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Classical and Dynamical Systems

Atheoretical Adumbration
of a Classical System

e

something one can interact with
bears quantities: magnitudes measurable by
apparatuses exploiting particular couplings

¥

© in states: consistent aggregations of values for
all its quantities, sufficient for id at a moment
© evolves: changes state (in general) over time

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 4 / 48
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Classical and Dynamical Systems

Atheoretical Characterization
of a Dynamical System

space of states set of identifiable states

quantities scalar/tensorial fields on space of states

evolutions family of vector fields ( “kinematically
possible” )

isolation distinguished vector field ( “free kinematical
vector field")

comprises representations of all physically significant
structure required to investigate classical systems
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Classical and Dynamical Systems

Physical Meaning of Elements
of a Dynamical System

quantities individuate and identify states; define
topology, differential structure on space of
states

space of states arcwise-connected — all states of ‘“‘same
sys’; dn (even or o©), minimum quantities
needed to individuate and identify states

evolutions “first-order differential equations appropriate
for classical systems”

isolation “we know how to shield system”

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 6 / 48
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Why “Atheoretical”

no claim or interpretation depends on
fixation of framework or theory (e.g., no
“configuration’” or “momentum”
distinguished)

reaches down to, represents structure at
very deep level of our understanding of
classical systems

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 7 / 48
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Possible Interactions and the Structure of the Space of States

® Possible Interactions and the Structure
of the Space of States
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Possible Interactions and the Structure of the Space of States

Ends

© recovery of intrinsic geometry of space of
kinematically possible vector fields
( “evolutions’)

@ intrinsic construction of configuration space
© intrinsic characterization of space of states’
differential topology: tangent bundle of

configuration space

February 15, 2012 9 / 48
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Possible Interactions and the Structure of the Space of States

Means

© characterize family of possible
Interactions

@ intrinsic differentiation of configurative
from velocital quantities

© derive intrinsic geometry of family of
possible interactions

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 10 / 48
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Possible Interactions and the Structure of the Space of States

Configurative Quantities?

» where does configuration space come from?
(not handed down by Prometheus with fire)

» why do we need it? (probing dynamical
systems gets one only space of states and
kinematically possible vector fields)

» what, e.g., to choose as configuration for

Lagrangian formulation of electromagnetic
field, E or B? why?

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 11 / 48
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Possible Interactions and the Structure of the Space of States

Example: Free Newtonian Particle

e parametrize space of states by x and v (“natural
coords’)

e equations of motion:
X = V

O

I

v

o kinematical vector field: (v. 0) (“free kinematical
field”)
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Possible Interactions and the Structure of the Space of States

Example: Hit Newtonian Particle
with a Stick

o equations of motion:

X \ %

j 2

' stick

o kinematical vector field: (v, F.)
( “kinematically possible vector field)
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Possible Interactions and the Structure of the Space of States

empirical observation

classical systems ‘‘couple’” to external
systems (the environment) only by way of
the equation of motion for velocities;
equation of motion for position never
changes

roughly: velocities need not evolve continuously as
iInteractions turn on and off—can happen as
abruptly as one likes; position always evolves
continuously

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 14 / 48
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Possible Interactions and the Structure of the Space of States

Example: Free Electromagnetic Field

o parametrize space of states by V. -B. B, V - E. E
( “natural coords’)

e equations of motion (Maxwell's Equations):

V- B =0
B = -V x E
V - E = 0
E -V < B

o kinematical vector field: (0, — NV < E. 0, V x B)
( free kinematical field”)

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 15 / 48

Pirsa: 12020155 Page 21/103



Possible Interactions and the Structure of the Space of States

empirical observation

again, only half the quantities
directly “couple’ to external
systems; the other half don't

( “couple only to second-order’ )

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 17 / 48
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Possible Interactions and the Structure of the Space of States

Configurative Quantities

A brute fact about the physical world

for all classical systems, only some physical quantities can
be “directly pushed around via allowed interactions’,
whereas others can't

One generalizes
configurative quantities are those one cannot directly push
around

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 18 / 48
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Possible Interactions and the Structure of the Space of States

Kinematical Constraints

X = V
Is a kinematical constraint:
theories don't predict them; they

require them as a precondition for
their own applicability

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 19 / 48
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Possible Interactions and the Structure of the Space of States

The Form of Allowed Interactions

existence of kinematical constraint implies
difference of two kinematically possible vector
fields always has special form:

o (V, Fo) — (v, F,) = (0, Fo — F )
o “MFs — MF," = ((0, 0). (p2 — pi. 32 — 1))

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 20 / 48
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Possible Interactions and the Structure of the Space of States

