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Abstract: Three-dimensional fluids with nontrivial vorticity can be described holographicaly. It is well-known that the Kerr-AdS geometry gives
riseto a'cyclonic’ flow. Lorentzian Taub--NUT--AdS_4 geometries give rise to arotating fluid with vortex flow.
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Motivations
Aim

@ focus of this talk:

consider AdS/CFT to describe rotating fluids
we’'ll consider several fixed bulk geometries
one of these geometries has classical 'problems’ (CTC)
suggest that holographic rotating fluids may be viewed either
* as genuine rotating near-perfect Bose or Fermi gases
* Or as analogue-gravity set ups for acoustics/optics in rotating media

» will assemble a collection of pieces of evidence for the latter

@ so perhaps bulk problematic geometries can have sensible
holographic interpretations

Rob Leigh (PI1+UIUC) 2/35
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Holographic Fluids

Rotating Holographic Fluids

@ Starting from a 3 + 1-dim asymptotically AdS background, a
2 + 1-dim holographic dual is endowed with a set of boundary
data

» boundary frame
» boundary stress current (energy-momentum tensor)
@ Within hydrodynamics, data interpreted as a 2 + 1-dim fluid
moving in a background — generically with vorticity
@ we'll consider fixed backgrounds in this talk

» AdS-Schwarzchild (S)
» AdS—Kerr (K)
» (Lorentzian) AdS—Taub-NUT (TN)

— exact bulk solutions that will serve to illustrate various
properties (all are stationary, axially symmetric)

Rob Leigh (PI1+UIUC)

Page 4/39



Holographic Fluids

Holographic Fluids

@ here we're using a bottom-up approach to holography
@ bulk 4-dim asymptotically AdS geometry, with A = —3/L?

@ typically use coordinates in which the conformal boundary is a
constant-r — oo slice

@ the bulk metric encodes a boundary metric as well as the
expectation value of the energy-momentum tensor of the dual
theory

@ for reasons that will become clear, we will use the Palatini
formalism and focus on an asymptotic co-frame E2

@ written in the Fefferman-Graham form, we have a metric

Rob Leigh (PI1+UIUC)
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Holographic Fluids

Holographic Fluids

@ can do radial slicing of bulk co-frame and connection

@ in absence of torsion, determined by the two coefficients e? and 2
in the asymptotic expansion of the co-frame E3(r, x)

L2 i
E%(r,x) = |€%(x) + ZF) + - | + F [F) + -]

@ Other coefficients are determined by e? and f2 and have
interesting geometrical interpretation (e.g., F? ~ Schouten tensor)

e? and 2 are boundary 1-forms and play the role of
canonically-conjugate variables with respect to the radial evolution

Rob Leigh (PI1+UIUC) 5/35
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Holographic Fluids

Holographic Fluids

@ the co-frame e? determines the metric and f2 is interpreted as the
expectation value of the stress current of the dual boundary theory

@ here I'm using the term stress current to refer to the
diffeomorphism current, and it determines the usual notion of T,
via

kf8=T(e? )= Tae’

@ in all of the backgrounds that we will consider, the boundary
metric is conformal to

@ thus, a natural co-frame for the boundary is

e’ = dt — bi(x)dx!, e*=efdx, withaj = dape

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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Holographic Fluids

The Randers Frame

@ we refer to this as the Randers co-frame and b = b;dx' is the
Randers 1-form (see also )

@ the corresponding Randers frame is

Randers frame

€ =0  €,=cn(0i+bi(x)3), withe,e] =43

@ the Randers frame is , Ve,€ =0

@ so the boundary data, as we've described it, corresponds to a
relativistic fluid, as seen by a co-moving observer

@ the velocity vector field of the fluid is u = e,.
9

Rob Leigh (PI1+UIUC)
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Holographic Fluids

Holographic Fluids

@ in the backgrounds we’ll consider, the stress current takes the
perfect fluid form, and is conformal (E = 2p)

f0=-28° fr=¢g
@ this corresponds to

T( eas Qb) =

Rob Leigh (PI1+UIUC)

Pirsa: 12020126 Page 9/39



Holographic Fluids

Holographic Fluids

@ in the coordinate basis, we have

v =0

—2kb;

Perimeter: Feb 10,2012  9/35
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Holographic Fluids

General Fluid Properties

@ given a generic normalized vector field u, in a coordinate basis we
decompose
1

Vuu, =-u,a, +ou + 5

©h,, + w,

where

h.., = u,u, + g,.: projector/metric on the transverse space
a, = u”V,u,: acceleration — transverse

o, Symmetric traceless part — shear

© = V,u": trace — expansion

wy - antisymmetric part — vorticity

1 1
w = 2deX” N dX” = 2(du + un a)

The fluid may be perfect or not

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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Holographic Fluids

