Title: QF Meeting - Erik Curiel Date: Feb 16, 2012 11:00 AM URL: http://pirsa.org/12020155 Abstract: Pirsa: 12020155 Page 1/103 #### **Outline** - 1 Classical and Dynamical Systems - 2 Possible Interactions and the Structure of the Space of States - 3 Classical Mechanics Is Lagrangian - 4 Classical Mechanics Is Not Hamiltonian - **5** How Lagrangian and Hamiltonian Mechanics Respectively Represent Classical Systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 2 / 48 Pirsa: 12020155 #### **Outline** - 1 Classical and Dynamical Systems - 2 Possible Interactions and the Structure of the Space of States - Classical Mechanics Is Lagrangian - 4 Classical Mechanics Is Not Hamiltonian - **5** How Lagrangian and Hamiltonian Mechanics Respectively Represent Classical Systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 2 / 48 Pirsa: 12020155 #### **Outline** - Classical and Dynamical Systems - 2 Possible Interactions and the Structure of the Space of States - Classical Mechanics Is Lagrangian - 4 Classical Mechanics Is Not Hamiltonian - **5** How Lagrangian and Hamiltonian Mechanics Respectively Represent Classical Systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 2 / 48 Pirsa: 12020155 Page 4/103 ### Classical and Dynamical Systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Atheoretical Adumbration of a Classical System - something one can interact with - bears quantities: magnitudes measurable by apparatuses exploiting particular couplings - in states: consistent aggregations of values for all its quantities, sufficient for id at a moment - evolves: changes state (in general) over time Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 vector field") # Atheoretical Characterization of a Dynamical System comprises representations of all physically significant structure required to investigate classical systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 5 / 48 Pirsa: 12020155 Page 7/103 # Atheoretical Characterization of a Dynamical System vector field") comprises representations of all physically significant structure required to investigate classical systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 5 / 48 Pirsa: 12020155 Page 8/103 ## Physical Meaning of Elements of a Dynamical System quantities individuate and identify states; define topology, differential structure on space of states space of states arcwise-connected = all states of "same sys"; $\exists n$ (even or ∞), minimum quantities needed to individuate and identify states evolutions "first-order differential equations appropriate for classical systems" isolation "we know how to shield system" Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 #### Why "Atheoretical" no claim or interpretation depends on fixation of framework or theory (e.g., no "configuration" or "momentum" distinguished) reaches down to, represents structure at very deep level of our understanding of classical systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 7 / 48 Pirsa: 12020155 Page 10/103 Possible Interactions and the Structure of the Space of States Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 #### **Ends** - recovery of intrinsic geometry of space of kinematically possible vector fields ("evolutions") - intrinsic construction of configuration space - intrinsic characterization of space of states' differential topology: tangent bundle of configuration space Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 9 / 48 Pirsa: 12020155 #### Means - characterize family of possible interactions - intrinsic differentiation of configurative from velocital quantities - derive intrinsic geometry of family of possible interactions Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 10 / 48 Pirsa: 12020155 #### Means - characterize family of possible interactions - intrinsic differentiation of configurative from velocital quantities - derive intrinsic geometry of family of possible interactions Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 10 / 48 Pirsa: 12020155 Page 14/103 #### **Configurative Quantities?** - where does configuration space come from? (not handed down by Prometheus with fire) - why do we need it? (probing dynamical systems gets one only space of states and kinematically possible vector fields) - what, e.g., to choose as configuration for Lagrangian formulation of electromagnetic field, ${f E}$ or ${f B}$? why? Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 11 / 48 Pirsa: 12020155 Page 15/103 #### **Configurative Quantities?** - where does configuration space come from? (not handed down by Prometheus with fire) - why do we need it? (probing dynamical systems gets one only space of states and kinematically possible vector fields) - what, e.g., to choose as configuration for Lagrangian formulation of electromagnetic field, ${f E}$ or ${f B}$? why? Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 11 / 48 Pirsa: 12020155 Page 16/103 #### **Example: Free Newtonian Particle** - \bullet parametrize space of states by ${\bf x}$ and ${\bf v}$ (''natural coords'') - equations of motion: $$\dot{\mathbf{x}} = \mathbf{v}$$ $$\dot{\mathbf{v}} = \mathbf{0}$$ • kinematical vector field: $(\mathbf{v}, \mathbf{0})$ ("free kinematical field") Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Example: Hit Newtonian Particle with a Stick equations of motion: $$\dot{\mathbf{x}} = \mathbf{v}$$ $\dot{\mathbf{v}} = \mathbf{F}_{ ext{stick}}$ • kinematical vector field: $(\mathbf{v}, \mathbf{F}_{\text{\tiny stick}})$ ("kinematically possible vector field") Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ### empirical observation classical systems "couple" to external systems (the environment) only by way of the equation of motion for velocities; equation of motion for position never changes roughly: velocities need not evolve continuously as interactions turn on and off—can happen as abruptly as one likes; position always evolves continuously Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 14 / 48 Pirsa: 12020155 Page 19/103 Pirsa: 12020155 #### **Example: Free Electromagnetic Field** - parametrize space of states by $\nabla \cdot \mathbf{B}, \ \dot{\mathbf{B}}, \ \dot{\mathbf{C}} \cdot \dot{\mathbf{E}}, \ \dot{\mathbf{E}}$ ("natural coords") - equations of motion (Maxwell's Equations): $$\nabla \cdot \mathbf{B} = 0$$ $$\dot{\mathbf{B}} = -\nabla \times \mathbf{E}$$ $$\nabla \cdot \mathbf{E} = 0$$ $$\dot{\mathbf{E}} = \nabla \times \mathbf{B}$$ • kinematical vector field: $(0, -\nabla \times \mathbf{E}, 0, \nabla \times \mathbf{B})$ ("free kinematical field") Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## empirical observation again, only half the quantities directly "couple" to external systems; the other half don't ("couple only to second-order") Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 17 / 48 Pirsa: 12020155 Page 22/103 #### **Configurative Quantities** #### A brute fact about the physical world for all classical systems, only some physical quantities can be "directly pushed around via allowed interactions", whereas others can't #### One generalizes configurative quantities are those one cannot directly push around Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 18 / 48 Pirsa: 12020155 Page 23/103 #### **Configurative Quantities** #### A brute fact about the physical world for all classical systems, only some physical quantities can be "directly pushed around via allowed interactions", whereas others can't #### One generalizes configurative quantities are those one cannot directly push around Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 18 / 48 Pirsa: 12020155 Page 24/103 #### **Kinematical Constraints** $$\dot{\mathbf{x}} = \mathbf{v}$$ is a kinematical constraint: theories don't predict them; they require them as a precondition for their own applicability Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 19 / 48 Pirsa: 12020155 #### The Form of Allowed Interactions existence of kinematical constraint implies difference of two kinematically possible vector fields always has special form: • $$(\mathbf{v}, \, \mathbf{F}_2) - (\mathbf{v}, \, \mathbf{F}_1) = (\mathbf{0}, \, \mathbf{F}_2 - \mathbf{F}_1)$$ • "MF₂ - MF₁" = $$((0, \mathbf{0}), (\rho_2 - \rho_1, \mathbf{j}_2 - \mathbf{j}_1))$$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 #### The Form of Allowed Interactions existence of kinematical constraint implies difference of two kinematically possible vector fields always has special form: • $$(\mathbf{v}, \, \mathbf{F}_2) - (\mathbf{v}, \, \mathbf{F}_1) = (\mathbf{0}, \, \mathbf{F}_2 - \mathbf{F}_1)$$ • "MF₂ - MF₁" = $$((0, \mathbf{0}), (\rho_2 - \rho_1, \mathbf{j}_2 - \mathbf{j}_1))$$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 #### Interaction Vector Fields difference-vectors of allowed evolutions point only in "velocital directions", encode only rates of change for velocital quantities: accelerations #### **Thus** a vector field of the form $(0, \mathbf{F})$ represents a **possible interaction** Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 21 / 48 Pirsa: 12020155 Page 28/103 #### **Interaction Vector Fields** difference-vectors of allowed evolutions point only in "velocital directions", encode only rates of change for velocital quantities: accelerations #### **Thus** a vector field of the form $(0, \mathbf{F})$ represents a **possible interaction** Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 21 / 48 Pirsa: 12020155 Page 29/103 Pirsa: 12020155 Page 30/103 # The Geometry of Allowed Interactions and Kinematically Possible Vector Fields - $(\mathbf{0}, \mathbf{F}_1) + (\mathbf{0}, \mathbf{F}_2)$ again an interaction vector field: **vector space** - $oldsymbol{v}$ $(\mathbf{v}, \mathbf{F}_1) + (\mathbf{0}, \mathbf{F}_2)$ again a kinematically possible vector field: **affine space** modeled on interactions Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 # The Geometry of Allowed Interactions and Kinematically Possible Vector Fields - $(\mathbf{0}, \mathbf{F}_1) + (\mathbf{0}, \mathbf{F}_2)$ again an interaction vector field: **vector space** - $oldsymbol{v}$ $(\mathbf{v}, \mathbf{F}_1) + (\mathbf{0}, \mathbf{F}_2)$ again a kinematically possible vector field: **affine space** modeled on interactions Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 - divide space of states into equivalence classes: "is connected by an interaction vector field to" - by construction, all points in equivalence class have same configuration - space of equivalence classes is configuration space - in natural way, point of space of states becomes point of configuration space plus tangent vector at that point (= velocity) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 23 / 48 Pirsa: 12020155 Page 33/103 - divide space of states into equivalence classes: "is connected by an interaction vector field to" - by construction, all points in equivalence class have same configuration - space of equivalence classes is configuration space - in natural way, point of space of becomes point of configuration s tangent vector at that point (=) Erik Curiel (UWO) Lagrangian, Not Hamiltonian - divide space of states into equivalence classes: "is connected by an interaction vector field to" - by construction, all points in equivalence class have same configuration - space of equivalence classes is configuration space - in natural way, point of space of states becomes point of configuration space plus tangent vector at that point (= velocity) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 - divide space of states into equivalence classes: "is connected by an interaction vector field to" - by construction, all points in equivalence class have same configuration - space of equivalence classes is configuration space - in natural way, point of space of states becomes point of configuration space plus tangent vector at that point (= velocity) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 23 / 48 Pirsa: 12020155 Page 36/103 Possible Interactions and the Structure of the Space of States ## Physical Meaning of Configuration Space ## surprising what counts as "configuration" for a classical system is not intrinsic to the system, but rather depends on the structure of its family of allowed interactions with other systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 24 / 48 Pirsa: 12020155 Page 37/103 Possible Interactions and the Structure of the Space of States # The Space of States Is the Tangent Bundle of Configuration Space - fix point of configuration space - free kinematical vector field at that point takes all possible velocity values - natural, one-to-one, onto mapping of space of states to tangent bundle of configuration space (theorem of R. Geroch) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Classical Mechanics Is Lagrangian Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 26 / 48 Pirsa: 12020155 Page 39/103 ## The math starts to get hard. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 27 / 48 Pirsa: 12020155 Page 40/103 #### **Ends** Classical Systems Are Lagrangian structures of an abstract dynamical system, when pushed to the tangent bundle, allow one to construct a Lagrangian representation ## Lagrangian Systems Are Classical a Lagrangian representation of a classical system, in the most minimal sense, allows one to construct its abstract dynamical representation Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 28 / 48 Pirsa: 12020155 Page 41/103 #### Means #### exploit intrinsic geometry of tangent bundles - distinguished vector space of vector fields, "vertical vectors", possible generalized forces in Lagrangian mechanics (encoded in fiber-bundle structure) - 0 distinguished affine space of vector fields modeled on vertical vector fields, possible solutions to Euler-Lagrange equation (encodes almost-tangent structure, J^a_b) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Pirsa: 12020155 Pirsa: 12020155 Page 44/103 Pirsa: 12020155 Page 45/103 ## **Almost-Tangent Structure** a smooth tensor field $J^a{}_b$ on a 2n-dimensional manifold ${\mathcal N}$ satisfying the following conditions: - of \mathbb{N} , $J^a{}_b$ has rank n everywhere - $J^a{}_n J^n{}_b = 0$ It is not difficult to see that, as a linear operator, the range of $J^a{}_b$ equals its kernel, an n-dimensional distribution on $\mathbb N$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## **Almost-Tangent Structure** a smooth tensor field $J^a{}_b$ on a 2n-dimensional manifold ${\mathcal N}$ satisfying the following conditions: - of \mathbb{N} , $J^a{}_b$ has rank n everywhere - $J^a{}_n J^n{}_b = 0$ It is not difficult to see that, as a linear operator, the range of $J^a{}_b$ equals its kernel, an n-dimensional distribution on $\mathbb N$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Pirsa: 12020155 ## Lagrangian Vector Fields **second-order vector fields** are tangent to lifts of curves from base to tangent bundle; they form an affine space over vector space of vertical vector fields #### **Theorem** Lagrangian vector fields are always second-order vector fields. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 32 / 48 Pirsa: 12020155 Page 49/103 ## **Almost-Tangent Structure** a smooth tensor field $J^a{}_b$ on a 2n-dimensional manifold ${\mathcal N}$ satisfying the following conditions: - of \mathbb{N} , $J^a{}_b$ has rank n everywhere - $J^a{}_n J^n{}_b = 0$ It is not difficult to see that, as a linear operator, the range of $J^a{}_b$ equals its kernel, an n-dimensional distribution on $\mathbb N$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## **Almost-Tangent Structure** a smooth tensor field $J^a{}_b$ on a 2n-dimensional manifold ${\mathcal N}$ satisfying the following conditions: - of \mathbb{N} , $J^a{}_b$ has rank n everywhere - $J^a{}_n J^n{}_b = 0$ It is not difficult to see that, as a linear operator, the range of $J^a{}_b$ equals its kernel, an n-dimensional distribution on $\mathbb N$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## The Euler-Lagrange Equation To formulate Euler-Lagrange equation in invariant, geometrical terms, for Lagrangian L with solution ξ , $$\mathcal{L}_{\xi}(J^n{}_a\nabla_n L) - \nabla_a L = 0$$ one needs (and only needs) almost-tangent structure, $J^{a}{}_{b}$ implicitly contains Lagrangian 2-form $abla_{[a}(J^n{}_{b]} abla_n L)$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 #### The Euler-Lagrange Equation To formulate Euler-Lagrange equation in invariant, geometrical terms, for Lagrangian L with solution ξ , $$\mathcal{L}_{\xi}(J^n{}_a\nabla_n L) - \nabla_a L = 0$$ one needs (and only needs) almost-tangent structure, $J^a{}_b$ implicitly contains Lagrangian 2-form $abla_{[a}(J^n{}_{b]} abla_n L)$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## The Euler-Lagrange Equation To formulate Euler-Lagrange equation in invariant, geometrical terms, for Lagrangian L with solution ξ , $$\mathcal{L}_{\xi}(J^n{}_a\nabla_n L) - \nabla_a L = 0$$ one needs (and only needs) almost-tangent structure, $J^a{}_b$ implicitly contains Lagrangian 2-form $abla_{[a}(J^n{}_{b]} abla_n L)$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Lagrangian Vector Fields **second-order vector fields** are tangent to lifts of curves from base to tangent bundle; they form an affine space over vector space of vertical vector fields #### **Theorem** Lagrangian vector fields are always second-order vector fields. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 32 / 48 Pirsa: 12020155 Page 55/103 ## Lagrangian kinematical constraints - knowledge of family of second-order vector fields allows reconstruction of $J^a{}_b$ - $J^a{}_b$ encodes classical kinematical constraint $\dot{\mathbf{x}} = \mathbf{v}$: $$J^n{}_a \nabla_n q_i = \mathbf{0}$$ $$J^n{}_a \nabla_n v_i = (\mathsf{d} q_i)_a$$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Lagrangian kinematical constraints - knowledge of family of second-order vector fields allows reconstruction of $J^a{}_b$ - $J^a{}_b$ encodes classical kinematical constraint $\dot{\mathbf{x}} = \mathbf{v}$: $$J^n{}_a \nabla_n q_i = \mathbf{0}$$ $$J^n{}_a \nabla_n v_i = (\mathsf{d} q_i)_a$$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## The Euler-Lagrange Equation from Dynamical System Structure using canonical isomorphism of dynamical space of states with tangent bundle over configuration space: - push kinematical vector fields over \Rightarrow affine space of Lagrangian vector fields (same physical meaning) - ② push interaction vector fields over ⇒ vector space of vertical vector fields (same physical meaning) - $\bullet \Longrightarrow J^{a}{}_{b}$ ## Classical Systems Are Lagrangian Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## The Euler-Lagrange Equation from Dynamical System Structure using canonical isomorphism of dynamical space of states with tangent bundle over configuration space: - push kinematical vector fields over \Rightarrow affine space of Lagrangian vector fields (same physical meaning) - ② push interaction vector fields over ⇒ vector space of vertical vector fields (same physical meaning) - $\bullet \Longrightarrow J^{a}{}_{b}$ ## Classical Systems Are Lagrangian Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Dynamical System Structure from the Euler-Lagrange Equation an **Euler-Lagrange operator** is a (non-linear) functional that takes a scalar field to its associated Lagrangian vector field on a manifold that supports the formulation of the Euler-Lagrange equation (has proper $J^a{}_b$) ## Theorem (Curiel) A manifold has an Euler-Lagrange operator if and only if it is a tangent bundle; the operator's action allows one to recover the space over which it is the tangent bundle. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Dynamical System Structure from the Euler-Lagrange Equation an **Euler-Lagrange operator** is a (non-linear) functional that takes a scalar field to its associated Lagrangian vector field on a manifold that supports the formulation of the Euler-Lagrange equation (has proper $J^a{}_b$) ## Theorem (Curiel) A manifold has an Euler-Lagrange operator if and only if it is a tangent bundle; the operator's action allows one to recover the space over which it is the tangent bundle. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Dynamical System Structure from the Euler-Lagrange Equation an **Euler-Lagrange operator** is a (non-linear) functional that takes a scalar field to its associated Lagrangian vector field on a manifold that supports the formulation of the Euler-Lagrange equation (has proper $J^a{}_b$) ## Theorem (Curiel) A manifold has an Euler-Lagrange operator if and only if it is a tangent bundle; the operator's action allows one to recover the space over which it is the tangent bundle. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 35 / 48 Pirsa: 12020155 Page 62/103 ## Dynamical System Structure from the Euler-Lagrange Equation an **Euler-Lagrange operator** is a (non-linear) functional that takes a scalar field to its associated Lagrangian vector field on a manifold that supports the formulation of the Euler-Lagrange equation (has proper $J^a{}_b$) ## Theorem (Curiel) A manifold has an Euler-Lagrange operator if and only if it is a tangent bundle; the operator's action allows one to recover the space over which it is the tangent bundle. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 using canonical isomorphism of tangent bundle over configuration space with dynamical space of states: - push affine space of Lagrangian vector fields over ⇒ kinematical vector fields (same physical meaning) - ② push vertical vector fields over ⇒ vector space of interaction vector fields (same physical meaning) ## Lagrangian Systems Are Classical Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 36 / 48 Pirsa: 12020155 Page 64/103 ## Physical Meaning of Structures almost-tangent structure encodes kinematical constraint $\dot{\mathbf{x}} = \mathbf{v}$, and affine space structure of solutions (kinematics) Lagrangian 2-form ensures uniqueness and existence of solutions, when symplectic (kinematics) Lagrangian L encodes dynamical evolution; ensures Lagrangian 2-form is symplectic, when regular (mixture of kinematics and dynamics) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Physical Meaning of Structures almost-tangent structure encodes kinematical constraint $\dot{\mathbf{x}} = \mathbf{v}$, and affine space structure of solutions (kinematics) Lagrangian 2-form ensures uniqueness and existence of solutions, when symplectic (kinematics) Lagrangian L encodes dynamical evolution; ensures Lagrangian 2-form is symplectic, when regular (mixture of kinematics and dynamics) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Classical Mechanics Is Not Hamiltonian Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 38 / 48 Pirsa: 12020155 Page 67/103 #### Hamilton's Equation To formulate Hamilton's equation in invariant, geometrical terms, $$\Omega^{an} \nabla_n H = \xi^a$$ one needs (and only needs): - fixed, canonical symplectic structure, Ω^{ab} - $oldsymbol{o}$ Hamiltonian H Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Kinematical Constraints in Hamiltonian Mechanics recall Lagrangian Mechanics, "half of canonical quantities are dynamical derivatives of other half"; in Hamiltonian mechanics, canonical quantities must satisfy **Poisson Brackets** $$\{q_i, q_j\} = 0$$ $\{q_i, p_j\} = \delta_{ij}$ $\{p_i, p_j\} = 0$ ## not necessary that $\dot{\mathbf{q}} = \mathbf{p}$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Kinematical Constraints in Hamiltonian Mechanics recall Lagrangian Mechanics, "half of canonical quantities are dynamical derivatives of other half"; in Hamiltonian mechanics, canonical quantities must satisfy **Poisson Brackets** $$\{q_i, q_j\} = 0$$ $\{q_i, p_j\} = \delta_{ij}$ $\{p_i, p_j\} = 0$ ## not necessary that $\dot{\mathbf{q}} = \mathbf{p}$ Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ## Closest Analogue to Lagrangian Theorem #### **Theorem** Fix an even-dimensional, orientable manifold with a vector space of vector fields on it and a Poisson bracket structure. Then the Poisson bracket arises from a symplectic structure and the vector space includes all and only solutions to Hamilton's equation formulated with it if and only if the vector space spans the tangent planes, and the manifold has a group of coordinate systems whose coordinate functions satisfy the canonical Poission bracket relations, and whose associated coordinate vector fields leave the vector space invariant under the action of the Lie bracket. Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 42 / 48 Pirsa: 12020155 ## Physical Meaning of Structures canonical symplectic structure ensures existence and uniqueness of solutions; encodes kinematical constraints (Poisson brackets); ensures conservation of energy (kinematics) Hamiltonian H encodes dynamical evolution (dynamics) Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 43 / 48 Pirsa: 12020155 Page 72/103 Lagrangian and Hamiltonian Representations # 6 How Lagrangian and Hamiltonian Mechanics Respectively Represent Classical Systems Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 ### Four Deep Questions - If Hamiltonian mechanics does not respect the kinematical constraints intrinsic to dynamical systems, how can it provide adequate representations of classical systems (e.g., the simple harmonic oscillator)? - Why does Lagrangian mechanics always respect the constraints of dynamical systems? - Because we know the Hamiltonian and Lagrangian formulations to be related by the Legendre transform, what happens in the passage from Lagrangian to Hamiltonian mechanics that expunges respect for those constraints? - Is any structure in Hamiltonian mechanics isomorphic to any structure in Lagrangian mechanics? Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Lagrangian and Hamiltonian Representations # How Hamiltonian Mechanics Respects Classical Kinematical Constraints #### by ad hoc fiat demand that only Hamiltonians H used be quadratic in momenta, with no other momental dependence; then $$v_i =_{\mathsf{df}} \dot{q}_i = \frac{\partial H}{\partial p^i}$$ is an identity justifiable by nothing intrinsic to the theory, not a kinematical constraint Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Pirsa: 12020155 Page 76/103 Pirsa: 12020155 Page 77/103 Pirsa: 12020155 Page 78/103 Pirsa: 12020155 Page 79/103 Lagrangian and Hamiltonian Representations # How Hamiltonian Mechanics Respects Classical Kinematical Constraints #### by ad hoc fiat demand that only Hamiltonians H used be quadratic in momenta, with no other momental dependence; then $$v_i =_{\mathsf{df}} \dot{q}_i = \frac{\partial H}{\partial p^i}$$ is an identity justifiable by nothing intrinsic to the theory, not a kinematical constraint Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Lagrangian and Hamiltonian Representations # Why Lagrangian Mechanics Always Respects Classical Kinematical Constraints #### built in from the start - standard variational problem not solvable unless kinematical constraint imposed from the start (hidden by usual formulation) - geometric formulation of Euler-Lagrange equation requires the kinematical constraints Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 47 / 48 Pirsa: 12020155 Page 81/103 Pirsa: 12020155 Page 82/103 Pirsa: 12020155 Page 83/103 Pirsa: 12020155 Page 84/103 Pirsa: 12020155 Page 85/103 Pirsa: 12020155 Page 86/103 Pirsa: 12020155 Page 87/103 Pirsa: 12020155 Page 88/103 Lagrangian and Hamiltonian Representations # Why Lagrangian Mechanics Always Respects Classical Kinematical Constraints #### built in from the start - standard variational problem not solvable unless kinematical constraint imposed from the start (hidden by usual formulation) - geometric formulation of Euler-Lagrange equation requires the kinematical constraints Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 47 / 48 Pirsa: 12020155 Page 89/103 Lagrangian and Hamiltonian Representations ### Legendre Transform - Legendre transform is (in special cases) diffeomorphism of tangent bundle to phase space - does not map second-order vector fields to Hamiltonian vector fields, not even to affine sub-space of them - does not preserve kinematical constraints - is not an isomorphism of any kinematical structure Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 48 / 48 Pirsa: 12020155 Page 90/103 ### Four Deep Questions - If Hamiltonian mechanics does not respect the kinematical constraints intrinsic to dynamical systems, how can it provide adequate representations of classical systems (e.g., the simple harmonic oscillator)? - Why does Lagrangian mechanics always respect the constraints of dynamical systems? - Because we know the Hamiltonian and Lagrangian formulations to be related by the Legendre transform, what happens in the passage from Lagrangian to Hamiltonian mechanics that expunges respect for those constraints? - Is any structure in Hamiltonian mechanics isomorphic to any structure in Lagrangian mechanics? Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Pirsa: 12020155 Pirsa: 12020155 Page 93/103 Pirsa: 12020155 Page 94/103 Pirsa: 12020155 Page 95/103 Pirsa: 12020155 Page 96/103 Pirsa: 12020155 Page 97/103 Pirsa: 12020155 Page 98/103 ### Four Deep Questions - If Hamiltonian mechanics does not respect the kinematical constraints intrinsic to dynamical systems, how can it provide adequate representations of classical systems (e.g., the simple harmonic oscillator)? - Why does Lagrangian mechanics always respect the constraints of dynamical systems? - Because we know the Hamiltonian and Lagrangian formulations to be related by the Legendre transform, what happens in the passage from Lagrangian to Hamiltonian mechanics that expunges respect for those constraints? - Is any structure in Hamiltonian mechanics isomorphic to any structure in Lagrangian mechanics? Erik Curiel (UWO) Lagrangian, Not Hamiltonian February 15, 2012 Pirsa: 12020155 Page 100/103 Pirsa: 12020155 Page 101/103 Pirsa: 12020155 Page 102/103 Pirsa: 12020155 Page 103/103