to represent X as a complete intersection in a product of
projective spaces. A convenient one is

ml -

It U 1

P! g 1

‘ P! o 1
X € .

P10 1 1

PLlo 1 1

Prlo 1 1

}')1 !)2 r

pi = 0 defines a copy of dPs, the del Pezzo surface of degree 6, as a hypersurface in
3 . . : . . : .
(]P]) . 7 is then a section of the anti-canonical bundle of dPgxdPg, so its

vanishing defines a Calabi-Yau threefold.

Rhys Davies M M from standard embedding 11/36

Pirsa: 12030115 Page 11/53



~

X as a CICY
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There are various ways to represent X as a complete intersection in a product of
projective spaces. A convenient one is
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pi = 0 defines a copy of dPs, the del Pezzo surface of degree 6, as a hypersurface in
1,3 . . : . . . .
(]P]) . 7 is then a section of the anti-canonical bundle of dPgxdPg, so its

vanishing defines a Calabi-Yau threefold.
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X as a toric hypersurface

The surface dPg is actually toric; its fan has the symmetry of a hexagon:

. . . . 2
Removing the dashed rays gives the projection to P<.
The fourfold Z = dPgxdPg is therefore also toric.

H'(Z) 2 C®, and this is generated (with redundancy) by the twelve toric
divisors. The hypersurface X inherits all its harmonic (1, 1) forms from Z, so

hl'](_\\'] = 8. We can also calculate \(_\\') = —T72: hence hz'l(_\\' ) = 44.
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The quotient group

The symmetry group of the fan of Z is (Dex D¢ ) xZz, which therefore acts on Z.

We pick an order twelve element defined geometrically as follows:

1 g12

v
|
|
|
|
|

()

Note that the group Zi2 = (g12) acts transitively on the toric divisors.
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The quotient manifold

Consider those X invariant under gi12, and define X = X /Zj2. The following can

I)(' (']l(‘t'l((‘tli

~

e The generic symmetric X is smooth.
e 72 acts without fixed points on the generic symmetric X.
e The family of symmetric X has four parameters.

Hodge numbers of X':

e The Zlg action on ”I'l(.{') ('()I'l'(‘h})()]l(ih’ to the I'('[)I‘(‘HI‘]II:IIiHII
0020304060839310.

The single invariant implies A1 (X)) = 1.

e \ divides by the order of a freely-acting group, so y(X) = —6.

P . » . ) - » .
['his implies h*1(X) = 4, corresponding to the four parameters.
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Constructing the bundles
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T'he classical Euler sequence

We must first understand the tangent bundle. Projective space is simple:

N

Qs TP 0

0 — Opn — Opn (1)
This is intuitive:
e PV is parametrised by (zo,..., en) ~ (Azo,..., Azn), A e C*.
e Vector fields must therefore be invariant under this:
V= Z; Vi ( :)%. where each v; is linear, i.e., a section of Opn (1).
e But vectors ])uilllill}_ﬂ :Ilull_'.: t‘(IIli\';il('llt'c' classes l)l'(l_i(‘('( to zero, so

b MR S ) |

Lt T8 Oz;
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T'he classical Euler sequence

We must first understand the tangent bundle. Projective space is simple:

N

ON+l L, TPY — 0

0 — Opn — Opn (1)
This is intuitive:
e PV is parametrised by (zo,...,2nx) ~ (A 20, ..., Xzn), XeC°.
e Vector fields must therefore be invariant under this:
v = S; Vi ( :)%. where each v; is linear, i.e., a section of Opn (1).
¢ But vectors ])uilllill}_ﬁ :Ilullg ('(|Ili\';11('ll('c' classes l)l'(l_i(‘('( to zero, so

Led 1 7% (‘):i
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The tangent bundle of a hypersurface

~

As for any submanifold, there is a short exact sequence on X':

T 1 ™ r d ’
0 —»TX —TZ|3 L Ny, —0.

Since X is an anti-canonical hypersurface, we have

12
> Ox(-Kz|g) & 05> D).

Nz
ja=]
Combining this with the Euler sequence, we get T'X as the cohomology of the

following complex:

12 12
Y i I"‘ ' ‘ij- ‘d
80y — @O_{.m,) = Og( § D;) .

tx=] i=1

In other words, T X = kerdf/im E.

(Note that df is well-defined here due to generalised Euler identities E,(f) o f.

Therefore, on X, df (Fa) = 0.)

Rhys Davies
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The tangent bundle of a hypersurface

~

As for any submanifold, there is a short exact sequence on X:

T 1 r d ’
0 —»TX —TZ|3 L Ny, —0.