Interaction Vector Fields

difference-vectors of allowed evolutions
point only in “velocital directions’”, encode
only rates of change for velocital quantities:
accelerations

T hus
a vector field of the form (0O, F') represents a
possible interaction

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 21 / 48
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Possible Interactions and the Structure of the Space of States

The Geometry of Allowed Interactions
and Kinematically Possible VVector
Fields

© (0, F )+ (0, F5) again an interaction vector
field: vector space

@ (v, F,)+ (0, Fy) again a kinematically
possible vector field: affine space modeled on
Interactions

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 22 / 48
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Possible Interactions and the Structure of the Space of States

Configuration Space

© divide space of states into equivalence classes:
“Is connected by an interaction vector field to”

@ by construction, all points in equivalence class
have same configuration

© space of equivalence classes is configuration
space

@ in natural way, point of space of states
becomes point of configuration space plus
tangent vector at that point (= velocity)

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 23 / 48
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Possible Interactions and the Structure of the Space of States

Physical Meaning of Configuration
Space

surprising

what counts as “‘configuration’” for a
classical system is not intrinsic to the
system, but rather depends on the
structure of its family of allowed
iInteractions with other systems
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Possible Interactions and the Structure of the Space of States

The Space of States Is
the Tangent Bundle of Configuration
Space

© fix point of configuration space

@ free kinematical vector field at that point takes
all possible velocity values

© —> natural, one-to-one, onto mapping of space
of states to tangent bundle of configuration

space
(theorem of R. Geroch)
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Classical Mechanics Is Lagrangian

© Classical Mechanics Is Lagrangian
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Classical Mechanics Is Lagrangian

The math starts to get hard.
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Classical Mechanics Is Lagrangian

Ends

Classical Systems Are Lagrangian structures
of an abstract dynamical system, when
pushed to the tangent bundle, allow one
to construct a Lagrangian representation

Lagrangian Systems Are Classical a
Lagrangian representation of a classical
system, in the most minimal sense,
allows one to construct its abstract
dynamical representation

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 28 / 48
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Classical Mechanics Is Lagrangian

Means

exploit intrinsic geometry of tangent bundles

© distinguished vector space of vector fields, “vertical
vectors'’', possible generalized forces in Lagrangian
mechanics (encoded in fiber-bundle structure)

@ distinguished affine space of vector fields modeled on
vertical vector fields, possible solutions to
Euler-Lagrange equation (encodes almost-tangent
structure, J%y,)
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Classical Mechanics Is Lagrangian

Almost-Tangent Structure

a smooth tensor field .J9;, on a 2n-dimensional manifold N
satisfying the following conditions:

© considered as a linear operator on the tangent planes
of N, .J“, has rank n everywhere
@ J“,J", =0

It is not difficult to see that, as a linear operator, the
range of .J“, equals its kernel, an n-dimensional
distribution on N

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 30 / 48
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Classical Mechanics Is Lagrangian

Lagrangian Vector Fields

second-order vector fields are tangent to lifts of
curves from base to tangent bundle; they form an
affine space over vector space of vertical vector

fields

T heorem

Lagrangian vector fields are always second-order vector
fields.
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Classical Mechanics Is Lagrangian

The Euler-Lagrange Equation

To formulate Euler-Lagrange equation in
invariant, geometrical terms, for Lagrangian
L. with solution &,

Lo( "W L) — ol = 0

one needs (and only needs) almost-tangent
structure, .JY,

implicitly contains Lagrangian 2-form VYV, (J",V, L)

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 31 / 48
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Classical Mechanics Is Lagrangian

Lagrangian Vector Fields
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Classical Mechanics Is Lagrangian

Lagrangian kinematical constraints

© knowledge of family of second-order vector
fields allows reconstruction of .J9,

@ ./’ encodes classical kinematical constraint

X = V:
% o
J (rvu([/' —= 0
1 p R _
S Vv = (dgi)a
Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 33 / 48
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Classical Mechanics Is Lagrangian

The Euler-Lagrange Equation
from Dynamical System Structure

using canonical isomorphism of dynamical space of
states with tangent bundle over configuration
space:

@ push kinematical vector fields over = affine space of
Lagrangian vector fields (same physical meaning)

@ push interaction vector fields over = vector space of
vertical vector fields (same physical meaning)

@ — JY,

Classical Systems Are Lagrangian |

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 34 / 48
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Classical Mechanics Is Lagrangian

Dynamical System Structure
from the Euler-Lagrange Equation

an Euler-Lagrange operator is a (non-linear)
functional that takes a scalar field to its associated
Lagrangian vector field on a manifold that
supports the formulation of the Euler-Lagrange
equation (has proper .J“)

Theorem (Curiel)

A manifold has an Euler-Lagrange operator if and only if
it is a tangent bundle; the operator’'s action allows one to
recover the space over which it is the tangent bundle.

