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Abstract: During the last couple of years Dupuis, Freidel, Livine, Speziale and Tambornino developed a twistorial formulation for loop quantum
gravity.<br>Constructed from Ashtekar--Barbero variables, the formalism is restricted to SU(2) gauge transformations.<br>In this talk, | perform
the generalisation to the full Lorentzian case, that is the group SL(2,C). <br>The phase space of SL(2,C) (i.e. complex or selfdual) Ashtekar
variables on a spinnetwork graph is decomposed in terms of twistorial variables. To every link there are two twistors---one to each boundary
point---attached. The formalism provides a clean derivation of the solution space of the reality conditions of loop quantum gravity.<br>Key features
of the EPRL spinfoam model are perfectly recovered.<br>If there is still time, I'll scatch my current project concerning a twistoria path integral for
spinfoam gravity as well.& nbsp; <br>
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Motivation

m Dupuis, Freidel, Livine, Speziale and Tambornino developed a
twistorial formulation for SU(2) Ashtekar-Barbero variables.

m To each link of the boundary spinnetwork they assign a twistor,
carrying information on area, angles (normals) and curvature.
m These are SU(2) variables, therefore:

m How do Lorentz transformations act on them?

m This could be answered by starting from the true space-time
parallel transport, i.e. the SL(2,C) connection A "+ iK,
instead of A = 1" + 3K.

m Is there a relation to Penrose’s program?

m Can we speak about the Weyl tensor, i.e. the twistor’s curvature?

m Twistors are light rays incident to points in spacetime. Can we use
this to learn more about causality in LQG?

First step towards these goals:

m Generalize the SU(2) twistorial formulation of LQG to SL(2.C).
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Outline of the talk

Four to five points:

Bl Complex Ashtekar variables for real valued Barbero-Immirzi
parameter.

E Spinors for SL(2.C) phase space on a fixed graph.

El Spinorial version of the reality conditions.

A Quantisation.

B If there’'s still time: Relation to the SU(2) spinor papers.
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1. Complex Ashtekar variables for real
valued Barbero-Immirzi parameter
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Complex Ashtekar variables revisited

To speak about SL(2.C) we start from the selfdual decomposition of
the Holst action:

i f
ol 1.,\ & L; r N .
bll”lh[ _l ) / 2 B /\ R A \ -+~ CC. (1)
) JM

Where Y45 = Yirlg = (Leipe! Ae® +ie® A ef) T3 are the

selfdual components of the Plebanski 2-form ¢

3 3

= e Ae
And 7 € R is the Barbero-Immirzi parameter.
We identify the symplectic structure, e.g.

[ / { W Y 4 d ¢ |
{I1;%(p). Alp(q)} = 565d(p.q) = {1L;*(p). Alp(q)}
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Complex Ashtekar variables revisited

To speak about SL(2.C) we start from the selfdual decomposition of
the Holst action:

i f
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bll”lh[ il i3 / 2 B /\ R A \ -~ CC. (1)
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Where ¥4p = YirAp = (Leipe! Ae™ +ie® A el)r5; are the

selfdual components of the Plebanski 2-form Y%7 = e® A e”
And 7 € R is the Barbero-Immirzi parameter.
We identify the symplectic structure, e.g.

{11,%(p). Al (q)} = &625(p.q) = {I1;*(p).Alp(q)}
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Complex Ashtekar variables revisited

To speak about SL(2.C) we start from the selfdual decomposition of
the Holst action:
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Where Y45 = Yirlg = (Leipe! Ae® +ie® A ef) T3 are the
selfdual components of the Plebanski 2-form YX%° = e® A e”,
And 7 € R is the Barbero-Immirzi parameter.

We identify the symplectic structure, e.g.

[ / { W Y : d ¢ |
{I1;%(p). Alp(q)} = 5656(p.q) = {1L;*(p). Al p(q)}
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Linear simplicity constraints as reality conditions

Choosing time gauge:
e’ = Ndt

we get

) 4+ 1 : } 41 :
a abec o abc I m
II;’ - . ] ~jbc = . 1} €ilm€ p€  ¢.

4i/3 4i/3
This implies the reality condition:

) )
) )

1 1 1
Ci -I1;° 4+ - [1;°

) — 1

l(—iull," — ;%) +3 (I, + ||,"}) - 0
~ \_V_/
K L

This constraint is of second class, it is preserved in time only
provided the spatial part of the torsion 2-form vanishes.
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Complex Ashtekar variables revisited

To speak about SL(2.C) we start from the selfdual decomposition of
the Holst action:
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Where Y45 = Yirlp = (é:;‘mo’ Ae® +ie® A el)T%s; are the
selfdual components of the Plebanski 2-form X7 = e™ A e”,

And 7 € R is the Barbero-Immirzi parameter.
We identify the symplectic structure, e.g.

