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Abstract: Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well
known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW
cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized
perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global
description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the
light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively
straightforward "dictionary”---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust
cosmologies, and we use our "ordering scheme" to determine the degree to which the resulting metric and matter distribution solve Einstein's
equation. We find that Einstein's equation fails to hold at "order 1" at small scales and at "order $\epsilon$" at large scales. We then find the
additional corrections to the metric and matter distribution needed to satisfy Einstein's equation to these orders. While these corrections are of some
interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original
dictionary (aswell as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be
very small; if so, this should provide strong justification for the use of Newtonian simulations to describe relativistic cosmologies, even on scales
larger than the Hubble radius.

Pirsa: 12020128 Page 1/53



Newtonian and relativistic cosmologies
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INntroduction: Newtonian cosmology

J?

> can do cosmology entirely within the context of Newtonian gravit

provided we restrict ourselves to “dust” and a cosmological constant.

equations Oof motion

* Cosmological background solution:
rm expanding dust bal

/F riedmann equations of GR
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Introduction: Newtonian cosmology

e Cosmological perturbations: Re-write the M
backaround solution e

» equations are the continuous form of what is used Iin N-body
cosmological simulations. But how are these equations related to Einstein’s

equation?
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Correspondence with GR at linearized level
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Correspondence with GR at linearized level

. t
1ncal Newton

e The linearization of these equations is identical to the scalar linearized

equations in GR for dust with k = 0, when expressed in terms of Bardeen’s
gauge invariant variables:

Scalar linearized equations in GR
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So are we done?

zed Einstein equation implies linearized matter motion.

Y

Linearized Einstein tensor Partial derivative

Linearized Bianchi identity
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Question

background: Imani
large scale perturbations:
small scale perturbations:
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Relativistic cosmology from Newtonian cosmology

Goal: Given a solution f the cosmological Newtonian equation
moti on a torus, we wish to generate a spa » metric , and dust stress
: ) what degre

So develop mapping:
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Relativistic cosmology from Newtonian cosmology
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General framework
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General framework

Large scale part Small scale part
‘behaves linearly” ‘non-linear*
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Assumptions
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Tentative mapping

e | Inearized correspondence motivates

XXX KAXX

XOOOOXX XXX XAX
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How well does the tentative mapping work?
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Improving the dictionary
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Improving the dictionary

e Obtaining an | | solution at small scales

Pirsa: 12020128 Page 42/53



Improving the dictionary

e Obtaining an | | solution at small scales

Pirsa: 12020128 Page 43/53



Improving the dictionary

se time derivative:!

rrections

egligible in practice
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Improving the dictionary

* Obtaining an solution at large scales
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Improving the dictionary

e Initial conditions: Could fix
time
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The full dictionary
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Infinite wavelength part
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Infinite wavelength part

xpanding Bianchi model
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Conclusions
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