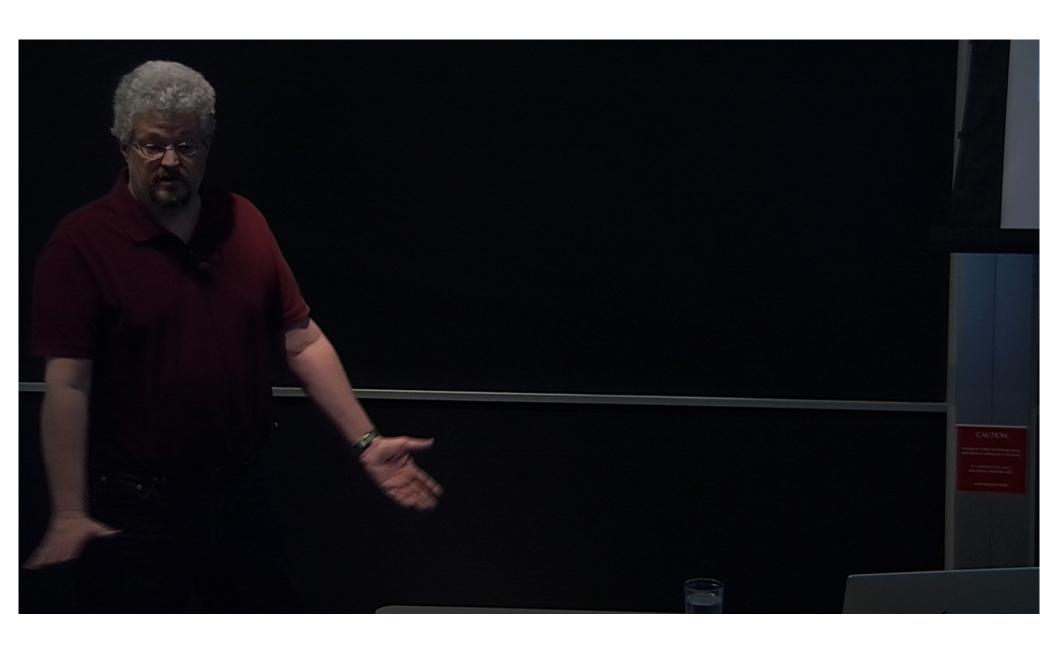
Title: Vorticity and Holography

Date: Feb 10, 2012 11:00 AM

URL: http://pirsa.org/12020126

Abstract: Three-dimensional fluids with nontrivial vorticity can be described holographically. It is well-known that the Kerr-AdS geometry gives rise to a 'cyclonic' flow. Lorentzian Taub--NUT--AdS_4 geometries give rise to a rotating fluid with vortex flow.

Pirsa: 12020126 Page 1/39



Pirsa: 12020126 Page 2/39

Motivations Basic Properties Aim focus of this talk: consider AdS/CFT to describe rotating fluids we'll consider several fixed bulk geometries one of these geometries has classical 'problems' (CTC) suggest that holographic rotating fluids may be viewed either * as genuine rotating near-perfect Bose or Fermi gases ★ or as analogue-gravity set ups for acoustics/optics in rotating media [see also Schäfer et al. '09, Das et al. '10] will assemble a collection of pieces of evidence for the latter so perhaps bulk problematic geometries can have sensible holographic interpretations

Rob Leigh (PI+UIUC) Vorticity Perimeter: Feb 10, 2012 2 / 35

Pirsa: 12020126 Page 3/39

Basic Properties

Rotating Holographic Fluids

- ullet Starting from a 3 + 1-dim asymptotically AdS background, a 2 + 1-dim holographic dual is endowed with a set of boundary data
 - boundary frame
 - boundary stress current (energy-momentum tensor)
- Within hydrodynamics, data interpreted as a 2 + 1-dim fluid moving in a background – generically with vorticity
- we'll consider fixed backgrounds in this talk
 - AdS–Schwarzchild (S)
 - AdS–Kerr (K)
 - (Lorentzian) AdS—Taub-NUT (TN)
 - exact bulk solutions that will serve to illustrate various properties (all are stationary, axially symmetric)