Holographic Fluids

@ in all of the cases that we’ll consider, the fluid is inertial (a = 0),
shearless (o = 0) and expansionless (© = 0). It is also geodesic

(here E, p are constants)

@ to deduce the coefficients n and ¢, we would need to look at
transport — i.e. vary the metric

@ (have not included here parity-violating effects)

@ we do have vorticity in general though, determined by the Randers
1-form

Rob Leigh (PI+UIUC) Vorticity Perimeter: Feb 10,2012  11/35
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Holographic Fluids

Magnetic Analogue

@ note that vorticity is the analogue of a magnetic field, in that it
appears in the same place in the FG expansion

» given a bulk gauge field

Ar,X) = (3,00 + - 1+ S [pu(x) + ..

charge density is given by po = (jo), @ has the interpretation of a
chemical potential, and the (transverse) magnetic field is given by
B = c’fa,;aj
@ the analogue to magnetic fields runs deep — experiments on
rotating superfluids, for example, show the quantum Hall effect in
the absence of magnetic fields and charge

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 12/35
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AdS~Schwarzchild

AdS-Schwarzchild

@ let’s begin with the simplest example, the AdS—Schwarzchild black
hole

@ the usual metric ds® = Vd(’% — V(r)dt? + r2s;dx'dx/ with

e 2M
V(r):1+ﬁ—7

@ the FG expansion gives the Randers co-frame as
e =dt, e*=¢"dx

and 1
= _ML?
"3

@ here the fluid is irrotational (b = 0)

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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AdS-Kerr: the solid rotation

@ now add rotation: the AdS—Kerr black hole

The bulk data

" 2
ds? = 85 — V(7,9) [dt — Zsin? 9 dy]

2 in YA, ’ 2
+ £ dg? + ST g0 [adt— f;aquD]

V(F,9) = A/, with

A = (FP+a°) (1+7/L?) —2MF
2 =T+ a%cos?d
Ay =1-—(a/L)?cos?¥
=1—(a/L)?

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012
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AdS—Kerr

The boundary metric — following FG expansion

.sa:sig2 19dt,0

@ spatial section: squashed 2-sphere
@ here the Randers 1-formis b = a-ﬁ-iggi‘-’-dnp and the vorticity is

g
2=

w=%w=

sin29dvy A dy =

@ the dual fluid is perfect, conformal and rotating, with smooth
vorticity

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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AdS-Taub-NUT

AdS—Taub-NUT

@ the Lorentzian AdS—TN black hole gives also the Randers form
@ the bulk metric can be written

The bulk data

2

ds? = 92 — V(F)[dt — 2ncosd dy]? + p? [dﬁ? +sin?9dy

V(7)
V(F) = 8/, with

A = (F2—n?) (1+ (F2+3n%) /L?) + 4n°F? /L% — 2MF
P2 =Py

@ No rotation parameter a, but NUT charge n
@ a solution to Einstein egs. with peculiar properties

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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AdS-Taub-NUT

AdS—Taub-NUT

@ Taub—NUT: rich geometry — foliation over squashed 3-spheres
with SU(2) x U(1) isometry (homogeneous and axisymmetric)

» horizon at r = ry # n: 2-dim fixed locus of —2nd; — bolt (Killing
becoming light-like)
» extra fixed point of 9, — 4nd; on the horizon at ¥ = =

(coordinate singularity if t £ t + 87mn)
@ compare to Kerr: stationary (rotating) black hole

» horizon at r = r,.: fixed locus of d; + 240, — bolt
» pair of NUT-anti-NUT at r = ry,¥ = 0, 7 (fixed points of d,,)
connected by a Misner string

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012

Pirsa: 12020126 Page 18/39



AdS-Taub-NUT

AdS—Taub-NUT

Pictorially: NUTs and Misner strings

Figure: Kerr vs. Taub—NUT

How is Taub—NUT related to rotation?

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 18/35
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AdS-Taub-NUT

AdS—-TN

The boundary metric — following FG expansion

2n(cos vy — 1)dyp

@ here the Randers 1-formis b = —4nsin?(¥/2)dy

@ in this case, there is a subtlety in the vorticity: u = —eP is
ill-defined at v = 7

1 n

e' N e? - L—Zéz(a—w)

@ this looks like

for the same reason the bulk LC connection has a §-function, or a smooth connection has torsion with -function support

- this is the Misner string

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 19/35
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AdS-Taub-NUT

@ the Misner string is physical (if time is Lorentzian and
non-compact), and cloaked by a region of CTC

»  is compact coordinate, but g, goes through zero at
v = ¥, = 2arctan(L/2n)

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 20/35
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AdS-Taub-NUT

AdS—-TN

@ the stress current takes the same form as before

» thus this is the same fluid, but with a different Randers frame
» the bulk Misner string extends radially out to a “Misner vortex" that
we've located at ¢ = m, still cloaked by a region of CTCs

