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Horizon problem

Surface of last scattering 1s nearly 1sothermal, suggesting that all
parts of the last scattering surface were once in causal contact

However, the causal horizon at last scattering 1s much smaller:
points separated by > 1° have never been in causal contact

[)llllllf 250 :\||)t'

\ Dyec = 14100 Mpc
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Horizon problem

(aH)~' = comoving distance light travels in an e-folding

Evolution with scale factor a:

dlog(aH)™ | 4+ 3w ( pressure
- w = :
dlog a 2 energy density

slope = 2 ',j”'
[n a universe filled with
nonrelativistic (w = 0)
or relativistic (w = 1/3)
matter, the horizon 1s
small at early times radiation

domination

(w=1/3)

matter
domination
(w ()

log(1/aH)

log(a)
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Inflation

To get a large horizon at early times, ACDM expansion history
must be preceded by an “inflationary” epoch with w < — l{ .
1.€. negative pressure

—

pressure

(w = _
energy density

-~

matter
domination
(w ()

log(1/aH)

radiation
domination
(w=1/3)

Pirsa: 12030106 Page 6/49



Pirsa: 12030106

Generation of perturbations

Amazing fact: inflation naturally generates perturbations

[n an expanding background, microscopic degrees of freedom
are quantum mechanically excited

Toy example: massless test scalar field (—oco < 7 < 0)

, do .,

l

.

S = — / dr d’x a(T)* — (0i0)°

2 / dr

time dependence

Each Fourier mode o behaves as a 1D harmonic oscillator
with time dependent Hamiltonian

A.2 “ ‘) D A9
-r°+ (HT)°p°

(HT)2
\

ot conjugate momentum
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Generation of perturbations
I( k* !"_‘_’ + (”T)‘_’I)B)

2 (HT)2"

Consider time-dependent Hamiltonian H = -

9 — H) is exactly solvable:

Schrodinger equation 5% =
b7 o t2a2 ka2

(o, 7) X 2 "2H2r(1+k%7%)  exp - - —

(1 — k7)1 P\ T 2H2(1 ¥ k2R

phase (Gaussian

Early-time limit (7 < —1/k): system stays in ground state (adiabatic)

(."(.f'- T) _' (r'.‘:_"rmllul(-r- T) X €1P (‘_ J;‘IIJHT")

Late-time limit (7 > —1/k): wavefunction “frozen” to constant value

o . 13 2
Y(x, ) — exp ( 2,;3)

At the end of inflation, the scalar field oy 1s a Gaussian field
Ho(2m)36% (k — k')

with scale-invariant power spectrum (ox0y,) = 573
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Generation of perturbations

Analogously to the test scalar, (almost) all fields are quantum
mechanically excited (e.g. gravitational waves are generated)

One more ingredient: reheating (fluctuations in inflationary

sector convert to fluctuations in Standard Model particles)

Simplest scenario: initial perturbation 1s “adiabatic”, generated
entirely by inflation fluctuations

)

ds? = —dt* + a(t)?e** D dx?
AN

“adiabatic curvature”
Non-Gaussianity is unobservably small (Maldacena 2002),
given the following assumptions:
[. single-field (initial fluctuations come only from inflaton)
2. reheating 1s homogeneous
3. inflaton Lagrangian is (9¢)? — V(o)

Page 9/49



Pirsa: 12030106

Generation of perturbations

Analogously to the test scalar, (almost) all fields are quantum
mechanically excited (e.g. gravitational waves are generated)

One more ingredient: reheating (fluctuations in inflationary

sector convert to fluctuations in Standard Model particles)

Simplest scenario: initial perturbation 1s “adiabatic”, generated
entirely by inflation fluctuations

)

ds® = —dt* + a(t)?e** "V da?
AN

“adiabatic curvature”
Non-Gaussianity is unobservably small (Maldacena 2002),
given the following assumptions:
[. single-field (initial fluctuations come only from inflaton)
2. reheating 1s homogeneous
3. inflaton Lagrangian is (9¢)? — V(o)

Page 10/49



A non-Gaussian model: modulated reheating

Suppose that the decay rate I' of the inflaton 1s not constant, but
controlled by an auxiliary field o :

['(x) =g+ 1'10(x)+T'20(x)

2

This generates a curvature fluctuation after the inflaton decays
(regions which decay later undergo more expansion):

A(do(x)) + B(do(x))* +

Suppose o 1s a Gaussian field (via the standard quantum
mechanical mcchunism). After a trivial change of variables:

‘)

/'\"}Q( )2 4 ...