{11,%(p). Al (q)} = &625(p.q) = {I1;*(p).Alp(q)}
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2. Spinorial decomposition of the
SL(2.C) phase space on a fixed graph
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Linear simplicity constraints as reality conditions

Choosing time gauge:
(.‘“ — f\"(“

we get

i o |
a abec
[1;° = - e Zijbc =

4i3
This implies the reality condition:

) )
) )
I | d
1

||ld

) — 1

(—un,ﬂ —T1,2) +3 (I1,® + ||,‘w) - 0
l g \_~
K L

This constraint is of second class, it is preserved in time only
provided the spatial part of the torsion 2-form vanishes.
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Linear simplicity constraints as reality conditions

Choosing time gauge:
e® = Ndt

we get
3 1

| ]] a I,~’.|bt':,_:”u": —

413
This implies the reality condition:
C:d — '%”ld - _.—"J_.“:d
) -+ 1 } == ]

]
’

T_T(quuuwuw+umﬂ+mﬂ):o

~

K L
This constraint is of second class, it is preserved in time only
provided the spatial part of the torsion 2-form vanishes.
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Complex Ashtekar variables revisited

To speak about SL(2.C) we start from the selfdual decomposition of
the Holst action:

) + 1

. “A_ A pB ' .
bll“[h[ r / 2 B /\ R A \ -~ CC. (1)
M

1/9

Where Y45 = Yirlg = (Leipe! Ae® +ie® A el)7T3; are the

selfdual components of the Plebanski 2-form Y%° = e® A e”,
And 7 € R is the Barbero-Immirzi parameter.
We identify the symplectic structure, e.g.

« / - o Y ' d g |
{I;%(p). Alp(q)} = 5656(p.q) = {1L;*(p). Al p(q)}
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Smeared phase space on a fixed graph

A fixed graph I' consists of oriented links ~.~/ to each of which
we assign a dual face f. f’ Introduce smeared variables:

SL(2,C) 3 h[f] = Pexp( — / A) (6a)

‘.![(.2:‘ }" II[f — / h.”__A_'(“Ilph-‘[(”__p (6b)
Jpel

Holonomy flux algebra, i.e. T*SL(2,C)*

For a single link:
{h[f],h[f']} =0 (7a)

(1L [£], I [£]} = —ey™ M [£] (7¢)
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Preliminaries: Twistorial phase space

First: What is a twistor?

A =

EH A twistor Z is a bispinor Z = (w?.7m4) € C

H SL(2.C) acts in the obvious way:

A g . A B
W — +g°pu

B .
~JA 7B

(8a)
(8b)

El Thereisan SL(2.C) invariant symplectic structure available:

,.‘\
OB
oB) — 5B

(9)
(10)

Next: Decompose phase space variables in terms of these bispinors.
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Holonomy S
and fluxes 2 Y II[f~'] = — h[fIO[f]A[f]*

l_l I

h(f Pexp(— |

Fluxes AB T G (- G ! - Y |
In terms of L T l(“’ S )

splnors ; ; :
Unique up to ordering and rescaling.

Holonomy Taw? # 0 # 7 2w we have a basis in C?, by reordering/-scaling:

In terms of

splnors A hlF / a hlf /
o wA, xA M na

This fixes the holonomy in terms of spinors.

Reverse the logic We can parametrize the pase space by (7,w, 7.w) € C" provided:
— s <r
maw” # 0 l.e. [ is not null
T aw’ ! i.e. k| f] has unit determinant

But what about the symplectic structure?
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Holonomy AT o™
and fluxes 1%al/] €1(2,C

(=" = = alfjuisla] ="

h[f] = Pexp(— [L A) € SL(2,C

Fluxes AR N (A B B A ”.-'u‘! =L .,.-1ﬁu+wnﬁ.-\
In terms of I e -l(“' “ T ) S .l(ﬁ [ &0 )

spinors Unique up to ordering and rescaling.

Holonomy
In terms of
splnors

For maw? 4 0 # 742" we have a basis in T2, by reordering/-scaling:

. i

i
*‘,\ 'JI ;.L"A

—a hlJ) A

This fixes the holonomy in terms of spinors.

We can parametrize the pase space by (=, w. T.w) € C® provided:
A s
Taw” #0

l.e. [ Is not null
Az =0 e, h|f] has unit determinant
But what about the symplectic structure?
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Symplectic reduction

The symplectic structure of the holonomy flux algebra is
recovered on the constraint hypersurface C = maw”® — maw’

The constraint C = 0 generates the complex scaling
transformations leaving flux and holonomy unchanged.