4 D > 4 D > 4 E > 4 E > E 9 Q C

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- here we're using a bottom-up approach to holography
- bulk 4-dim asymptotically AdS geometry, with $\Lambda = -3/L^2$
- typically use coordinates in which the conformal boundary is a constant- $r \to \infty$ slice
- the bulk metric encodes a boundary metric as well as the expectation value of the energy-momentum tensor of the dual theory
- for reasons that will become clear, we will use the Palatini formalism and focus on an asymptotic co-frame E^a
- written in the Fefferman-Graham form, we have a metric

$$ds^2 = L^2 \frac{dr^2}{r^2} + \frac{r^2}{L^2} \eta_{ab} E^a(r, x) E^b(r, x)$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- can do radial slicing of bulk co-frame and connection
- in absence of torsion, determined by the two coefficients e^a and f^a in the asymptotic expansion of the co-frame $E^a(r,x)$

$$E^{a}(r,x) = \left[e^{a}(x) + \frac{L^{2}}{r^{2}}F^{a}(x) + \cdots\right] + \frac{L^{3}}{r^{3}}\left[f^{a}(x) + \cdots\right]$$

 Other coefficients are determined by e^a and f^a and have interesting geometrical interpretation (e.g., F^a ~ Schouten tensor)

 e^a and f^a are boundary 1-forms and play the role of canonically-conjugate variables with respect to the radial evolution

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- the co-frame e^a determines the metric and f^a is interpreted as the expectation value of the stress current of the dual boundary theory
- here I'm using the term stress current to refer to the diffeomorphism current, and it determines the usual notion of $T_{\mu\nu}$ via

$$\kappa f^a = T(e^a, \cdot) = T^a_b e^b$$

 in all of the backgrounds that we will consider, the boundary metric is conformal to

$$ds^2 = -(dt - b_i(x)dx^i)^2 + a_{ij}(x)dx^idx^j$$

• thus, a natural co-frame for the boundary is

$$e^0 = dt - b_i(x)dx^i, \qquad e^{\alpha} = \varepsilon_i^{\alpha}dx^i, \qquad \text{with } a_{ij} = \delta_{\alpha\beta}\varepsilon_i^{\alpha}\varepsilon_i^{\beta}$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

H	olog	ıraı	ohi	c	Flu	id	9
	SIOE	, .	9 1111	•		•	•

Randers Frame

The Randers Frame

- we refer to this as the Randers co-frame and $b = b_i dx^i$ is the Randers 1-form [Randers '41] (see also [Gibbons '08])
- the corresponding Randers frame is

Randers frame

$$\underline{\boldsymbol{e}}_{0} = \partial_{t}, \qquad \underline{\boldsymbol{e}}_{\alpha} = \varepsilon_{\alpha}^{i} \left(\partial_{i} + \boldsymbol{b}_{i}(\boldsymbol{x}) \partial_{t} \right), \quad \text{ with } \varepsilon_{\alpha}^{i} \varepsilon_{I}^{\beta} = \delta_{\beta}^{\alpha}$$

- ullet the Randers frame is co-moving, $abla_{\underline{e}_0}\underline{e}_0=0$
- so the boundary data, as we've described it, corresponds to a relativistic fluid, as seen by a co-moving observer
- the velocity vector field of the fluid is $\underline{u} = \underline{e}_0$.
- the kinematical properties of the fluid are encoded entirely in the leading term of the FG expansion

(D) (D) (E) (E) (E) (9 Q (

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

• in the backgrounds we'll consider, the stress current takes the perfect fluid form, and is conformal (E = 2p)