. . . . loc . X
where (¢ is a Gaussian field and [y is a free parameter.
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A non-Gaussian model: modulated reheating

Suppose that the decay rate I' of the inflaton 1s not constant, but
controlled by an auxiliary field o :

[(x) =T+ 1'1o0(x)+Tr0(x )2 + ...

This generates a curvature fluctuation after the inflaton decays
(regions which decay later undergo more expansion):

A(do(x)) + B(do(x))* + -

Suppose o 1s a Gaussian field (via the standard quantum
mechanical mcchzmism). After a trivial change of variables:

‘)

/'\"}C(( )< o e

. . . . loc . .
where (¢ is a Gaussian field and [y is a free parameter.
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Non-Gaussianity: “local model”

non-Gaussian
/

loc ~ 2
/\ 1Ca(X)”
Arises if non-G is generated by local physics after horizon crossing

» modulated reheating (inflaton decay mediated by spectator field)
e curvaton model (spectator field with non-flat potential generates ()
e “New” Ekpyrosis (two-field model; second field generates ()

Natural values in these models: f)§ = 1-100

AfNS = 21 (WMAP7)
Observational errors (1o): Af 1“"’ 5 (Planck)
AfNS ~ 1 (LSST)

Local non- (musmanlty I'L(]UIILS multlplt, fields; observation of
/Im 0 would 1 out all single-field mode
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Non-Gaussianity via cubic interactions

Add interaction terms to the Lagrangian
Toy example: massless test scalar with & interaction

l ' | N ) 2 . ) 3
S ==z / dr d*za(m)? | 52 ) — (0i0)?| + fa(r) [ 2
2 ot ot

)

small coupling constant

To first order in f, non-Gaussianity shows up in the 3-point function

k1koks

+() 9
. T°€
(0K, Ok, Ok,) X / dT
U - OC

2f
 kykoks(ky + ko + k3)?
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Non-Gaussianity via cubic interactions

Add interaction terms to the Lagrangian
Toy example: massless test scalar with & interaction

1 ' | N ) 2 . ) 3
S ==z / dr d*ra(r)? | 52 ) = (2i0)?| + fa(r) [ ==
2 ot ot

y

small coupling constant

To first order in f, non-Gaussianity shows up in the 3-point function
k-_) '-’(>(}~'1 tho+ka)T

k1koks

+()
. T
<”k.”k-.)”k.-g> x f / dr
. - OO0

2f
- kykoks(ky + ko + k3)?
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Non-Gaussianity in single-field inflation

Classification theorem: 1f
[. the inflaton is the source of the initial curvature perturbations
2. no rapid explicit time dependence (e.g. oscillatory potentials)

* 9
~

3. coefficients are “generic” (1.e. no special symmetries)

Then the most general curvature 3-point function is:
<Ck, Qk:(k;l) = fosFya(ky, ko, A-‘:s) + ./}'rwn)'-’ 1“('1{5)(1}2(/\'1 , ko, A':;)

where Fjs = 3-point function of test scalar with ¢ interaction
l
= 3
kikaoks (k1 + ko + k3):

al . ~ . - ' " . DR .
Fs00)2 = 3-point function of test scalar with 5(9,0)~ interaction

(4k% + 6k ko + 6k1ks + k3)(ky - ko) |
X 3 L. : )CT'1).
A..1‘1!""._;};"5;(A'l + !"‘_’ -+ A';;)'{ [

Senatore, Smith & Zaldarriaga 2009
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“Shapes” of non-Gaussianity

Curvature 3-point function (Ck, Ck,Ck) X)

defined for closed triangles, depends
only on shape of triangle

To visualize, plot k3k3 (Ci, Ck,Ck,) Vs side ratios (ko/ky), (ksg/ky)
0 Lloc
= FNE P (k) Po(k2) + cye.

