Title: Coarse graining spin nets with tensor networks

Date: Feb 09, 2012 10:20 AM

URL: http://pirsa.org/12020142

Abstract:

Pirsa: 12020142 Page 1/30

Coarse graining with tensor networks

Bianca Dittrich

with

Frank Eckert, Mercedes Martin-Benito

BD, F.C. Eckert, M. Martin-Benito, to appear in NJP, arXiv:1109.4927 [gr-qc]

BD, F.C. Eckert, (short proceeding version), arXiv:1111.0967 [gr-qc]

Pirsa: 12020142 Page 2/30

Motivation

- •spin foam models: candidates for quantum gravity, describe (very) small scale physics
- •most important question: what do they describe at large scales?
- •Spin foams can be understood as lattice systems:

Use coarse graining to construct effective models for larger scales.

Problem: Spin foam models for gravity have amazingly complicated amplitudes. No coarse graining methods available.

Here: Simplify models drastically, keeping 'spin foam construction principle', develop and test coarse graining methods.

Interest for quantum information/ condensed matter:

- -models related to topological phases, string nets, symmetry breaking
- -same techniques for coarse graining

Pirsa: 12020142 Page 3/30

Motivation

- •spin foam models: candidates for quantum gravity, describe (very) small scale physics
- •most important question: what do they describe at large scales?
- •Spin foams can be understood as lattice systems:

Use coarse graining to construct effective models for larger scales.

Problem: Spin foam models for gravity have amazingly complicated amplitudes. No coarse graining methods available.

Here: Simplify models drastically, keeping 'spin foam construction principle', develop and test coarse graining methods.

Interest for quantum information/ condensed matter:

- -models related to topological phases, string nets, symmetry breaking
- -same techniques for coarse graining

Pirsa: 12020142

generalized Ising model

$$Z \sim \sum_{g_v=0,1,2,3} \prod_e w_e(g_{v(e)}g_{v'(e)}^{-1})$$
 edge weight

freeze:

$$w_e(g_{v(e)}g_{v'(e)}^{-1}) = \delta(g_{v(e)}g_{v'(e)}^{-1})$$

duality (Fourier) transform

$$Z \sim \sum_{k_e=0,1,2,3} \left(\prod_v \delta(\sum_{e \supset v} (\pm) k_e)
ight)$$

Remark: Clebsch-Gordon coefficients instead of delta for non-Abelian groups hide 'simple' character of the model.

Spin foam construction principle: break the symmetries of a topological theory

Pirsa: 12020142 Page 6/30

generalized Ising model

$$Z \sim \sum_{g_v=0,1,2,3} \prod_e w_e(g_{v(e)}g_{v'(e)}^{-1})$$
 edge weight

freeze:

$$w_e(g_{v(e)}g_{v'(e)}^{-1}) = \delta(g_{v(e)}g_{v'(e)}^{-1})$$

duality (Fourier) transform

$$Z \sim \sum_{k_e=0,1,2,3} \left(\prod_v \delta(\sum_{e \supset v} (\pm) k_e)
ight)$$

Remark: Clebsch-Gordon coefficients instead of dalta for non-Abelian groups hide 'simple' character of the model.

generalized Ising model

$$Z \sim \sum_{g_v=0,1,2,3} \prod_e w_e(g_{v(e)}g_{v'(e)}^{-1})$$
 edge weight

freeze:

$$w_e(g_{v(e)}g_{v'(e)}^{-1}) = \delta(g_{v(e)}g_{v'(e)}^{-1})$$

duality (Fourier) transform

$$Z \sim \sum_{k_e=0,1,2,3} \left(\prod_v \delta(\sum_{e\supset v} (\pm) k_e)
ight)$$

Remark: Clebsch-Gordon coefficients instead of delta for non-Abelian groups hide `simple' character of the model.

exclude some configurations

$$Z \sim \sum_{k_e=0,1} \left(\prod_{v} \delta(\sum_{e \supset v} (\pm) k_e) \right)$$

non-trivial model

Space of models we will consider here:

q= size of (Abelian group), K= `cutoff' = 1/2 the number of variables you sum over

Remark: crude approximation of heat kernel action by step function.

This is the basic idea for constructing spin foam models, starting with a topological field theory.

