Title: A Toy Modé to Study the Imposition of the Spin Foam Simplicity Constraints
Date: Mar 07, 2012 04:00 PM
URL: http://pirsa.org/12030100

Abstract: We introduce an exactly solvable model to test various proposals for the imposition of the spin foam simplicity constraints. This model isa
three-dimensional Holst-Plebanski action for the gauge group SO(4), in which the simplicity constraints mimic the situation of the four-dimensional
theory. In particular, the canonical analysis reveals the presence of secondary second class constraints conjugated to the primary ones. We perform
the spin foam quantization of the theory in the spirit of the BC and EPRL models, and give arguments for modifying the measure over the
holonomiesin order to account for the presence of the secondary second class constraints.
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Statement of intent:

(21,q1|22,q2)phys / Dg| exp(iS).

vaIx=9q
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Statement of intent:

(X1, q1|22, q2) phys / Dg| exp(iS).
vaIx=9q
The spin foam approach takes as a starting point the (Holst-)Plebanski action

":/

Spi[B,w, ¢| = / L+ =) B AF1;+ ¢pruxB"Y A BKE
J M,

where the simplicity constraints imposed by ¢ ensure that B comes from a tetrad.
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Spi[B,w, ¢| = / L+ =) B AF1) + ¢pruxB"Y A BKE
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where the simplicity constraints imposed by ¢ ensure that B comes from a tetrad.

BC model: simplicity constraints imposed too strongly,

EPRL and FK: weak imposition through the linear simplicity constraints,
Many other models: Han-Thiemann, Baratin-Oriti, Conrady-Hnybida, ...
What should guide our constructions?

Semi-classical limit, physical predictions, mathematical (internal) consistency.
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In the canonical theory, the primary simplicity constraints ¢ are second class because
they are conjugated to secondary constraints 1.

The usual point of view is that the phase space path integral
Z = /'D[)'Dq\/| det{o, v }|6(p)d(7) exp 1',/ dt (pag® — Ho)
can be cleared of the secondary constraints ( ) to give

Z = /'D;)'Dq;z,(p, q)DA exp 1,'/(1)‘. (p,,r}” — Ho — )\r,‘))

[t has been shown ( and ) that

Oy, 3« s
IPlebanski = V'V, and UHolst = V V.

Can we always get rid of the secondary second class constraints?

What is the influence of the measure on the face and edge amplitudes?
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How should we impose the primary simplicity constraints?

[s it legitimate to forget about the secondary second class constraints?

One can try to look for models of the form
S, So + C

where the theories given by S, and S have known spin foam quantizations, and C
are simplicity constraints.

Such models exist in 3d (this talk) and in 4d ( ).
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Let us consider the 3-dimensional SO(4) Plebanski action

1 ' ! e 3 | L
Se(B,w, ] = ; / (1-‘.;:(5-“" [r(BuF.,) + ¢ Tr(xB, /;,,)).
J M

Just like in four dimensions, the simplicity constraints

| :
’ . IJ KL
(’]J.I/ il <] JK L !3'“ [3,., ~ [)
2
have three sectors of solutions:
4o J J - L
gravitational sector: Bf, =gl ¥ ('f, :
topological sector: H:," .I'If’;f — .17"(':,,

degenerate sector,

with z/ € R* and (.’:‘_ a one-form.
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Let us consider the 3-dimensional SO(4) Plebanski action

1 l X FPr 1 | L
.5'1-[“)’,&).(,-’)] — 9 / (1.{.!:(&‘!” : l‘]‘(”,; I"rfp) -+ (.‘J); I]‘(*Iﬁ;) l},;)),
J M

Just like in four dimensions, the simplicity constraints

1

C, = 25;_”\' L 13}1‘1 [3,{,\"' ~ ()
have three sectors of solutions:
gravitational sector: Bl = gl x¥eb,
topological sector: B:," .zrlv;f - .1,'"(';',,

degenerate sector,

‘ - mmd I . i . . . .
with z/ € R* and e, a one-form. The gravitational sector in the time gauge becomes

1 [ : , g
Spi[B,w] — Sgravity [B(e), w] 5 / d3z e Peijre, 1',{?;.
J M

Notice that we have the

| Y | 1 1 . i 2 1 A3 0 0
(.1 —> QT ,€e, —r x ¢ ;,), anc (( w—>€,+p,Tr ,e, —re,
so the simple B field has indeed 18 — 6 = 16 — | = 12 components.