D

Local shape <Ck,Ck3Ck;g> =

Signal-to-noise dominated
by squeezed triangles

m

d
“— squeezed
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“Shapes” of non-Gaussianity

2

Single-field shapes Fys(k1, k2, k3), Fs(90)2
are very similar (highly Lorrdatud)
Orthogonalize: define new basis

[J('(|ll.ll = 1.21 [*1‘:5 + 1.04 l“r"T(f')('T)"',
= 0.108 Fi5 — 0.068 F o)

1‘1”'[ hog —
«—¢quilateral

VAN

flattened

/\’

< . ‘-‘
[(‘(||1Il [nl'tllu;_;

A'g/ln'[

A_g/ll. |
Senatore, Smith & Zaldarriaga 2009
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Data analysis

Diagram

A

4

Curvature bispectrum (Ck, CkaCks)

A

4

CMB bispectrum (g, , @pomo,@pams)

A

4

Optimal estimator [y

WMAP

4

constraint
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General case is computationally intractible

Calculating CMB bispectrum from curvature bispectrum:

. (20 + 1)(26 + 1)(204 + 1) .f] o Iy ) to £ ‘
(a Lo s b orran ) /
Alrm, Qlama Qbgmy, \ I 00 0 my o Mo My

)

| T 2k? _
X / rh‘rH.'] n‘”(:-’”-‘!, (1—[ _I .}1_(.!"",."].3; l_ni-',:]') :gk:gk:g\k;l:
. . ] " \

CMB transter function (computed numerically)

4D oscillatory integral for each (¢4, (5, £3): too slow

Computing optimal estimator from data (ay,,,):

. 2"‘, \ =1 ) 1 ¢ v—1
_’.\f '”IJIHF.{"JHJJ'q“;Hi‘.- |( ”.)fjru|[.(’ ”J’,'“‘;‘-(

t,m,

Number of terms 1n sum 18 & 0 .. - too slow
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Physical shapes are tractable!
ki
Example: 7 interaction
2, (k1 +kotks)T

/"E A'-_’/w':s

()
) ) . T
(Ck; CkaCky) X / dr

Specialized to this case, estimator can be written in tractable form:

3
f:\.-[‘ = /T"')([T /l dr /(l I (Z[!{ T, I IH)(,”}},”(II‘))

frn

2k dk .
pe(T, 1) = / ; je(kr)e™ Ay (k)

T

Generalizes to any ¢.g. 4-point estimators:

K o<

Pirsa: 12030106 Page 22/49




Computational problem 1: large number of terms

3
fve =) THAT)Y ri(Ar) /r/“n > (7, r)(C a) e Yo (n)

! J frn

Sum of many terms, corresponding to points in (7, 7) plane
Proposed optimization algorithm to reduce computational cost
General form:

JOUIL1C N

Given estimator E X, and covariance matrix Cov ( X, \ i)

)

Find minimal (in sense dLhnLd by Cov) subset { X,

X, X))

Original X can be written w/fewer terms: W X,] + - wpar Xy,

L

Specialized to fx2: Start with many points in the (7, ) plane

Optimization algorithm gives small number of points, weights
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Optimization algorithm: example

_/"J\:,l - /;"“’(h' /r/zll Z;u(r. r)(C 'u),,,,)},,,(n)

fm

“Unoptimized” estimator: 80000 terms corresponding to dense

sampling in the (7,7) plane 000

T T
8o

100

T1 HHTli

Applying optimization 10
algorithm reduces number T
of integration points (or

terms 1n the estimator) to 86

TIEE

o
Ogoeg
o

TI T ITHHI] rrirmmg 1 IIIHTI]

C L 4 . Do
1.2x10*  1.4x10%
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Computational problem 2: C™

Cla=(S+N)la

Noise covariance matrix (diagonal in pixel space)
Signal covariance matrix (diagonal in harmonic space)

Appears to require inverting 10°-by-10° matrix!

Proposed fast multigrid algorithm for solving (S + N)x = a
iteratively (similar to elliptic PDE such as V2 = a )

Enables many types of optimal statistics (e.g. optimal ', )

Smith, Zahn, Dore & Nolta 2008
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WMAP results: local shape

First optimal analysis: f)$ = 38 &+ 21 (1o)
(Smith, Senatore & Zaldarriaga 2009)

At the time, results in the literature were difficult to interpret...

/l‘" — 32+ 34 (Creminelli et al)
/ln( — 87 4+ 30 (Yadav & Wandelt)

I\“(] — r)rl i %() (Komatsu et al)

Optimal estimator achieves smallest error bars and ¢
uniqueness of result by removing “choices™ in data analysn

Current data is consistent with single-field inflation (f)}§ = 0);
Planck will reduce error bar by factor ~4
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WMAP results: single-field shapes

400

First optimal constraints:
o I «orthog
fyr =1554+140 vt 0

forthos — 149 4 110

-400

(Planck: errors smaller by factor 2-3)

“Master result” which can be compared to all single-field models

Senatore, Smith & Zaldarriaga 2009
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Case study: DBI inflation