Since X is an anti-canonical hypersurface, we have

12
~ 0gx(-Kz|g) = 05> D).

ga=]

Nz

Combining this with the Euler sequence, we get T'X as the cohomology of the
following complex:

12

12
\ 77 E e ‘U 7
80z — EPOx(Di) = O_{.(Z D;) .

t==] i=1

In other words, T X = kerdf/im E.

(Note that df is well-defined here due to generalised Euler identities E,(f) o f.

Therefore, on X df(F.) =0.)
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-

The toric Euler sequence

The Euler sequence generalises in an obvious way to other toric varieties.

7 = dPgxdPg has eight independent scalings, i.e.,

) Q > % y
(21,..., -13)’\#(/\'”1_1 ..... A Yol 212) AeC a=1...., o)
We therefore get eight independent Euler vector fields: E, = S, (_L)“‘,‘.,%
12
s 77 E ” .
0-—3 800 — @OZ(H,) —TZ —0

=]
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The rank-five bundles

To obtain a rank-five bundle, divide by only 6 of the Euler vectors

12 12

o E' Y df

605 — D Ox(Di) = 0x(> D)
1:] !=1

~

The resulting bundle V. is given by the exact sequence
0 —20y —Ve—TX —0.

[s this okay? No, but we need to discuss stability to see why.

Rhys Davies M M from standard embedding 19/36
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The tangent bundle of a hypersurface

~

As for any submanifold, there is a short exact sequence on X:

T 1 ™ r d ’
0 —TX —TZ|z L Ny, —0.

Since X is an anti-canonical hypersurface, we have

12
> Og(-Kz|g) = 0x()_Di).

g==1

Nz

Combining this with the Euler sequence, we get T'X as the cohomology of the

following complex:

12 12
> E . df .
803 — P Ox(Di) = 0x(>_Di) .

t=] i=1

In other words, TX = kerdf/im E.

(Note that df is well-defined here due to generalised Euler identities E,(f) o f.

Therefore, on x. df(Es) =0.)
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Slope stability

The Hll)I)l‘ of a bundle ‘l\' on i 1S
| ] ~

= / ('1(‘]/\.&'/\;&'.
rk(V) JX

where w is the Kahler form. V' is stable if for every coherent sub-sheaf F C V,

p(F) - /:(\\').

(V) =

e Obviously ¢1(V) =0 = u(V)=0.

e We see now that l\} is unstable, since O g C \",. and u(Og) =0= /:(l\; X.

e We need to deform 'l‘;. Lo \" with ”“{.\". \") = .

Rhys Davies M M from standard embedding

Pirsa: 12030115 Page 27/53
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= /('1(\]/\.&'/\¢J.
rk(V) JX

where w is the Kiahler form. V' is stable if for every coherent sub-sheaf F C V,

p(F) - /:(\\').
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The rank-five bundles

To obtain a rank-five bundle, divide by only 6 of the Euler vectors

12 12

E’ " af

60 —» @ O (Di) = Og( E D;)
1:] !=1

~

The resulting bundle V. is given by the exact sequence
0 —203g —mVe—TX —0.

[s this okay? No, but we need to discuss stability to see why.
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The rank-five bundles

To obtain a rank-five bundle, divide by only 6 of the Euler vectors
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Slope stability

The slope of a bundle V on X is
| ' ~

= / W](\]/\..L'/\»C.
rk(V) JX

where w is the Kihler form. V is stable if for every coherent sub-sheaf F C V,

1w(F) < pu(V).

(V) =

e Obviously ('1(‘\') =0 = /1(‘1\'] = (.

e We see now that ‘\; is unstable, since @_\‘- C \",. and /I[C)_\‘.) =i{}= /1(‘\', ).

e We need to deform 'l‘;. Lo \" with ”“{.\". \") = (J.
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The stable bundles

e Instability comes from H° (X kerdf) = C®; we only mod out a 6D subspace.

¢ We must deform df to a map ¢ which annihilates only six Euler vectors:

12 12
v 'I’ . {
P oz(Di) = 0z D)
=] 1=1
e ® is a twelve-vector of homogeneous polynomials: sections of Og ('_B:méj D;).

e The space of possible ® is 420-dimensional; we can choose ¢ to annihilate any

six Euler vectors we like.

e Our vector bundles V upstairs are the cohomology of

12 12
» 7 E’ v L
605 — POz (Di) — 05> D) .
fa=] =]
Rhys Davies M from standard embedding 21/36
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Proot of stability

N”(.Q. l\') = 0 is necessary, but not sufficient, for stability.
We will shortly quotient V by Zi2 to obtain a bundle V on X, and A" (X) = 1.
This allows us to apply Hoppe's criterion:
Let V' be a holomorphic bundle with ¢;(V) = 0 on a Calabi-Yau
manifold X with A»'(X) = 1. Then V is stable if H(X.APV) =0

for p=1,..., rk(V') — 1.
We can check that in fact H°(X.APV) = 0. and conclude that V is stable.