+ 'f')’.“.l.'”).
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[f we write the SO(4) BF part of the action as

;S‘ I),.UU'I — ; /\/ (i:‘.'!: \_{;1.:';)(-1‘1,(' { :13;:: I!"V!J) + FI‘II‘(' ]),;4: 11”:’.:"))5
J M

the torsion-free condition can be solved to obtain the second order action

Slguy] = ‘l s’ /\/ (]:‘.‘I.‘\/‘ ' g|'R," ' g,,,,} - _1 S /\/ (l“‘;;f\/| ;;\'R[' _q,,,,],
J M J M

2 2

where g, = ' B, . *' B, and s sign (det (** ’i)’;‘)).
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[f we write the SO(4) BF' part of the action as

;S‘ l),.uu'l — ; / (i:‘;l: t'“:’“('l‘r(l * :13‘;;: I["u‘“) + rI‘II'(l ]),;4: : ['1:fp)>a
J M

the torsion-free condition can be solved to obtain the second order action

1 4+ [ 1 R :
Slguv] = 9% /\/1 ‘l"-"f\/‘ ' .‘l|'R[ | .‘hw} a 9% /vr ‘1“-'”\/| ."J‘R[ _(hu*],

where (g, ‘=B, - '"*'B, and g™ sign ((l('.t, (" =) b’;‘)).

One can show that
gravitational sector: AR Y 'Guv, S S — gravity,

topological sector: “gur = "T'9uv, 8T = —s8 — nothing.
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J M
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The canonical analysis is similar to that of the 4-dimensional Plebanski theory

( and ).
The 36 phase space variables wf,'/ and Hﬁ'] are subjected to
12 first class constraints: SO(4) gauge, diffeos, vanishing of mn and mwya,

12 second class constraints, including in particular:

primary Car =~ 0,

secondary (,;,,;, ~ 0 = Yap = Tr(D.Bo x By) + Tr(DpyBo » B,) = 0.

In fact the secondary second class constraint ,;, can be combined with the linear
simplicity constraint to give

a1 J K L I « Na
P!\- f.i’dr: -‘1;{ ()“.IT g

The same property is satisfied in the four-dimensional theory by the
[Lorentz-covariant extension of the Ashtekar-Barbero connection, where P projects
onto the boost part of sl(2,C).
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[f we write the SO(4) BF part of the action as

S

l - 3 LV p (
. L L ] (4) ( ) v T\ ( ( ) 1
B,w| = A3z eV (lr( B,"F,,) +Tr(" B, 1«,,,,)),
2 Jam
the torsion-free condition can be solved to obtain the second order action

Y 1 ¥ |
Slguv] = 5s /w d*z/| g R[ " gu] + 58 /w<1”-‘r«‘\/| gIR[" ' gun],

where *'g,, = *' B, . ¥ B, and s sign (det (‘*'B},)).

One can show that
gravitational sector: AR P Guv, S S — gravity,

topological sector: Tguy = "Tguv, 8T = —s — nothing.

Pirsa: 12030100 Page 23/60



Pirsa: 12030100

The canonical analysis is similar to that of the 4-dimensional Plebanski theory

( and ).

The 36 phase space variables wf,'/ and Bﬁ'l are subjected to
12 first class constraints: SO(4) gauge, diffeos, vanishing of mn and mya,
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lJ K L I
P !

