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Coarse graining with tensor
networks

BD, F.C. Eckert, M. Martin-Benito, to appear in NJP, arXiv:1109.4927 [gr-qc]

BD, F.C. Eckert, (short proceeding version), arXiv:1111.0967 [gr-qc]
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Motivation

*spin foam models: candidates for quantum gravity, describe (very) small scale physics

emost important question: what do they describe at large scales?

*Spin foams can be understood as lattice systems:

Use coarse graining to construct effective models for larger scales.

Problem: Spin foam models for gravity have amazingly complicated amplitudes. No coarse
graining methods available.

Here: Simplify models drastically, keeping ‘spin foam construction principle’, develop and
test coarse graining methods.

Interest for quantum information/ condensed matter:
-models related to topological phases, string nets, symmetry breaking
-same techniques for coarse graining
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Simple example

generalized Ising model Z_4 group
variables

at vertices

0,1,23 e

Z~ ) H“T"-(_rh-:.-ui,.:l,.;

- edge weight

edge weight we ( q. r']”r’.l. .‘ )

freeze:

Gauss law
duality (Fourier) transform '~ has to hold.

There are

gauge
symmetries.

Remark: Clebsch-Gordon coefficients instead of delta for non-Abelian groups hide "simple’ character of the model.
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Spin foam construction principle:
break the symmetries of a topological theory

start with a "simple’ model
(spin foams: zero coupling limit of Yang Mills © frozen model
= BF theory )

rewrite it into dual variables so it looks  « in this formulation gauge symmetries
more interesting (but is still “simple’)

forbid certain configurations in the
partition function of your model

[] Motivated by:

licated del -Plebanski formulation of gravity:Yang mills at zero
complicated moae coupling plus constraints
-independence from background metric

break (subset of) gauge symmetries
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example

generalized Ising model Z_4 group
variables

at vertices

0,1,2,:

Z~ Y ‘H“f'(m:””“lr")

‘V_t_:‘cfg'c weight

edge weight w, ( q. r']y.-f.l. .‘ )

l : 1
freeze: We( Gu(e)9yr(e) ) = 0 Gu(e) (o))

—

/ There are

.
A S !
Z ~ ‘ )k \ ) k. o
symmetries.
- -

0,1,2,3

- Gauss law
duality (Fourier) transform ‘[___/ has to hold.

Remark: Clebsch-Gordon coefficients | “*ead of dslta for non=Abglia =oups hide ‘simple’ Saracter of the model.
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Simple example

exclude some configurations

Space of models we will consider here:
q= size of (Abelian group),

K= "cutoff’ = |/2 the number of variables you sum over

non-trivial model Remark: crude approximation of heat kernel action by step function.

This is the basic idea for constructing spin foam models, starting with a topological field theory.

For non-Abelian groups, we end up with genuine vertex models (basically tensor networks).
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Simple example

generalized Ising model Z_4 group
variables

at vertices

0,1,23 e

Z~ H“{-(!1:-:,-]!1;-’1,-_.)

. edge weight

edge weight we ( g, "]”l"llr .‘ )

freeze:

Gauss law
duality (Fourier) transform '~ has to hold.

There are
gauge
symmetries.

-

Remark: Clebsch-Gordon coefficients instead of delta for non-Abelian groups hide "simple’ character of the model.
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Coarse graining

sstandard method: Migdal-Kadanoff ('75/76)

-approximation to local couplings
-leads to simple recursion relation on weights

Z ~ Z H Wi (9v 19, ) k)
gv k

approximate with local
couplings and effective
weight

sum over subset of
variables
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To which fixed points do the models
flow under coarse graining (symmetry restoration)?
A

/ \

zero temperature infinite temperature
with gauge symmetries

— d;\ 0 — w, { qr | e |~rl¢":lf ) ~ l
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Res u |ts [BD, Eckert, Martin-Benito | 1]
3d lattice gauge (spin foam)

o

flow to

HTF

O|l—|IN|jJw|dh | UnON|N |00 |W

sconvergence after small number of iteration steps either to HTF or LTF
emostly to HTF

sfor U(1), SU(N): Migdal-Kadanoff approximation flows all configurations
to HTF: there is only one phase [Ito 84; Mueller, Schiemann 85 ]