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 35 / 48
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Classical Mechanics Is Lagrangian

using canonical isomorphism of tangent bundle over
configuration space with dynamical space of states:

@ push affine space of Lagrangian vector fields over =
kinematical vector fields (same physical meaning)

@ push vertical vector fields over = vector space of
interaction vector fields (same physical meaning)

Lagrangian Systems Are Classical

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 36 / 48
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Classical Mechanics Is Lagrangian

Physical Meaning of Structures

almost-tangent structure encodes kinematical
constraint x — v, and affine space structure of
solutions (kinematics)

Lagrangian 2-form ensures uniqueness and existence of
solutions, when symplectic (kinematics)

Lagrangian /. encodes dynamical evolution; ensures
Lagrangian 2-form is symplectic, when regular
(mixture of kinematics and dynamics)

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 37 / 48
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Classical Mechanics Is Not Hamiltonian

o Classical Mechanics Is Not Hamiltonian
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Classical Mechanics Is Not Hamiltonian

Hamilton’s Equation

To formulate Hamilton’s equation in
Invariant, geometrical terms,

Sz.(flivler' — é'((
one needs (and only needs):

ab

© fixed, canonical symplectic structure, 2

@ Hamiltonian H

Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 39 / 48
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Classical Mechanics Is Not Hamiltonian

Kinematical Constraints in
Hamiltonian Mechanics

recall Lagrangian Mechanics, “half of canonical
quantities are dynamical derivatives of other half’;
iIn Hamiltonian mechanics, canonical quantities
must satisfy Poisson Brackets

{(//- (/_j} = 0
{(/,‘. [)‘/'} (\)"
1P P}

tJ
0

not necessary that q = p
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Classical Mechanics Is Not Hamiltonian

Closest Analogue to Lagrangian
Theorem

T heorem

Fix an even-dimensional, orientable manifold with a vector space of
vector fields on it and a Poisson bracket structure. Then the Poisson
bracket arises from a symplectic structure and the vector space
includes all and only solutions to Hamilton’'s equation formulated with
it if and only if the vector space spans the tangent planes, and the
manifold has a group of coordinate systems whose coordinate
functions satisfy the canonical Poission bracket relations, and whose
associated coordinate vector fields leave the vector space invariant
under the action of the Lie bracket.
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Classical Mechanics Is Not Hamiltonian

Physical Meaning of Structures

canonical symplectic structure ensures
existence and uniqueness of solutions;
encodes kinematical constraints (Poisson
brackets); ensures conservation of energy
(kinematics)

Hamiltonian // encodes dynamical evolution
(dynamics)
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Lagrangian and Hamiltonian Representations

® How Lagrangian and Hamiltonian
Mechanics Respectively Represent
Classical Systems
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Lagrangian and Hamiltonian Representations

Four Deep Questions

O If Hamiltonian mechanics does not respect the kinematical
constraints intrinsic to dynamical systems, how can it provide
adequate representations of classical systems (e.g., the simple
harmonic oscillator)?

@ Why does Lagrangian mechanics always respect the constraints
of dynamical systems?

© Because we know the Hamiltonian and Lagrangian formulations
to be related by the Legendre transform, what happens in the
passage from Lagrangian to Hamiltonian mechanics that
expunges respect for those constraints?

Q Is any structure in Hamiltonian mechanics isomorphic to any
structure in Lagrangian mechanics?
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Lagrangian and Hamiltonian Representations

How Hamiltonian Mechanics
Respects Classical Kinematical
Constraints
by ad hoc fiat

demand that only Hamiltonians // used be quadratic in
momenta, with no other momental dependence; then

) H
AP’

Vi =a i =
Is an identity

justifiable by nothing intrinsic to the theory, not a
kinematical constraint
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Lagrangian and Hamiltonian Representations

Why Lagrangian Mechanics Always
Respects Classical Kinematical
Constraints

built in from the start

© standard variational problem not solvable
unless kinematical constraint imposed from the
start (hidden by usual formulation)

@ geometric formulation of Euler-Lagrange

equation requires the kinematical constraints
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Lagrangian and Hamiltonian Representations

Legendre Transform

@ Legendre transform is (in special cases)
diffeomorphism of tangent bundle to phase space

@ does not map second-order vector fields to
Hamiltonian vector fields, not even to affine sub-space

of them
does not preserve kinematical constraints

©

IS not an isomorphism of any kinematical structure

©
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Four Deep Questions
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adequate representations of classical systems (e.g., the simple
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@ Why does Lagrangian mechanics always respect the constraints
of dynamical systems?

© Because we know the Hamiltonian and Lagrangian formulations
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