K LWq I

‘ J]

Doz’

The same property is satisfied in the four-dimensional theory by the
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onto the boost part of sl(2,C).
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With this classical theory at hand, we can study the commutativity of the diagram

, C=0 ,
SBr - 1L’;J,r.‘u.":l\,'
A\ 29 \j
ZHI" > Z;;r;n'ii_\'

We know that

Zaaviey = > || ir+1) J] {64},
-

J—f f¢ vEA*®
Zpr > 11 @i +1@hi; +1) ] {65765},
{13 }—ffEA” vEAT

so how do we impose the simplicity constraints in Zgy in order to recover the
Ponzano-Regge model?
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The one-forms Bf,'l are integrated along the links £ € A dual to f € A" to give
H}J € s0(4). The discrete simplicity constraints are

diagonal simplicity: EIJKL Bj-'l Bj—'“ L'~0 Y f € 0t, (1)

cross simplicity: EIJKL H_;-" b’}'-‘; L'~ V f, f € ot. (2)

By fixing the normal z’, we can write the linear simplicity constraint
1J
riB,",

which selects the gravitational sector, and breaks SO(4) to SU(2) stabilizing z’.
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- , IJ ‘ . i : .
['he one-forms B,,” are integrated along the links £ € A dual to f € A" to give
B’ € s0(4). The discrete simplicity constraints are

diagonal simplicity: EIJKL Bj-" Bj—‘“ L'~0 V f € 0t, (1)

cross simplicity: EIJKL H_;-" [)";-‘; L'~ V f, f € ot. (2)

By fixing the normal z°, we can write the linear simplicity constraint

T H:[", (3)
which selects the gravitational sector, and breaks SO(4) to SU(2) stabilizing z’
Different ways to impose these (primary second class) constraints:
BC ( ) model: (1) and (2) strongly,
EPR(L v # 0) ( ) model: (1) strongly and (3) weakly.
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(1) implies the restriction j; = j, = js to simple SO(4) representations.

Then we have the decomposition

2}1
CTNT) N\ (7 f)
H.‘%()E-I] GB HHIY('.:‘]‘
Jf 0
in which BC selects the subspace j; = 0, and EPRL (via master constraint) selects

the highest spin j + 7, = 2j¢.

We can represent this graphically as

= / dg 6(C).
J(SO(4)]3

[1111]

Pirsa: 12030100 Page 32/60



- , IJ ‘ . i ! .
['he one-forms B,,” are integrated along the links £ € A dual to f € A" to give
B’ € s0(4). The discrete simplicity constraints are

diagonal simplicity: EIJKL Bj-'l Bj-“ L'~0 V f € 0t, (1)

cross simplicity: EIJKL H_;-" b’f'-‘; L'~ V f, f € ot. (2)

By fixing the normal z°, we can write the linear simplicity constraint

z, B’ (3)
which selects the gravitational sector, and breaks SO(4) to SU(2) stabilizing z’
Different ways to impose these (primary second class) constraints:
BC ( ) model: (1) and (2) strongly,
EPR(L v # 0) ( ) model: (1) strongly and (3) weakly.

Pirsa: 12030100 Page 33/60



(1) implies the restriction j; = j, = js to simple SO(4) representations.

Then we have the decomposition

PYIVERVED. PYLVED.
Hrw‘()(-:] GB HHIY('.:‘]‘
0

Jf

in which BC selects the subspace j; = 0, and EPRL (via master constraint) selects

the highest spin j; + j; = 2jy.

We can represent this graphically as

= / dg 6(C).
J(SO(4)]3

i
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[HENEN

Zac = - H (2.}'7,3 + 1)(2]-]_ 1) :j__, : _: :_; i; ;

[T
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[HENEN

Zpc = — -
(5.5 }{f} fEA? | m ((

FTTTTI

[LLEL

I

[T 2ir+1)* == ==
'} fEA™ - —_ —1 [

il

[TTTTT
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[HENEN

Zoc = _ o I @f+eEi + == — = 5E

RERRR

[LEEL

I\
s

[TTTTT

(111

L]

~ NS

b—
(%)
~
_+_
—
[T11

L\ R w aaw
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I\

Zeprl = IT 2if + 1)(257 +1)

(it,i Y—={f) fFEA™" \ ((
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HERRR
HEREN

[TTTT]
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Frenn = R RN ———=
{7V, y—o{f} fear = \\ (( — = EHE
[TTTT]
LLLLL

T

Yam
N
1
1111
| []]
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LLet us now take into account the secondary second class constraints 7, coming from
the preservation of the primary simplicity constraints Cg.