Stability of V' is all we need, but this also implies that V' is stable, because the

Hermitian-Yang-Mills metric on V' pulls back to one on V.

Rhys Davies M M from standard embedding 22/36
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The rank-five bundles

To obtain a rank-five bundle, divide by only 6 of the Euler vectors

12 12

\ 7 E' "/ df . o+

(n(.)‘{, B @ (}\‘ (_l),] — (_)\:{ E I),]
1:] !=1

~

The resulting bundle Ve is given by the exact sequence
0 —20g —Ve—>TX —0.

[s this okay? No, but we need to discuss stability to see why.
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The physical interpretation

e Massless 27s of Eg correspond to HY(X,TX") = Ext!(TX,Og), so passing

to V. corresponds to giving two of them a VEV, breaking Eg to SU(5)

e But there is a D-term potential preventing a 27 obtaining a VEV without a

corresponding 27. Turning on the requisite 27 VEVs cancels the D-term, and

takes us away from V.

Rhys Davies MSSM from standard embedding
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Equivariance and Wilson lines
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Equivariance of V
e Recall: V =ker ®/im E’

The Zjo action simply permutes the toric divisors, and hence lifts to an

action on @, O(D;) and C)‘\‘-(Z:il D;).

e We want ker @ to be equivariant; it will be if the following commutes:

@O (D;) ———» @O\(H

(;,l l:],
g \cin

e Actually easy: ® is a twelve-vector of homogeneous polynomials, and

equivariance means its components are related by the gi2 action.

The space of equivariant ¢ is therefore 420/12 = 35-dimensional.

Rhys Davies MSSM from standard embedding 25/36
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e Now for im E’. Diagonalising the action on the Euler vectors, we find
H°(X,803) ~ 0020304060839 10.

We may choose any six-dimensional sub-representation for im £”.

Hence there are (;) = 28 distinct branches of the moduli space.

e Recall the (unstable) extension bundle V.:

~ ~

0 — 205 — Ve Ir'X —0.

[ts two global sections carry the two Zjo charges not in im E’.

e Non-trivial equivariant structure on Og < Non-trivial flat line bundle on

X < non-zero Wilson line. Notation: rep. n < L,.

¢ So downstairs, we actually get a deformation of TX @ Ln, ® Ly,.

o
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e Now for im E’. Diagonalising the action on the Euler vectors, we find
H°(X,80%) ~ 00620304060839910.

We may choose any six-dimensional sub-representation for im £”.

Hence there are () = 28 distinct branches of the moduli space.

e Recall the (unstable) extension bundle V.:

~ ~

0— 205 — Ve TX —0.

[ts two global sections carry the two Zjo charges not in im E’.

e Non-trivial equivariant structure on Og < Non-trivial flat line bundle on

X < non-zero Wilson line. Notation: rep. n < L.

¢ So downstairs, we actually get a deformation of TX @& Ln, & Ln,.

Lo ]
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Equivariance of V' — a subtlety

e We require Hol(V') € SU(5), but for U € SU(3), we have

mi

Comin omi =i .
det diag(U,e ™ 6 "2) = ¢ & (n1+n2)

e We must add an overall IJII:I.‘-R(' to the t'(llli\':ll‘i;llll structure on V. so that V is

a deformation of

Li®@(TXDLn, ®Ly,) ,
where 51 + n1 + neo = 0 mod 12. Solve this: n = 7(n1 + n2).

e [t is important to remember this extra phase when calculating the Z12 action

on l'ullulllu|ug_\'.
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Equivariance of V' — a subtlety
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Wilson line breaking of SU(5)

Wilson line breaking to SU(3)xSU(2)xU(1)y:

There are 11 different choices of homomorphism Z;2 — SU(5) which correspond to

.“Il'.’*—%diu;_g(rq%k‘f_%L'.(q%k.r;‘ik.rgk) € SU(5) k=1,..., 11
Field u’ Q e d® L., Hy
SU(5) provenance 10 10 10 5 5
G'sm rep. (3,1)-4 | (3,2)1 | (1,1)6 | (3,1)2 | (1,2)-3
Zy2 charge 8k ke §15 2k Ok
Rhys Davies M § t 1 1b 1 28 /3(
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Wilson line breaking to SU(3)xSU(2)xU(1)y:

There are 11 different choices of homomorphism Z,2 — SU(5) which correspond to

ﬁ]-_g‘-—%(“.'i;_"(t_"%k. *%L'.(“}Lj'.t;‘ik.rﬂk) € SU(B) , k=1,. 11
Field u® Q e d® L., Hy
SU(5) provenance 10 10 10 5 5
G'sm rep. (3,1)-a | (3,2)1 | (1,1)6 | (3,1)2 | (1,2)-3
Zy2 charge 8k k 6L 2k Ok
Rhys Davies M f t 1 1be 1 28 /3(
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Calculating the massless spectrum
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The massless spectrum

Upstairs, we have a rank-five bundle V' on X, and the massless chiral multiplets

are counted by certain cohomology groups:

nio = h'(X,V) . s /11(.\\'./\2\\')

I

”T(-} =
We now take the quotient by Z;s:
° \\' 1S c-(llli\':ll‘i:llll under Z12 = Zjy2 acts on N'(_‘:. \\') et cetera.
e We also choose non-zero Wilson lines, which act on the fields according to
their hypercharge.
e The spectrum on X consists of fields invariant under the combined

transformation; these need not fill out complete SU(5) multiplets.
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The massless spectrum

Upstairs, we have a rank-five bundle V' on X, and the massless chiral multiplets

are counted by certain cohomology groups:
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We now take the quotient by Z;js:
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e We also choose non-zero Wilson lines, which act on the fields according to
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e The spectrum on X consists of fields invariant under the combined

transformation; these need not fill out complete SU(5) multiplets.
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Projecting out the 10 states

The massless 10 states come from H!(X.V*): we must calculate this group and

the Zi2 action on it. Introduce F = ker ®; our bundle V' fits into an exact sequence

-~

0 — “C)\x F » V » 0,

and F is in turn determined by another short exact sequence:
v (I' 7
0— F — P Os(Di) = POg(Di) — 0.

Dualising gives

0 y V© F \(iCY{.——H).

We can calculate that H*( \\]'-] = 0 for i = 0, 1, so the long exact cohomology
sequence contains
0 — H°(X,60%) — H'(X,V*) —0.

We conclude that HY(X.V*) 2 a* @ H°(X . ker &)

(the other two are eaten }>_\' the gauge bosons of broken generators).
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Projecting out the 10 states

The massless 10 states come from H'(X.V™*): we must calculate this group and

the Zi2 action on it. Introduce F = ker ®; our bundle V' fits into an exact sequence

-~

t}——>€iC)\~_ F—V s 0 .

and F is in turn determined by another short exact sequence:
v ‘I' 7
O ey B wiy @O_\x[l),) = EBO_{.(I),) —0.

Dualising gives

0 y V' F x(ic?’{.—m.

We can calculate that H*( \\f) = 0 for 1 = 0, 1, so the long exact cohomology
sequence contains
0 — H°(X,60%) — H'(X,V*) —0.

We conclude that HY(X.V*) 2 a* @ H*(X . ker ®)*

(the other two are eaten l)_\' the gauge bosons of broken generators).
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Extra states from the 10?7

The massless 10 fields come from H(X.V). but we do not need to consider these
separately. In the case of a freely-acting group G and an equivariant bundle V', the

holomorphic Atiyah-Bott fixed-point formula reduces to

) ] \ -y l k
3 (~1)PnP(r) = x(V)——
}'J

Y

~ ~
5

Combined with Serre duality, //2(.‘;'. \\') ~ 11X, V*)*, this guarantees that we

get exactly three copies of the 10, as long as there are no massless 10 states.
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Doublet-triplet splitting

The Higegs fields of the MSSM are vector-like, and originate in the 5 ® 5 of SU(5).
We want to retain a single pair of Higgs doublets, but remove their associated

colour triplets.

This is analogous to the 10 & 10 analysis, but much harder. In the end, we find

eight models with the MSSM spectrum:

(ny1,n2) k
(3,4) 1,8
(3.8) {8
(4,9) [,8
(8,9) [, 8
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Conclusions

e We have found N = 1 compactifications, connected to the standard

embedding, that have exactly the light spectrum of the MSSM.
e Contrast to existing models:

e No five-branes. or hidden vector bundle = no hidden sector matter.

e Very few moduli.
e This is nowhere near enough to claim ‘realistic’. Open questions:

e Are baryon and lepton number violation sufficiently suppressed?

What is the structure of the Yukawa couplings?

=]

e Can supersymmetry be broken and the moduli stabilised?
e Is there a way to obtain sensible neutrino masses?

L]
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