@ the total vorticity of the fluid reproduces the NUT charge

@ this is a Dirac monopole-like vortex
@ AdS-Kerr gives a dipole, without net NUT charge, |, ew=20

@ there is presumably a multipole generalization, e.g.,
w~ Py_y(cosd)e' Ae? —(S:¢4=0,TN:/=1,K: ¢ =2)

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012
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AdS-Taub-NUT

AdS—-TN

@ near € = 0, the boundary metric becomes (for both K and TN) the
Som-Raychaudri metric, correspondingto (p ~ ¥ << 1, Q2 ~ a, n)

e ~ dt + Qp?ds, e ~dp, €°~ pdo

this is in fact a solution to Einstein egs. with rotating charged dust;
it is of Gédel type, and has CTCs for p > 1/Q

@ the full Kerr boundary metric has no CTCs, but TN does.

@ near 9 ~ 7, the Kerr bdy. metric is again Som-Raychaudri, but the
TN bdy. metric

e’ ~ dt + (4n— np?/L?)do, €' ~dp, €°~ pds

“spinning string" or vortex metric

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 22/35
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AdS-Taub-NUT

Spinning string metric

@ according to Chapline & Mazur, given a vortex in a superfluid,
solutions of Schrodinger equation in an effective metric of this
form reproduce superfluid hydrodynamic properties

@ such effective vortex metrics are such that the vortex is
surrounded by a region of CTCs

@ note though that this is a neutral fluid (i.e., not a superfluid vortex)

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 23/35
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AdS-Taub-NUT

Spinning string metric

@ according to Chapline & Mazur, given a vortex in a superfluid,
solutions of Schrodinger equation in an effective metric of this
form reproduce superfluid hydrodynamic properties

@ such effective vortex metrics are such that the vortex is
surrounded by a region of CTCs
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Perimeter: Feb 10, 2012 23/35
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AdS-Taub-NUT

The Zermelo Frame

@ the Randers frame is inertial: the integral lines of g, = 0; are
geodesics (g, generates geodesic congruence)

@ vorticity shows up as the rotation of the spatial frame along the
congruence

Vera = wapn €,

@ the fluid’s physical surfaces consist of points synchronous in this
frame. Since dt(9;) = 0, we can define a physical orthonormal
spatial frame z,, = L{,,aj. These do not coincide with e,,.

@ an orthonormal Lorentz frame is then given by

2o %(at W), z, =Ly

2% =~dt, z%=L%dx' — W'dt)

v 2=1-abb;, W =—~2alb

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012
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AdS-Taub-NUT

The Zermelo Frame

@ this frame of reference is known as the Zermelo frame

@ it has an old interpretation in terms of minimum time problems for
a ship sailing in a wind W'

@ in this frame, the boundary metric reads

g =} [-df? + hj(dx’ — Widt) (dx/ — Widt)]

hj = MNaj — bib)) = AL L% 6ag, A=1/.

@ this is a non-inertial frame, V, z, # 0 — Zermelo observers see a
rotating fluid

@ the Fermi derivative, which disentangles the intrinsic fluid rotation
from that of the frame motion is

al i\
=52 (20

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 25/35
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AdS-Taub-NUT

The Zermelo Frame

@ at each point, W' are the components of the relative velocity of the
two observers

e for AdS—Kerr, the Fermi derivative vanishes and W = —a/L?e,:
the Zermelo metric can be made conformal to a static metric by a
global Lorentz boost

@ for AdS—TN, this is not possible

» the fluid velocity in the Zermelo frame has norm
I|V|| =2n/Ltan(6/2), which exceeds unity at § > 6., which
coincides with the region of CTC

» indeed, the (local) Lorentz transformation between Randers and
Zermelo goes singular there

@ so a fluid observer can’t boost himself into the synchronous frame

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 26/35
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AdS-Taub-NUT

Acoustic Metrics

@ note also that the Zermelo form of the metric belongs to the class
of acoustic metrics

ds? — P (—cgonr2 + hy(dx’ — Widt)(dx — wfdt))

Cs

that describes sound propagation in a (perfect) classical fluid,
where

a
cs =1 /\/62 (p, p = local mass density and pressure

h,} is local geometry supporting fluid

W/ is the local fluid velocity field

@ sound propagates on the acoustic cone (null surfaces)
Q

» the CTC boundary would then be interpreted as an acoustic horizon

Rob Leigh (Pl1+UIUC) Perimeter: Feb 10, 2012 27/35
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AdS-Taub-NUT

Acoustic Metrics

@ the notion of acoustic horizons (“dumb holes") has been
considered in the past in a holographic context in much simpler
geometries

@ engineer holographic geometries that have boundary metric with
acoustic horizon

