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Astrophysics
Background

® Many astrophysical phenomena ultimately
powered by gravity as central engine

® Gravitational waves about to be detected
by observatories such as LIGO GE0600

® Studying compact objects:
black holes, neutron stars,
also binaries of these

Pirsa: 12020148 Page 4/16



Pirsa: 12020148 Page 5/16




irsa: 12020148

Time Evolution
Problems

® Considering here systems of hyperbolic
PDEs (i.e. IVPs)

® (ignoring Lagrangian/Hamiltonian, if any)

® constraints only monitored during
evolution, not directly enforced

® gauge conditions part of PDE system, not
independent (need to have chosen gauge
before discussing PDEs)
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finite number of degrees of freedom, e.g.:
® Finite differences: sampling

® Finite volumes: averaging over cells

® Finite elements: set of basis functions

® Spectral methods: spectral coefficients

® Derivative operators become (sparse!?)
matrices
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From Einstein
Equations to BSSN

® G = 81rTab: not directly suitable for
numerically solving for metric ga

|. Choose time coordinate (aka 3+
decomposition)

2. Optionally: convert to first order form
(remove second derivatives)

3. Choose gauge conditions

4. Modify equations (add new variables, add
multiples of constraints, etc.)
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Kranc 2&+

Kranc Assembles Numerical Code

® Einstein equations (BSSN formulation) contain
about 5,000 terms, very tedious to code manually

® Want to experiment with different formulations

® Compilers often do not optimise well; need to
optimise explicitly (e.g. loop fission, cache tiling)

® Some optimisations are hardware dependent (e.g.
vectorisation, accelerators); don’t want to repeat
this manually for every new system

® See http://kranccode.org/
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Multi-Patch Systems
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e Basic idea: Cover ! g
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® Each block is 3D . . )
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Cartesian (see 6-patch 8 4 2 0 2
and 7-patch prototypes) :

e Need inter-block
boundary conditions

Pirsa: 12020148 Page 10/16



Adaptive Mesh
Refinement

Coarse,

and fine grids

Grids are
aligned G
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Parallel Processing
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Well-Posedness /
Stability

® Difficult to determine whether IVP is well-
posed

® Opinions differ regarding importance of
proving well-posedness before attempting a
numerical solution

® One definition for WP: for all times t,
norm of solution is bounded by A exp(«t),
with A, « independent of resolution

® Continuum well-posedness # discretized well-
posedness
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Discrete Stability

® One definition of stability (of a hyperbolic
PDE): can define non-negative energy that
is non-increasing under time evolution

® Stability proof typically requires
integration by parts

® Discrete equivalent (“summation by
parts”) can lead to stable discretization
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