For non-Abelian groups, we end up with genuine vertex models (basically tensor networks).

2

Pirsa: 12020142 Page 9/30

exclude some configurations

$$Z \sim \sum_{k_e=0,1} \left(\prod_{v} \delta(\sum_{e \supset v} (\pm) k_e) \right)$$

non-trivial model

Space of models we will consider here:

q= size of (Abelian group), K= `cutoff' = 1/2 the number of variables you sum over

Remark: crude approximation of heat kernel action by step function.

This is the basic idea for constructing spin foam models, starting with a topological field theory.

For non-Abelian groups, we end up with genuine vertex models (basically tensor networks).

1

Pirsa: 12020142 Page 10/30

generalized Ising model

$$Z \sim \sum_{g_v=0,1,2,3} \prod_e w_e(g_{v(e)}g_{v'(e)}^{-1})$$
 edge weight

freeze:

$$w_e(g_{v(e)}g_{v'(e)}^{-1}) = \delta(g_{v(e)}g_{v'(e)}^{-1})$$

duality (Fourier) transform

$$Z \sim \sum_{k_e=0,1,2,3} \left(\prod_v \delta(\sum_{e \supset v} (\pm) k_e)
ight)$$

Remark: Clebsch-Gordon coefficients instead of delta for non-Abelian groups hide `simple' character of the model.

Coarse graining

•standard method: Migdal-Kadanoff ('75/76)

- -approximation to local couplings
- -leads to simple recursion relation on weights

$$Z \, = \, \sum_{g_v} \, \prod_e w_e(g_{v(e)}g_{v'(e)}^{-1})$$

sum over subset of variables

$$Z \, \sim \, \sum_{g_V} \, \prod_E w_E'(g_{V(E)}g_{V'(E)}^{-1})$$

approximate with local couplings and effective weight

zero temperature with gauge symmetries

$$\tilde{w}_e(k_e) \equiv 1 \quad \Rightarrow \quad w_e(\,g_{v(e)}g_{v'(e)}^{-1}\,) \sim \delta^{(q)}(\,g_{v(e)}g_{v'(e)}^{-1}\,)$$

infinite temperature

$$ilde{w}_e(k_e) = \delta_{k_e,0} \quad \Rightarrow \quad w_e(\,g_{v(e)}g_{v'(e)}^{-1}\,) \, \sim \, 1$$

Pirsa: 12020142

- •convergence after small number of iteration steps either to HTF or LTF •mostly to HTF
- •for U(1), SU(N): Migdal-Kadanoff approximation flows all configurations to HTF: there is only one phase [Ito 84; Mueller, Schiemann 85]

•as 3d is to near the critical dimension of 2

Pirsa: 12020142 Page 14/30

Pirsa: 12020142 Page 15/30

Pirsa: 12020142 Page 16/30

Tensor network representation

•partition function can be written in (different) tensor network form

$$Z \sim \text{Tensor-Tr}(T_v T_{v'} T_{v''} \ldots)$$

•graphical calculus: associate tensors to vertices, contract along edges

•[Wen et al] tensor networks can describe topological phases

N. Carle

Tensor network renormalization

- •contract four tensors to effective tensors
- •approximate by cutting off the index range to some fixed value (for instance by singular value decomposition)
- •[Levin, Nave '07, Gu, Wen '09] specific proposals for algorithms in 2d

gist of the method:

- •cut-off in index range determines number of fields (implicit non-local couplings)
- \bullet in each step apply field redefinitions, so to keep number of fields minimal

Pirsa: 12020142 Page 18/30

Tensor network renormalization

- •contract four tensors to effective tensors
- •approximate by cutting off the index range to some fixed value (for instance by singular value decomposition)
- •[Levin, Nave '07, Gu, Wen '09] specific proposals for algorithms in 2d

gist of the method:

- •cut-off in index range determines number of fields (implicit non-local couplings)
- •in each step apply field redefinitions, so to keep number of fields minimal

The renormalization algorithm

(b) splitting of vertices

$$T^{abcd} = M_1^{ab,cd} = \sum_{i=0}^{q^2-1} U_1^{ab,i} \lambda_i (V_1^\dagger)^{i,cd} \approx \sum_{i=0}^{D_c-1} (U_1^{ab,i} \sqrt{\lambda_i}) (\sqrt{\lambda_i} (V_1^\dagger)^{i,cd}) = \sum_i S_1^{ab,i} S_2^{cd,i}$$
 singular value decomposition

