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Abstract: Entropy plays a fundamental role in quantum information theory through applications ranging from communication theory to condensed
matter physics. & nbsp; These applications include finding the best possible communication rates over noisy channels and characterizing ground state
entanglement in strongly-correlated quantum systems.& nbsp;& nbsp;In the latter, localized entanglement is often characterized by an area law for
entropy. & nbsp;Long-range entanglement, on the other hand, can give rise to topologically ordered materials whose& nbsp;collective excitations are
robust against local noise. &nbsp;In this talk, | will present a property of quantum entropy for multipartite quantum systems that resolves several
open questions in quantum information theory about entanglement measures, provides new agorithmic opportunities and makes nontrivial
statements about the structure of states with vanishing - but nonzero - topological entropy. & nbsp;l will also comment how extensions of this work
could help our understanding of quantum communication over certain very noisy channels.<br>
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Shannon’s information theory

The Bell System Technical Journal

A Mathematical Theory of Communication

By C. E. SHANNON

Z p(x)log p(x)

Entropy arises in the answers to fundamental questions:
Data compression, channel capacity
This talk: applications of quantum entropy

H(p) = —Trplogp

Vol, XXVII July, 1948 No. 3

Page 4/30



Pirsa: 12030092

Quantum entanglement
Product pure states:
Wy ap = V) al)s = V)4 @ |U) B

Most states in A @ B are entangled.

1
Example: EPR state E(IUW +|11))
Straightforward to quantify - entanglement entropy

E(

Wap) = H(pa) = —Trpalogpa = H(pp)
| Example: Ground state of a lattice
of spins 4 =% B=R)C?

i€ A ieB
| Area law: H(.) =alL—v+---
el 4
localized long-range

entanglement  entanglement

How exactly does this “quantify” the entanglement?
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Shannon’s data compression

Reconstructed
Random data " c onht R data
encoaing . ecoding A~ A~

X1, X2, 7 function | npits | function > X1, Ao,

.i.d. ~ p(z)

Goal: send as few bits as possible (i.e. minimize rate R)

while making negligible errors

o~

Pr{(Xy,...X,) # (X1,...X,)} = 0 as n — oc

Shannon’s theorem: The best (smallest) compression
rateis R = H(X).

Operational interpretation of entropy, quantifies “information content”

Philosophy of information theory
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Schumacher’s quantum data compression

(C2)EnR 2" Reconstructed
Random states , , state
[ Mgy} -+ - —> encoding .| decoding (n)
PR operation | n qubits | operation Pout
.id. ~ p(x)

Goal: send as few qubits as possible (i.e. minimize rate R)

while making negligible errors

/ (n), |
> p(@r) - p(en) Wa, |- Q[ pout [ny) -+ [Yoa,) — 1
x’

Schumacher’s theorem: The best (smallest) compression
rate is R = H(p), where p = Zg)(:z:)]'t,/):,;)<'1/):,.] .

Independent of particular ensemble {p(), [¢z) }
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The church of the larger Hilbert space

w Any other ensemble with the same
p= Zp

can be created by measuring
part of the purification

[v) = > Vp(@)|a) )

Interpret Schumacher compression as measuring
correlations in such a purified source, simply requiring
@n (1) \@n

(I poup|0) =™ — 1
Compressing both sides distills the entanglement

y&»ﬁq” — (“)0> %_|1]>)¢Q11u
EPR states

entropy
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Mixed state entanglement

Not as straightforward

Definition. A bipartite state p*” is separable if

Zp ) Vz) (Vala @ [2) (Vx| B

Separable states are a convex subset of the set of all states

Separable
Definition.

everything else is
called entangled.

Given a description of p™*”
Is it entangled? (NP-hard - Gurvits 2002)
How entangled is it? (Entanglement measures)

Is it far from any separable state? (easy! - this talk)
Main tool: recently discovered properties of quantum entropy

Pirsa: 12030092 Page 9/30



Pirsa: 12030092

Some famous entanglement measures

Distillable entanglement

how many pure EPR pairs can | produce from /)fff'}",» ?
(related to quantum error-correction and channel capacity)

Entanglement cost
®n
How much pure entanglement needed to create p 4 5 ?