[n the time gauge z’ (1,0,0,0), they just say that ‘" w, 'Wa, SO let us use

— / dg rﬁ'(-zr-r,“m.,.,,t‘,_)('5((?) / dgd (' “h' h ]) r‘)'((f').

::._;(”‘1:]:.'& :Hl)le::{
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LLet us now take into account the secondary second class constraints 7,5, coming from
the preservation of the primary simplicity constraints Cg.

[n the time gauge z’ (1,0,0,0), they just say that '"w, ="' 'wa,, so let us use

— / dg rﬁ'('l;’:li:‘(‘,..-tp)(')-((?) / dgd (' YRR ]) r‘)'((f').

“'\()(lli "'\()(lJ{
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271 272 273
2ja 275 2je |
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Can we have a more generic and constructive point of view? Write the total
simplicial path integral as

zZ ./'I:['ptrllh’_,-] (*"‘4"[“‘!‘0 1

1

where the vertex amplitude is

A,[By] /H’D”“""'J[_q,.] [ [exp (-zf'l’r [1;,-,,”[;.),,MJ}) ,
' e f

and the measure are

'D:”[b’] ;L.i‘,s(.,...,..(H,.r)rf(rp[“h(.“..,.([)’,.17))(113, 'D(”"”|y| r‘5(z,-‘"[“ﬁ[.]...“.(_(;. 1)’,;1:))(1_(;.
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Can we have a more generic and constructive point of view? Write the total
simplicial path integral as

Z ./.I:[fp:.ml];_,-] (* ‘4,,[13}.0 1

1

where the vertex amplitude is

‘/\‘]I‘{fl - / H aD{H‘.r,.J[!}!_I H(,xp (?j.l‘]' [[;f(j,‘[lf)(]f“fJ}) y
' e f

and the measure are
'D:'r][b’] ;L.i‘,ﬁ(.,...,..(li,;rf)rf(r,f)[“h(.z...,..(1)’,..'7))(113, 'D(”“”|g| fs(l.’f':{i:-e:-z--h-(_(j. 1)’,;1:))(1_(}.

One can go in the connection representation and write
Ay [By] = /Hf?w(i'l’rlif_f.ff_fl)f’h-[.r;_rl-
' f

with

Avlgs] = / H'D(”“r' ]l.‘!r] H‘S (.‘!“‘f').‘lf‘!!.f{.lﬂ) :
J = f
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The vertex amplitude A,|gs| in the connection representation can be written as a
superposition of projected spin network states, and is determined by

\

Arl)\f.j,‘j\ é,.] — / H 'D:“"* ]1!]«']871',‘./\ frdefrie) g”(lj.}gd,”, Te

For example, the EPRL model corresponds to the choice
D'*[g.] = dge,

with

1 . L
A= (14+v)7, =11 —|J or A= (4,77)

depending on the gauge group.

[f we use this prescription for the three-dimensional SO(4) Plebanski theory that we
have discussed, we get the face and vertex amplitudes of the Ponzano-Regge model.