The renormalization algorithm

(b) splitting of vertices

$$T^{abcd} = M_1^{ab,cd} = \sum_{i=0}^{q^2-1} U_1^{ab,i} \lambda_i (V_1^\dagger)^{i,cd} \approx \sum_{i=0}^{D_c-1} (U_1^{ab,i} \sqrt{\lambda_i}) (\sqrt{\lambda_i} (V_1^\dagger)^{i,cd}) = \sum_i S_1^{ab,i} S_2^{cd,i} + \sum_{i=0}^{d_c-1} (U_1^{ab,i} \sqrt{\lambda_i}) (\sqrt{\lambda_i} (V_1^\dagger)^{i,cd}) = \sum_i S_1^{ab,i} S_2^{cd,i} + \sum_i (U_1^{ab,i} \sqrt{\lambda_i}) (\sqrt{\lambda_i} (V_1^\dagger)^{i,cd}) = \sum_i (U_1^{ab,i} \sqrt{\lambda_i}) (\sqrt{\lambda_i}) (\sqrt{\lambda$$

Pirsa: 12020142

The renormalization algorithm

$$T'^{ijkl} = \sum_{a,b,c,d} S_2^{ab,i} S_4^{ac,j} S_1^{dc,k} S_3^{db,l}$$

New 'effective' tensor describing coarse grained model.

New feature and difficulty

- •we look at 'large' groups, to which the TNW algorithm has not been applied before
- •with increasing size of group weaker phase transition
- equivalence of models with the same K starting from sufficiently high q

Pirsa: 12020142 Page 23/30

New feature and difficulty

- •we look at 'large' groups, to which the TNW algorithm has not been applied before
- •with increasing size of group weaker phase transition
- equivalence of models with the same K starting from sufficiently high q

Pirsa: 12020142 Page 24/30

Results: TNW algortihm [BD, Eckert, Martin-Benito, 11]

Pirsa: 12020142 Page 25/30

Remarks

•we developed a Gauss constraint preserving algorithm:

[see also Singh, Pfeifer, VIdal 2011]

- -enhanced speed and stability
- -physically important to preserve Gauss constraints
- -confirms (with few changes and additions) MK analysis so far
- •algorithm leads to non-isolated fixed points
 - -[Gu, Wen] have to implement entanglement filtering
 - -needs to be much better understood
- •our first algorithm suffered from instabilities for larger groups and cut-offs
 - -due to `unsymmetric cut-offs' (in Gauss constraint preserving algorithm)
 - -and very weak phase transitions
- improved stability by a `self-adaptive cut-off'
 - -this helps a lot, but still some problems with stability
 - -aim: can we see Kosterlitz Thouless transitions to appear for large groups?

Pirsa: 12020142 Page 26/30

Remarks

•we developed a Gauss constraint preserving algorithm:

[see also Singh, Pfeifer, VIdal 2011]

- -enhanced speed and stability
- -physically important to preserve Gauss constraints
- -confirms (with few changes and additions) MK analysis so far
- •algorithm leads to non-isolated fixed points
 - -[Gu, Wen] have to implement entanglement filtering
 - -needs to be much better understood
- •our first algorithm suffered from instabilities for larger groups and cut-offs
 - -due to `unsymmetric cut-offs' (in Gauss constraint preserving algorithm)
 - -and very weak phase transitions
- improved stability by a `self-adaptive cut-off'
 - -this helps a lot, but still some problems with stability
 - -aim: can we see Kosterlitz Thouless transitions to appear for large groups?

Pirsa: 12020142 Page 27/30

Improving: adaptive cutoff and symmetrization

(b) Adaptive cutoff and symmetrization

Pirsa: 12020142 Page 28/30

Improving: adaptive cutoff

q=6,K=1, D_c=21

wip

- •relation Migdal Kadanoff and Tensor Network method
- •understand the approximation in tensor network better: understand significance of negative eigenvalues (in singular value decomposition)
- •detect phase transition temperature in Abelian models
- •non-Abelian models: genuine vertex models, not clear which statistical properties to expect

×

Pirsa: 12020142 Page 30/30