Title: Computational Relativistic Astrophysics

Date: Feb 09, 2012 02:50 PM

URL: http://pirsa.org/12020148

Abstract:

Pirsa: 12020148 Page 1/16

Computational Methods at Perimeter

Perimeter Institute, Waterloo February 9, 2012

L. F. Richardson (First to use computers for weather prediction in 1922)

Pirsa: 12020148 Page 2/16

Computational Relativistic Astrophysics

Erik Schnetter, Perimeter Institute February 9, 2012

Pirsa: 12020148

Astrophysics Background

- Many astrophysical phenomena ultimately powered by gravity as central engine
- Gravitational waves about to be detected by observatories such as LIGO, GEO600
- Studying compact objects: black holes, neutron stars, also binaries of these

Pirsa: 12020148 Page 4/16

Pirsa: 12020148 Page 5/16

Time Evolution Problems

- Considering here systems of hyperbolic PDEs (i.e. IVPs)
 - (ignoring Lagrangian/Hamiltonian, if any)
 - <u>constraints</u> only monitored during evolution, not directly enforced
 - gauge conditions part of PDE system, not independent (need to have chosen gauge before discussing PDEs)

Pirsa: 12020148 Page 6/16

Discretisation

- Idea: represent (approximate) functions by finite number of degrees of freedom, e.g.:
 - Finite differences: sampling
 - Finite volumes: averaging over cells
 - Finite elements: set of basis functions
 - Spectral methods: spectral coefficients
- Derivative operators become (sparse?)
 matrices

Pirsa: 12020148 Page 7/16

From Einstein Equations to BSSN

- $G_{ab} = 8\pi T_{ab}$: not directly suitable for numerically solving for metric g_{ab}
 - Choose time coordinate (aka 3+1 decomposition)
 - 2. Optionally: convert to first order form (remove second derivatives)
 - 3. Choose gauge conditions
 - 4. Modify equations (add new variables, add multiples of constraints, etc.)

Pirsa: 12020148 Page 8/16

- Einstein equations (BSSN formulation) contain about 5,000 terms, very tedious to code manually
- Want to experiment with different formulations
- Compilers often do not optimise well; need to optimise explicitly (e.g. loop fission, cache tiling)
- Some optimisations are hardware dependent (e.g. vectorisation, accelerators); don't want to repeat this manually for every new system

See http://kranccode.org/

Pirsa: 12020148 Page 9/16

Multi-Patch Systems

- Basic idea: Cover domain with multiple blocks
- Each block is 3D
 Cartesian (see 6-patch and 7-patch prototypes)
- Need inter-block boundary conditions

Pirsa: 12020148 Page 10/16

Adaptive Mesh Refinement

Coarse, medium, and fine grids

Grids are aligned

Pirsa: 12020148 Page 11/16

Parallel Processing

2D: Each process communicates data to its 8-neighbors

Ghost zones are filled via inter-process communication from the corresponding owner

Ghost zones contain copies of neighbouring processes' grid points

Domain Decomposition - sub-domains & boundary values

Pirsa: 12020148 Page 12/16

Well-Posedness / Stability

- Difficult to determine whether IVP is wellposed
 - Opinions differ regarding importance of proving well-posedness before attempting a numerical solution
 - One definition for WP: for all times t, norm of solution is bounded by A $\exp(\alpha t)$, with A, α independent of resolution
- Continuum well-posedness ≠ discretized wellposedness

Pirsa: 12020148 Page 13/16

Discrete Stability

- One definition of stability (of a hyperbolic PDE): can define non-negative energy that is non-increasing under time evolution
 - Stability proof typically requires integration by parts
 - Discrete equivalent ("summation by parts") can lead to stable discretization

Pirsa: 12020148 Page 15/16

Pirsa: 12020148 Page 16/16