$$f^0 = -2e^0, \quad f^\alpha = e^\alpha$$

this corresponds to

$$T(e^a, \underline{e}_b) = \kappa f^a(\underline{e}_b)$$

or

$$T_{00}=2\kappa, \qquad T_{lphaeta}=\kappa\delta_{lphaeta}$$

or

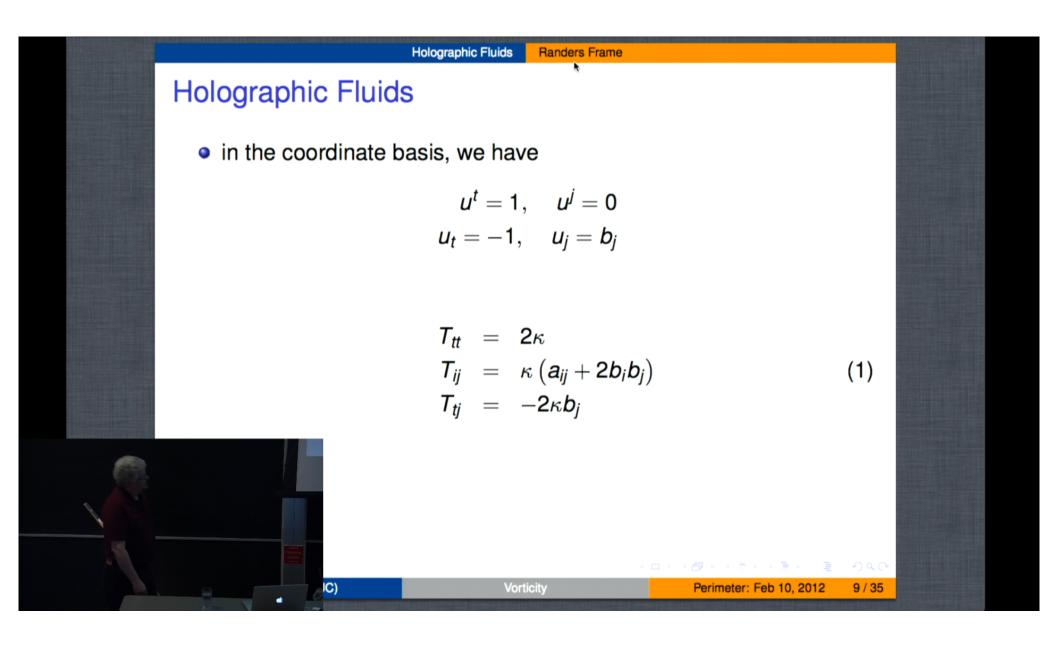
$$T^{ab} = \kappa \left(\eta^{ab} + 3 u^a u^b
ight) \equiv p \eta^{ab} + (E + p) u^a u^b$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

FABRABA B POCH



Pirsa: 12020126 Page 10/39

General Fluid Properties

• given a generic normalized vector field \underline{u} , in a coordinate basis we decompose [Ehlers '61]

$$abla_{\mu}u_{
u}=-u_{\mu}a_{
u}+\sigma_{\mu
u}+rac{1}{2}\Theta h_{\mu
u}+\omega_{\mu
u}$$

where

• $h_{\mu\nu} = u_{\mu}u_{\nu} + g_{\mu\nu}$: projector/metric on the transverse space

• $a_{\mu} = u^{\nu} \nabla_{\nu} u_{\mu}$: acceleration – transverse

• $\sigma_{\mu\nu}$: symmetric traceless part – shear

• $\Theta = \nabla_{\mu} \mathbf{u}^{\mu}$: trace – expansion

• $\omega_{\mu\nu}$: antisymmetric part – *vorticity*

$$\omega = rac{1}{2}\omega_{\mu
u}\mathsf{d}x^{\mu}\wedge\mathsf{d}x^{
u} = rac{1}{2}(\mathsf{d}u + u\wedge a)$$

The fluid may be perfect or not

$$T_{\mathsf{visc}} = -\left(2\eta\sigma^{ab} + \zeta h^{ab}\Theta\right)\underline{e}_{a}\otimes\underline{e}_{b}$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

• in all of the cases that we'll consider, the fluid is inertial (a = 0), shearless $(\sigma = 0)$ and expansionless $(\Theta = 0)$. It is also geodesic

[Caldarelli et al. '08]

$$\nabla_{\mathbf{u}}E=0$$

$$\nabla p + u \nabla_{\mathbf{u}} p = 0$$

(here E, p are constants)

- to deduce the coefficients η and ζ , we would need to look at transport i.e. vary the metric
- (have not included here parity-violating effects)
- we do have *vorticity* in general though, determined by the Randers
 1-form

$$\omega = \frac{1}{2}du = \frac{1}{2}db$$

Page 11 of 36

Vorticity

日子《母子《意》《意》 意 约0(

Perimeter: Feb 10, 2012

11 / 35

Rob Leigh (PI+UIUC)

Magnetic Analogue

- note that vorticity is the analogue of a magnetic field, in that it appears in the same place in the FG expansion
 - given a bulk gauge field

$$A_{\mu}(r,x)=[a_{\mu}(x)+\ldots]+\frac{L}{r}[\rho_{\mu}(x)+\ldots]$$

charge density is given by $\rho_0 \equiv \langle j_0 \rangle$, a_0 has the interpretation of a chemical potential, and the (transverse) magnetic field is given by $B = \epsilon^{ij} \partial_i a_j$

 the analogue to magnetic fields runs deep – experiments on rotating superfluids, for example, show the quantum Hall effect in the absence of magnetic fields and charge