Performing a symplectic reduction the original phase space is
recovered. Already plausible from counting
3x2=2x2x2—2complex degrees of freedom.

The symplectic structure simplifies. In the holonomy-flux
algebra momenta don’'t commute, here they do: {wa. 75} = 0.
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Reality conditions in terms of spinors

In terms of spinorial variables:

)
— - BB e
. i(-;'..\‘.f_; T ,\,ng.“\)f_,\Bll ~ CC.
{ 4

m This equations has two free spinor indices.
m But the pair w?, 644 w; is (unless w = 0) a complete basis in C2.

Contraction with this basis elements reveals the following two
constraints:

F; = ——wi7m +cc. =0
-

Notice that F, is real but F; is complex.
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Reality conditions in terms of spinors

In terms of spinorial variables:

)
— - BB -
. i(-;'..\‘.f_; T ,\,Bu“\)f_,\nll = CC.
{ 4

m This equations has two free spinor indices.
m But the pair w?, 644 w; is (unless w = 0) a complete basis in C2.

Contraction with this basis elements reveals the following two
constraints:

F[ —
F>

Notice that F, is real but F; is complex.
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Constraint algebra and master constraint
The corresponding constraint algebra is:

F
1

f 21/

)
)

2105
(F,.F,)
L 1-4°2§ 2 1

)
)

1 A A
(Fp, By} = = (mawh — 7izah)

F; is of first class, but F; is second class. Define the master
constraint:
M=FF,

And observe
[F;. M}

Right hand side is identically zero!
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Canonical quantisation of the simplicity constraints

We perform canonical quantisation, e.qg.:
(maf)(w) = —i 5

And choose normal ordering to find:

2+ 1

- l .

F;
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Dupuis-Livine map

(BjdJ)
5.;11

i,m)— (w?) (28)

m This map sends SU(2) irreducibles to SL(2,C) unitary
irreducibles.

m The resulting Hilbertspace coincides with the space of SU(2)
spinnetwork states.

So after all, what is the difference to the SU(2) variables?

m For real variables the reduction from SL(2.C) to SU(2) isin the
configuration variable A '+ K.

m Here, the configuration variable is w € C?, transforms

covariantly under SL(2.C), and doesn’t know about SU(2). The

(8] J)
j.m

reduction is in the Dupuis-Livine states f
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5. Relation to twisted geometries and
SU(2) spinors
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Physical interpretation and relation to twisted
geometries

Solutions of the reality conditions F; = 0 = F, are parametrised by
a single number J, wlog.: J € R+

(29)

Defining SU(2) spinors

A

A e &
z* = /2] IJW'F' zA = et /2l||“‘3. (30)

m & = In(||w]|/||lw]|) is the (norm of) the smeared extrinsic
curvature.

m ] = 1||z||? is the area of the face.
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Recovering the phase space of twisted geometries

Unlike w and 7 the SU(2) spinors transform nonlinearly under
boosts.

The parametrisation removes one gauge degree of freedom.
Residual gauge symmetries are U(1) transformations.

z* and z* are related by the Ashtekar-Barbero connection:

]g)xPexp(— /-(l‘+ iK))z) (32)

And parametrize the su(2) fluxes:

= 2 (12)(zl - I2]z1)
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Recovering the phase space of twisted geometries

{Z:\‘Z.—\} L _i(\":\.—\ - _{ A 4 (31)

Unlike w and 7 the SU(2) spinors transform nonlinearly under
boosts.

The parametrisation removes one gauge degree of freedom.
Residual gauge symmetries are U(1) transformations.

z* and z# are related by the Ashtekar-Barbero connection:

]g)xPexp(— /-(l‘+ IK))Z) (32)

And parametrize the su(2) fluxes:
i i i
i = (I2)(zl - |2]lz])
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Summary — part 1

The linear simplicity constraints are reality conditions on the
momentum variable.

The phase space of smeared holonomy-flux variables on a fixed
graph was decomposed in terms of twistors. To each link
belongs a pair of twistors—one for each of its boundary points.
This decomposition works as long as

B 11[)*s11[f]* s # O, thatis unless f is null.

HE the constraint C = 0, generating C — {0} transformations, holds.

In terms of twistors the reality conditions reduce to F; = 0 and
M=FF, =0.
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Summary — part 2

In quantum theory both F; and M can be imposed strongly.

The solution space picks the states |j.m) = £’ in the

irreducible (p ’j.Jo = J) unitary representation space of
SL(2,C).

Moreover F, j.m) =0 but Fjli m) # 0.

The spinorial method allows for a clean and simple derivation of
the Dupuis-Livine map.
On the classical level the reduction down to SU(2) can

explicitly be performed. We arrive at the original phase space
of SU(2) spinors introduced by Freidel and Speziale.
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