Relative entropy of entanglement

Er(p™P) = min D(p|o)

agcSkEP

Separable
(o)

D(pllo) = Trp(log p — log o)
Squashed entanglement
Esq(p*?) = inf {31(A; B|C) : Trc p*PC = p"*}

guantum conditional mutual information

Page 10/30



Quantum mutual information

H(A) [ H(13)

Operational meanings: measures correlations, channel capacities

Function of bipartite density matrices pan
I(A;B) = H(A) + H(B) — H(AB)

Von Neumann entropy

H(A) = —Trpalogy pa

Characterizes product states

[(A B) = () < PAB = PA X PB

[(A; B) =~ 0 = approximately a product

48> ] ey
: —PAB — PA X P hfi1 ™= LKV e
( ) ) = 9 H/ AB PA [BHI = > singular values(Y)
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Trace distance as distinguishability measure
Suppose given one of the states p, o but don’'t know which

p7 % measurement\ Pr{declarep|p} = TrMp

with equal
M, I-M
probability ah J

Pr{declarec |} = Tr(I — M)o
0<M<I

| I
Pr{correct} = EPr{(lo(:lm'e plpt+ QPI'{(l(‘.(‘.]H.I'(‘,(T o}

11
:§+§pww—@l

2%, = 3l 7l

1 1
[ma.x Pr{correct} = 5 + in - 0||1]

Measures optimal bias, optimized over all measurements.
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Quantum conditional mutual information
[(A; B|C) = H(AC) + H(BC) — H(ABC) — H(C)

A no interpretation as an average

H(A|C)+ H(B|C') — H(AB|C)
Q Operational relevance only found recently

state redistribution problem (Devetak & Yard)
(/\: B|C') > 0 nontrivial to prove (Lieb & Ruskai '72)

Characterizes conditional independence

I[(A;B|C) =0<4= A—(C — B (Haydenetal)
Unlike classical, approximate version unclear (ibinson et al.)
[ Does I(A; B|C) =~ 0 = pacp ~ Markov chain?? J

We'll see I(A; B|C) ~ 0 = pap ~ separable
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Measuring entanglement with norms

Separable

Distance to the set of separable states: o

lp = ol

”/).-113 o Sl‘:l).-'lﬂ” — Illill ||/).-\H o O_:“’)’H
rr-“""i"S]".l’-““

where SEPA? is the set of separable states on AB

p"" is separable = [|p*? — SEP*?| =0

But | - |1 is too strong! Weaker norm maximizes over local measurements

@p —o| =2 max TrM (p — O')J

where M satisfies certain locality constraints.
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Local measurements

@p — ol =2 max TrM(p — (T)J

i ™

b—clto) M-S x.ov

. J [

A r m (z,y)€S n
%[ declare p ) z X, =1, ZYU =],

P or U_W\” (x,y) € .S'j o y=1
B 2" Y S c{l,..., m} x {1,..., n}

7 o0 C
4 (Ip = olocc]

'

P or o

]3 - {}/y|:r:} '

.

|1 =1 lcoce = Lo = V153

[Matthews, Wehner & Winter]
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Hierarchy of separability criteria

AB

A symmetric k-extension of p"” is a state on AB; - - - B; such that

AB

) " ABq- By
P =Irp,..p p" ==t

symmetric

Gives a hierachy of conditions satisifed by separable states:

2-extendible

P N

\B Ao B . A o B o B
g = E Py @py = Trp,..p, E Py QP Qp*
X

A

Complete: turns out every entangled state fails some test

' entangled = p"? not k-extendible Jk
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Hierarchy of separability criteria