4 m > 4 m >

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Schwarzchild

- let's begin with the simplest example, the AdS-Schwarzchild black hole
- ullet the usual metric $ds^2=rac{dr^2}{V(r)}-V(r)dt^2+r^2\delta_{ij}dx^idx^j$ with

$$V(r)=1+\frac{r^2}{L^2}-\frac{2M}{r}$$

• the FG expansion gives the Randers co-frame as

$$e^0=dt, \quad e^lpha=\delta^lpha_j dx^j$$

and

$$\kappa = \frac{1}{3}ML^2$$

• here the fluid is irrotational (b = 0)

4 D > 4 D > 4 E > 4 E > E + 9 Q (

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Kerr: the solid rotation

now add rotation: the AdS–Kerr black hole

The bulk data

$$\begin{split} \mathsf{d}s^2 &= \frac{\mathsf{d}\tilde{r}^2}{V(\tilde{r},\vartheta)} - V(\tilde{r},\vartheta) \left[\mathsf{d}t - \frac{a}{\Xi} \sin^2\vartheta \, \mathsf{d}\varphi \right]^2 \\ &+ \frac{\rho^2}{\Delta_\vartheta} \mathsf{d}\vartheta^2 + \frac{\sin^2\vartheta\Delta_\vartheta}{\rho^2} \left[a \, \mathsf{d}t - \frac{r^2 + a^2}{\Xi} \, \mathsf{d}\varphi \right]^2 \end{split}$$

$$V(\tilde{r},\vartheta) = \Delta/\rho^2$$
 with

$$\Delta = (\tilde{r}^2 + a^2) (1 + \tilde{r}^2/L^2) - 2M\tilde{r}$$

$$\rho^2 = \tilde{r}^2 + a^2 \cos^2 \vartheta$$

$$\Delta_{\vartheta} = 1 - (a/L)^2 \cos^2 \vartheta$$

$$\Xi = 1 - (a/L)^2$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Kerr

The boundary metric – following FG expansion

$$\begin{split} \mathrm{d} s_{\mathrm{bry.}}^2 &= \eta_{ab} e^a e^b = g_{(0)\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu \\ &= - \left(\mathrm{d} t - \frac{a \sin^2 \vartheta}{\Xi} \mathrm{d} \varphi \right)^2 + \frac{L^2}{\Delta_\vartheta} \left(\mathrm{d} \vartheta^2 + \left(\frac{\Delta_\vartheta \sin \vartheta}{\Xi} \right)^2 \mathrm{d} \varphi^2 \right) \end{split}$$

- spatial section: squashed 2-sphere
- here the Randers 1-form is $b = \frac{a \sin^2 \theta}{\Xi} d\varphi$ and the vorticity is

$$\omega = \frac{1}{2}db = \frac{a}{2\Xi}\sin 2\vartheta d\vartheta \wedge d\varphi = \frac{a}{L^2}\cos \vartheta e^1 \wedge e^2$$

 the dual fluid is perfect, conformal and rotating, with smooth vorticity [see also Caldarelli, Dias, Klemm '08]

- 4 日 2 4 m 2 2 4 差 2 4 差 2 9 Q C

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Taub-NUT

- the Lorentzian AdS-TN black hole gives also the Randers form
- the bulk metric can be written

The bulk data [Taub '51, Newman, Tamburino, Unti '63]

$$\mathrm{d} s^2 = rac{\mathrm{d} ilde{r}^2}{V(ilde{r})} - V(ilde{r}) \left[\mathrm{d} t - 2n\cos\vartheta\,\mathrm{d}arphi
ight]^2 +
ho^2 \left[\mathrm{d} artheta^2 + \sin^2\vartheta\,\mathrm{d}arphi
ight]^2$$

$$V(\tilde{r}) = \Delta/\rho^2$$
 with

$$\Delta = (\tilde{r}^2 - n^2) (1 + (\tilde{r}^2 + 3n^2)/L^2) + 4n^2\tilde{r}^2/L^2 - 2M\tilde{r}$$
 $\rho^2 = \tilde{r}^2 + n^2$