*as 3d is to near the critical dimersien of 2
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Resu Its [BD, Eckert, Martin-Benito, | 1]

4d lattice gauge (spin foam)/ 2d edge model (spin net)

o

flow to
nontrivial
unstable

(quasi)
ixed point

flow to

HTF

O|l—|N|lw|h| NN |00 |0

*more configurations flow to LTF very weak phase transition
sbut also to unstable fixed point!

ofor U(1):in 4d there are two phas olyakov 75; Banks, Myerson, Kogut 77)
ebut: MK relations miss Kosterlitz Thouless transitions (flow to HTF) [ito '85]
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Tensor network representation

epartition function can be written in (different) tensor network form

T T

Z ~ Tensor-Te(T, Ty Ty .. .)

egraphical calculus: associate tensors to vertices, contract along edges

*[Wen et al] tensor networks can describe topological phases
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Tensor network renormalization

T

fluf

approz

econtract four tensors to effective tensors

*approximate by cutting off the index range to some fixed value
(for instance by singular value decomposition)

*(Levin, Nave '07, Gu,Wen '09] specific proposals for algorithms in 2d

gist of the method:

scut-off in index range determines number of fields
(implicit non-local couplings)
*in each stgp apply field redefinitions, so to keep number of fields minimal
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The renormalization algorithm

) , (b) splitting of vertices
(a) square lattice

1.1" 1

.Iurbr'ti _ Al{n’;.r‘rf _ Z {!.;:FJ‘E/\’ ( V'l’ )r.r'rf ~ {‘;.;rim \//\’)( \//\, ( l"i- )i.r'[f] — Z ',."(]J.h_rbf‘:,‘rf.i

= ,

singular value decomposition approximation
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renormalization algorithm

. . (b) splitting of vertices
(a) square lattice

1.1" 1

.1,”},,-,[ _ ‘.\Jirhmrf = Z {_";IFHA, ( Vrlf );.f-rf s {‘;.Iri..i \//\’)( \//\., ( b.l' )‘_,-[j] _ Z 'L’,(ll.b.ihf‘nj‘rf.i

= ,

singular value decomposition approximation
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The renormalization algorithm

(a) contraction (b) coarse grained lattice

mrijkl vab,t cac,j ade,k odb,l
Tk = § gabi gacd glek g

ab.ed

New 'effective’ tensor describing coarse grained model.
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New feature and difficulty

*we |ook at ‘large’ groups, to which the TNWV algorithm has not been applied before
swith increasing size of group weaker phase transition

*equivalence of models with the same K starting from sufficiently high q
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Results: TNW algortihm o ccier. mren-senio, 1

«——————— Migdal Kadanoff
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Remarks

ewe developed a Gauss constraint preserving algorithm: [see also Singh, Pfeifer,Vidal 201 1]
-enhanced speed and stability
-physically important to preserve Gauss constraints
-confirms (with few changes and additions) MK analysis so far

*algorithm leads to non-isolated fixed points

-[Gu,Wen] have to implement entanglement filtering
-needs to be much better understood

sour first algorithm suffered from instabilities for larger groups and cut-offs
-due to "'unsymmetric cut-offs’ (in Gauss constraint preserving algorithm)
-and very weak phase transitions

* improved stability by a "self-adaptive cut-off’
-this helps a lot, but still some problems with stability
-aim: can we see Kosterlitz Thouless transitions to appear for large groups?
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Improving: adaptive cutoff and symmetrization

(a) Adaptive cutoff (b) Adaptive cutoff and symmetrization

q=6,K=1,D_c=16
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Improving: adaptive cutoff

(a) Original TNR (b) TNR with adaptive cutoft

q=6,K=1,D_c=2|
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erelation Migdal Kadanoff and Tensor Network method

sunderstand the approximation in tensor network better:
understand significance of negative eigenvalues (in singular value decomposition)

*detect phase transition temperature in Abelian models

*non-Abelian models: genuine vertex models, not clear which statistical properties to
expect
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