Page 50/60



Can we have a more generic and constructive point of view? Write the total

[T1P®5] (* AulBs).
. f v
where the vertex amplitude is

Ay By = /HD‘“' [ge ]H('q) ( [H,‘qr” Gas }),

and the measure are

D’!]lzj] IL.iis(-n-n-(lf-,:I*)(s(f;r)(iihl-:-.-l..(1)),--’7))(“3, ID(ILJ-]|.!’}] (s(l"‘"‘““""'l"'“'(-{j' 13‘;1:))(1'(1.

simplicial path integral as

One can go in the connection representation and write

/Hoxp(zlr (Brgrl) Avlgrl,

with

Avlgs] = /H'D‘ Zr g [T 6 (.q,,‘,-)!ir.q.n.'m)-
J 7
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The vertex amplitude A,[gs| in the connection representation can be written as a
superposition of projected spin network states, and is determined by

\

A,.[)\J-_jf‘j-, é,.] — / H 'D:“"* 11‘(]!,]‘5([._‘“,\ rdatiia) g”(lj.}gd,“, Te

For example, the EPRL model corresponds to the choice
D'*[g.| = dge,

with

1 . L
A= (14+7)d, =11 —=|j or A= (7,77)

o

depending on the gauge group.

[f we use this prescription for the three-dimensional SO(4) Plebanski theory that we
have discussed, we get the face and vertex amplitudes of the Ponzano-Regge model.
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“RPRL = ORI R ————
{it. i yo{sr} fear - — \\ (( — = H=F
[TTTT]
HEREN

Yam
N
1
[[]1
| []]
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LLet us now take into account the secondary second class constraints 7,5, coming from
the preservation of the primary simplicity constraints Cg.

In the time gauge z’ (1,0,0,0), they just say that '"'w, ="' 'wa,, so let us use

— / dg 8 (Vdiscrete )8 (C) / dgé (""'h' 'h ]) 5(C).

EH()(JJZH :Hl)le::‘
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Can we have a more generic and constructive point of view? Write the total

[ TP 5] (* AulBs).
. f v
where the vertex amplitude is

A, [By] /HD“* Te) (ge |pr ( [H;q,” Gais D

and the measure are

D' ([B] = paiscrete (B, ©)8 (Paiscrete (B, 2))dB, D' [g] = 6 (Yaiscrete(g, B, x))dg.

simplicial path integral as

One can go in the connection representation and write

/Hoxp(z ['r [Brgrl) Avlgr],

with

wiorl = [ TI2 0 16 (oo )
* e f
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The vertex amplitude A,[gs| in the connection representation can be written as a
superposition of projected spin network states, and is determined by

‘f1i'lAJ‘..’jr‘j.‘ !r] — / H 'D:J'. ][‘(]!.]S(l-w‘,\ £odefrie) !}H(lf}gil’{f)‘ Te

For example, the EPRL model corresponds to the choice
D'**|g.] = dge,

with

1 . L
A= =(1+v9)3 =11 =7 or A= (7,77)

depending on the gauge group.

[f we use this prescription for the three-dimensional SO(4) Plebanski theory that we
have discussed, we get the face and vertex amplitudes of the Ponzano-Regge model.
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' Restrictions of this model: no non-trivial diagonal simplicity constraints, 3d,
There is an analogue four-dimensional model describing the degenerate sector of
Plebanski theory.

Use this exemple to test other proposals for building spin foam models.
What about the secondary second class constraints in the four dimensions?
Maybe clarify the role of the Barbero-Immirzi parameter?

The three-dimensional SO(4) Plebanski action can be generalized to

/

/

L [ 1 .
Sp1, [B,w, @] 2/ d®z |e*? ( Tr(BLF.,) + ~Tr(*xB.F.,) ) + ¢** Tr(xB,.B.)
J M

where ~ is again irrelevant at the classical level.
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Merci
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The vertex amplitude A,|gs| in the connection representation can be written as a
superposition of projected spin network states, and is determined by

mummM—/Hﬂ“mw“MM”g@mmm

For example, the EPRL model corresponds to the choice
D'*[ge| = dge,

with

1 . L
A= 2(1 +v)7, 2|1 - v|J or A= (7,77)

depending on the gauge group.

[f we use this prescription for the three-dimensional SO(4) Plebanski theory that we
have discussed, we get the face and vertex amplitudes of the Ponzano-Regge model.
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