AB

A symmetric k-extension of p"” is a state on AB; - - - B; such that

AB . ABy- By
P =T By B P —

symmetric

Gives a hierachy of conditions satisifed by separable states:

2-extendible
3-extendible

P e

AB A - B . A~ By~ )
Pt = E Px®@py = Trp,...p, E PrRpPy' R+ &
X

A

Complete: turns out every entangled state fails som

' entangled = p"? not k-extendible Jk
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Hierarchy of separability criteria

AB

A symmetric k-extension of p"” is a state on AB; - - - B; such that

AB . ABy By
P = Tl By---Bp P _]v_",

symmetric

Gives a hierachy of conditions satisifed by separable states:

2-extendible
3-extendible

Separable

\B A - B . A B o p
PP =) popl = Trgpp ) plop' @6
X

A

Complete: turns out every entangled state fails som

' entangled = p"*? not k-extendible Jk
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Algorithm for separability?

To show that
e /P is separable, find a k-extension for some k
o /P is entangled, show some k-extension doesn'’t exist

Problem: Might have to check infinitely many k

Separable

€

Weak membership problem: given p*# and ¢ > 0, decide if

o /P is separable
/)/\B . SEPABH 2 ¢
with the promise that only one can happen.
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Didn’t you say this was NP-hard?

Separable

e Gurvits '02: NP-hard if 1 /e = exp(a, b)
e Gharibean '08: NP-hard if 1/¢ = poly(a, b)
e What if 1/¢ = polylog(a, b) (where it takes quasipoly time)?

This would give quasipolynomial-time algorithm for SAT
which is believed to require exponential time (mpagiiazzo & Paturi ‘99)

But how do we prove the de Finetti bound? (lots of information theory)
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Squashed entanglement
E,,.q(p“””) = inf{%l(A: B|C) Tr(-/)’”“' _ /)"”‘}

H(A) -~ T~ H(B)

;."/‘l' f‘} ")

\\ [(A:B|C)=H(AC)+ H(BC) - H(C) - H(ABC)

A
/\ \/ — H(A|C) + H(B|C) — H(AB|C)
~ < / [(A: BC) — I(A:C)

)}I(i}

Seems hard to compute in general (no known bound on ¢)

\

Yet it has nice properties: normalized & monogamous
Eg(p*?) <loga, Ey(p"*'"2) > Eq(p"') + Eq(p""?)
Only recently, we showed that it is faithful
Ey (separable) = 0 easy, but E,(entangled) > 0 hard!
(so in fact it is NP-hard to compute!)
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New lower bound on I(A;BIC)

Proof that E,(separable) = 0:

If '8 separable, then choose extension with ¢ < a*b?

‘iB( Z P ><\|(

Then E,, = I(A: B|C) = z p(X)(prepB) = 0.

Ey(entangled) > 0 hard since unclear if achieved for finite c.

Follows from new bound [Brandao, Christandl, Yard (2010)]

I(A; B|C) > const x || —

Independent of extension and of dimension! Further implies

Eg (o ABY > const x [|p? SEP’”;H

which immediately gives Eg (entangled) > 0
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Some consequences

stronger subadditivity

strong additivity /(A; B|C) > 0 [Lieb & Ruskai '73]
I(A;B|C) = 0 implies p? separable (Hayden, Josza, Petz & winter 03]
It was an open question whether this held approximately

We now know /(A; B|C) ~ 0 implies |

/)/\B - SEPABH ~ O
So far only negative results [Ibinson, Linden,Winter]

one-line proof of de Finetti theorem for n-extendible p*#

log |A| > Eg(p"8") > nEy(p*?) > const x n|p** — SEPY

2
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Follows from chain of new inequalities

MABKHszmmﬂ“W—immmw“)zDMMw“ﬂzqut4mmv
C

Dgiobal local = optimal error rate for distinguishing p°/}; from SEP with
one-sided error using global or local measurements:

I srnlaras on . S ST RPN a—Dn
Pr{declare p%’, | some separable state} < 2

N

Pr{declare p%% | p35} — 1

Proof uses several recent results in quantum information theory:

Operational interpretations:
of I(A;BIC) as optimal communication rate (Devetak & Yard), and

: | .
/fgl(,I,éll(/)""lg) = lim — min D(p”"||o)

n—oo N oceSEP
(Brandao & Plenio) Regularized relative
entropy of entanglement

Separable
a

D(plle) = Trp(log p — log o)
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Topological entanglement entropy
[Kitaev & Preskill, Levin & Wen]

Q°

Gapped 2D system in ground state
Region A large w.r.t. correlation length ¢ ~ 1/gap

HA)= oL -~ blogD + -
S~~~ A
boundary term opn0l0gical term
e ‘total quantum dimension: D = /> d,?,\ quantum dimension of
quasiparticle, or anyon,
e b =# boundary components of type |

log D = ‘topological entanglement entropy’
log D > 0 signature of topological order
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Topological entanglement entropy

J=—-H(A)—H(B)—-H(C)—-HABC)+ H(AB)+ H(BC)+ H(AC)
Kitaev & Preskill Levin & Wen

B/\
D /l\(
{7

J(A, B,C) 2%y = J(A,B,C) = I(A; B|C)

Assume general form H(A) = aL — by
Cancel boundary terms: (integer) xy = J(A, B, C)

B,
K&P: TQFT calculation gives v = log D
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What can we say about topological entropy?

2y = J(A, B,C) = I(A; B|C)

Assuming gap,  max Te(X ©Y)(pas —pa @ ps) — 0 (Hastings)
Assuming only /(A; B|C) ~ 0, can say |pap — SEP| ~ 0
Falls short when AN B £ (: I(A; B|C) =2l +~ + - -
Possible interpretation for boundary or CFT states?

- H(A) ~ area(A) although I(A; B|C) finite [Casini & Huerta]

- lack of conformally-invariant tensor product structure makes this hard
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Quantum channels

Alice Bob
> —0—_N 8- —p-
B A— ~ B it h 8 N 8 -
inpu outpu . | D,
Reversible interaction with & —9— N -0 i

iInaccessible environment

Quantum capacity = max #£enceded qubils g the fundamental

#transmissions

bound on the possibility to perform quantum error correction.

Open question: find formula for Q.
Only have bounds in general.
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Superactivation of Q

26 SEPTEMBER 2008 VOL 321 SCIENCE www.sclencemaq.orq \) iy ‘ TR BY @l e

JRTE el Rendl
Quantum Communication with E D
Zero-Capacity Channels = e B = S =%
Graeme Smith"* and Jon Yard® ) ‘:., > 'D_—)

There are pairs N, N5 of quantum channels with
Q(N]) = Q(Ng) = 0, (J(N] X Ng) > 0

Quantum communication with Gaussian channels
of zero quantum capacity

Graeme Smith'*, John A, Smolin' and Jon Yard?

nawure i
phnmmcs

Formula for capacity when assisted by zero-capacity symmetric channels
(JiIHHihH‘(I — Inax [(11 [))|(') — I(.l E (f)

PAC

also involves optimizing over arbitrarily large C
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Thanks for listening

Questions:
Dimension bound for squashed entanglement?
Can we study entanglement without obvious ¢ structure?
(e.g. product states make sense for nonabelian anyons, despite this)
(e.g. relative entropy exists for boundary states, despite lack of
well-defined entropies [Casini & Huerta))
Max-version of squashed entanglement [Oppenheim]?

(I(A; B) small but 1(A; B|(") large might be more relevant for
studying 7 information-theoretically)

Structure of the global state?

Negative result: min D(pacpl|lo) = 1(A; B|C'), [Ibinson, Linden & Winter]
TA-C—-B

I

Regularized version? Suitable norm?

Insights for understanding channel capacity?

Pirsa: 12030092 Page 30/30