String-motivated model of inflation
(Alishahiha, Silverstein & Tong)

l (@) (0)? 15
L= —— \/ —'_f( )(( : ) -+ l(()) ﬁ ; D3 brane
s / (('r)) \p}‘.‘ ‘;"_

| ]
|
|

W

warped throat

¥ —anti-D3 brane
at \ll ‘“.
Single field model, classification theorem applies....

equil _()';P) sorthog _()[)21

JNL — -2 JNL == (,f

S

From WMAP results we get: ¢, = 0.054 (95% CL)

Senatore, Smith & Zaldarriaga 2009
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Case study: DBI inflation

String-motivated model of inflation
(Alishahiha, Silverstein & Tong)

l () (Dp)> ey o
Lo L (VIET@@ 057 s brane
Js / ((*r)) \p}‘.‘ ‘,‘"_

| ]
\
\

%

warped throat

8 =——anti—D3 brane
at Y=\,

Single field model, classification theorem applies....

equil _ 0.3 orthog _ 0.024

JNL — 2 JNL == (,f

S

From WMAP results we get: ¢, = 0.054 (95% CL)

Senatore, Smith & Zaldarriaga 2009
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WMAP results: gravitational lensing

Apparent locations of CMB hot and cold spots are deflected by
intervening large scale structure

—
(exaggerated) |

Generates squeezed 3-point function (py, 71,71, )
where p = projected matter density
T,

‘Mﬂh

I,
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WMAP results: gravitational lensing

Consider a large (~10 deg) overdense region
CMB appears slightly magnified; acoustic peaks move to lower |

overdense region

underdense region

{
Correlation between long-wavelength density p and small-scale
CMB power spectrum '/ 1 is equivalent to a three-point correlation
T

‘Mﬂh

[,
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WMAP results: gravitational lensing

NVSS: 1.4 GHz all-sky radio survey

Use galaxy counts as tracer for
projected matter density
oalaxy counts (Galactic coordinates)

CMB

CMB

Ll

Ll l Ll Ll L L
Statistical 1

Stat + systematic .

T

-

—

4x10-°
Three-point signal detected at 3.40
| [‘ xi\“\'\]‘."‘i \.': ( \‘\{i‘; ;\“ y | & 2)(10"

H' jLJrth

1 T 1 LA 11 T LA ) |

Will soon enter realm of precision
cosmology, e.g. 300 in Planck

' l ' A A A l A A I '
100 200
Multipole |
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Large-scale structure: halo bias

[n a Gaussian cosmology, halo number density is proportional to the

: ) )
dark matter density on large scales: “£& ~ p°Lm ” —rr
- Ph pm b = “halo bias

Matter-halo power spectrum P,,,;, and halo-halo power spectrum P,
are proportional to matter power spectrum £,,,,,, (k)

nh(K)
)m/: { /" )
])HHH (l‘)

1)
H’ \t’f \Hu
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Interpretation

Correlation between long-wavelength mode and small-scale power

Three-point function is large in squeezed triangles
I

31.3

kg kG

<CkL<kSCkS> X ,\ L

l()('

Locally measured fluctuation amplitude o3’ near a point x
depends on value of Newtonian potential ®(x)

o¢ = ag(1 + 2fn 1 P)
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Interpretation

Correlation between long-wavelength mode and small-scale power

Three-point function 1s large in squeezed triangles
|

31.3

k7 ke

<CkL<kSCkS> X ,\ L

Locally measured fluctuation amplitude &€ near a point x
depends on value of Newtonian potential ®(x)

oX¢ = ag(1 + 2fn 1 P)
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Interpretation

This picture naturally leads to enhanced |

|+ dlogpn 0p,,  Ologp;, 0oy

Alog pin Pm dlogog 0y
S —
bo by/2
0P ) 0Pm
0

Ph Pm

/'.'\" L d/’m
by + ( : :
( Y (kfaH)2) D,

+01fNL®
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Interpretation

This picture naturally leads to enhanced lai

|+ dlogpn 0p,,  Ologp; dog

d1og pim P dlogog oy
| S —
bo by /2
0P ) 0Pm
0

Ph Pm

/'.'\" L d/’m
by + ( : :
( Y (kfaH)?) D,

+01fNL®
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General expression for non-Gaussian clustering

Schematic form: ~ (5 Mpc)

]mh( (hl) + Z b\ /\ 2 ) ])mm(!‘.)

~ (5 Mpc) !