@ can look at behavior of plane-wave excitations — become rapidly

oscillating near the horizon, inside horizon all modes become
right-moving

@ would like to find evidence that the holographic fluid should be
interpreted in this way

Perimeter: Feb 10, 2012 28/35
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AdS-Taub-NUT

Holography of AdS—TN

@ in the rest of the talk, | will describe simple attempts to understand
the holographic physics
@ we are far from a complete picture

@ so consider a massive bulk scalar field propagating on the
AdS-TN geometry

@ AdS-TN has SU(2) x U(1) isometry and scalar solutions will
organize in representations.

e the generators are (introduce x = sin®6/2, x € [0, 1])
—i0y = —i&g
—i(0p — 2N04)

jet!e (Zn X Ot Fiv/x(1 — x)0x + 3 Ul

1—Xx x(1—x

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 29/35
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AdS-Taub-NUT

Holography of AdS—TN

@ the SU(2) generator is twisted with o;
Lz = —i(0, — 2n0})

eXbd(t, ¢) = d(t — 2nx, d + X)

@ consequently, scalar modes of L3 = m, H = w will have the form

d(r,t, x,p) = Z‘mefx

@ for brevity, we will write 2 = 2nw

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 30/35

Pirsa: 12020126 Page 32/39



Pirsa: 12020126

AdS-Taub-NUT

Holography of AdS—TN

@ the resulting Klein-Gordon operator for mass . is

Klein-Gordon

O [(r? + P)V(r)o,] + (r* + r?) (%

= #2) ~C+ 92] Opmow(F, X) =

@ where C is the SU(2) Casimir

(Q+ (2x — 1)m)?
4x(1 — x)

@ the KG equation is fully separable in the form (for any mass u)

¢mwrx ZHAw YAmQ X)

C = —0x[x(1 — X)Ox] + m* +

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 31/35
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AdS-Taub-NUT

Holography of AdS—TN

D m(r, X) Zﬁ‘m r)Yama(X)

where

C[YA,m,Q] = (A + Qz) Y)s,m,Q

8, [(~2 + V(1) R, ()] + [(r 1) (Wi) _ ) ] By (r) = 0

e the functions Yy n o[x]€(™~2™) are deformed spherical
harmonics, and form representations of su(2)

@ they are hypergeometrics (C = q(qg+ 1))
Yamalx] ~ xEM=2/2(1 _ ) (m+/2, F, (1 1 g+ m, —g+m, 1+ (m—); x)

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 32/35
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AdS-Taub-NUT

Holography of AdS—TN

@ as we've seen, the boundary space-time is smooth near x = 0, so
we should require that the solutions are well-defined there.
Depending on (m,w) this removes one solution.

@ for w = 0, there is a complete basis of unitary representations
(spherical harmonics), and these are finite at x = 1 as well

@ generally, we have

XYy mw(X) = €M Yy my(X)

and so if we require a faithful representation, we conclude m € Z

@ one can show that L. shift mby =1, and thus we get either finite
dimensional reps (g € Z) or non-unitary infinite dimensional reps

@ careful study of the hypergeometrics show that solutions are
singular at x = 1 unless (2| is bounded (essentially by |m|).

Rob Leigh (PI+UIUC) Perimeter: Feb 10, 2012 33/35
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AdS-Taub-NUT

Holography of AdS—TN

@ the 2 outside this range, solutions blow up near x = 1, are
non-normalizable in the KG norm and are ;

» traversing a circle near x = 1 (at constant time), they pick up a
phase |
O(t,p+2mx ~1) = e 2™t p, x ~ 1)

@ this phase (and the blowing up of solutions) is the manifestation of
the Misner vortex at x = 1. This is avoided only for quantized w —
one would get such a quantization by insisting on the solutions
being L2[0, 1].

@ perhaps the conclusion that should be drawn is that a complete

set of solutions can be constructed, but L, should not be the
criterion

» perhaps infalling at the CTC horizon??

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 34/35
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Holography of AdS—TN
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AdS-Taub-NUT

Holography of AdS—TN

@ let's think about the separable solutions that we've tried to find.

@ the full geometry has a region of CTC, and the boundary of that
region is a curve in (x, r) extending from the horizon to the
asymptotic boundary

@ the separated KG equation retains no memory of that
@ we have also been unable to find normalizable solutions

@ so perhaps the bulk solutions that we are interested in satisfy a
boundary condition along the boundary of the CTC region — such
solutions would be non-separable

Perimeter: Feb 10, 2012 35/35
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Conclusions

@ there has been a great deal of work in the literature engineering
bulk geometries that reproduce specific hydrodynamics

@ here we've considered specific bulk geometries with ‘interesting’
properties and attempt to give them a sensible boundary
interpretation

@ the scalar probe shows some interesting behaviors, but the details
remain to be understood.

Rob Leigh (PI1+UIUC) Perimeter: Feb 10, 2012 36/35
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