Py, (k) = (4, . ’Z/Ju[’\f\u wab\f/uu \+|(/)) Fonm (K)

MN

gun (k) = é: (Cky *** Cepr Sk, -+ Ciery )
' k,=k
Z k! ==k ~ (5 Mpc) l : ~ (5 Mpc)

1

~ (H _\[]1("1 l ~ (D .\||}l‘| !

in prep. with Baumann, Green and Ferrar
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Example 1: bias from 4-point function

Simple example of non-Gaussian model
whose 4-point function (Ck, Ck,CksCk,)
1s large in the limit £y — 0

¢ =Ca+gnCo

Large-scale clustering signatures
I( )¢

are qualitatively similar to /7

model .

? a
L

Detailed mass, redshift and scale
dependence agree well with
general expression

“

0.02
k(h Mpc ')

Smith, Ferraro & LoVerde 2011
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Example 1: bias from 4-point function

Simple example of non-Gaussian model
whose 4-point function (Ck, Ck,CksCk,)
1s large 1n the limit £ — 0

¢ =Ca+gniCo

Large-scale clustering signatures
I( ¢

are qualitatively similar to /7
model

Detailed mass, redshift and scale
dependence agree well with
general expression

“

'

]

.
E x o o..°..\\\\§‘sd

L

@ v 2 x10"
i
|

0.02
k(h Mpc ')

Smith, Ferraro & LoVerde 2011
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Example 2: “stochastic” halo bias

Simple example of model such that (Ck, Ck,Cks) = 0, but
(Cky CkyCksCky) 18 large in limit ki + ko| — 0:

- - v )
¢ = Ca+ fCalq
Leads to “‘stochastic” clustering:

non-Gaussian excess in P,
but not P,,,;,

0s has long-wavelength
fluctuations, but uncorrelated
with density

1)
k(h \||n ‘

Smith & LoVerde 2010
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Large-scale structure: general picture

Large-scale structure constraints are best understood as precise tests

of statistical homogeneity of the universe on large scales

Non-Gaussian models with large squeezed limits can be interpreted
as large-scale inhomogeneity 1n statistics of small-scale modes, e.g:
~ (5 Mpc) : .
large-scale correlation

between density and

small-scale skewness

(D N||}t'| |

~ (5 Mpc) I

large-scale inhomogeneity
in small-scale power,
uncorrelated to density
(“‘stochastic™)
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Large-scale structure: general picture

Large-scale structure constraints are best understood as precise tests

of statistical homogeneity of the universe on large scales

Non-Gaussian models with large squeezed limits can be interpreted
as large-scale inhomogeneity 1n statistics of small-scale modes, e.g:
~ (5 Mpc) : 5
large-scale correlation

between density and

small-scale skewness

(D N||}t'| :

~ (5 Mpc) |

large-scale inhomogeneity
in small-scale pow Cr,
uncorrelated to density
(“‘stochastic™)
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Conclusions and future outlook
['heory:
Primordial non-Gaussianity 1s a powerful, multifaceted probe

of early universe physics. Can map QFT interactions to
observable signals

Do we have a complete set of signals to look for?

No; new examples are still emerging...

e single-field: higher derivative interactions

Behbahani, Mirbabayi, Senatore & Smith in prep.

e multi-field: “SUSY shapes”

Chen & Wang 0911.3380
Baumann & Green 1109.0292
Baumann, Green, Ferraro & Smith in prep.
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Conclusions and future outlook

CMB phenomenology:

Can measure N-point correlation function (73, 7y, - - - Ty, )
with full shape discrimination. “One estimator per diagram”

Optimal data analysis requires solving several algorithmic
and computational problems; when dust settled, WMAP
data 1s consistent with Gaussian statistics

Many shapes remain to be analyzed!

e higher derivative cubic interactions
e four-point statistics / quartic interactions
e “SUSY shapes”

Planck will dramatically improve existing constraints (Jan 2013!)
but it will be difficult to improve further using the CMB
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Conclusions and future outlook

Large-scale structure:

e Future constraints on many models (e.g. )9 ) better than CMB

Caveat: difficult to separate different N-point shapes
(or separate different values of N)
Caveat: LSS is not sensitive to all parameters (e.g. f/; )

e Subject still in 1ts infancy; many basic problems unsolved
How can we simulate random 1nitial conditions (e.g. for an
N-body simulation) from an arbitrary interacting QFT?

Smith & Brown in prep.

[s the large-scale galaxy power spectrum the best observable?
LoVerde & Smith in prep.

e We are still quite far from the ultimate limits on our ability

to constrain inflation; the near future will bring many new
theoretical and observational results!
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