- No rotation parameter a, but NUT charge n
- a solution to Einstein eqs. with peculiar properties[Misner '63]

4 U > 4 O > 4 E > 4 E > E 900

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Taub-NUT

- Taub–NUT: rich geometry foliation over squashed 3-spheres with $SU(2) \times U(1)$ isometry (homogeneous and axisymmetric)
 - ▶ horizon at $r = r_+ \neq n$: 2-dim fixed locus of $-2n\partial_t \rightarrow bolt$ (Killing becoming light-like)
 - extra fixed point of $\partial_{\varphi} 4n\partial_t$ on the horizon at $\vartheta = \pi$

NUT at $r = r_+$, $\vartheta = \pi$ from which departs a *Misner string*

(coordinate singularity if $t \not\cong t + 8\pi n$) [Misner '63]

- compare to Kerr: stationary (rotating) black hole
 - ▶ horizon at $r = r_+$: fixed locus of $\partial_t + \Omega_H \partial_\varphi \rightarrow \text{bolt}$
 - pair of NUT–anti-NUT at $r=r_+, \vartheta=0, \pi$ (fixed points of ∂_{φ}) connected by a Misner string

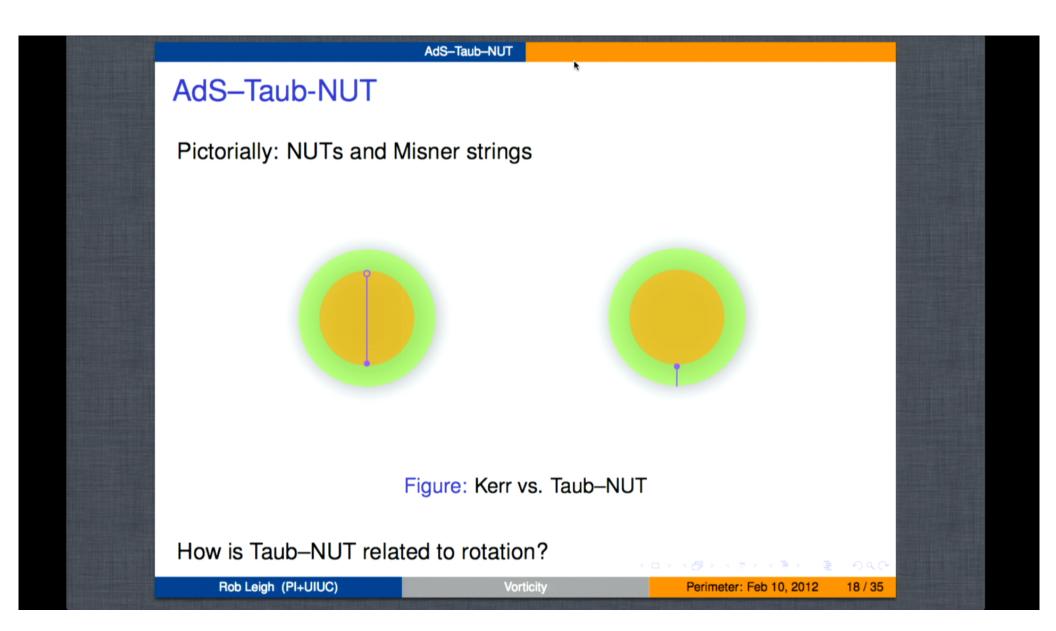
Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

17 / 35

Pirsa: 12020126 Page 18/39



Pirsa: 12020126 Page 19/39

AdS-TN

The boundary metric – following FG expansion

$$\mathrm{d} s^2_{\mathrm{bry.}} = \eta_{ab} e^a e^b = g_{(0)\mu
u} \mathrm{d} x^\mu \mathrm{d} x^
u
onumber
onum$$

- here the Randers 1-form is $b = -4n \sin^2(\vartheta/2) d\varphi$
- in this case, there is a subtlety in the vorticity: $u=-e^0$ is ill-defined at $\vartheta=\pi$

$$\omega = \frac{1}{2}db = -\frac{n}{L^2}e^1 \wedge e^2 - \frac{n}{L^2}\delta_2(\theta - \pi)$$

this looks like rotation plus a point vortex

for the same reason the bulk LC connection has a δ -function, or a smooth connection has torsion with δ -function support

this is the Misner string

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

non-compact), and cloaked by a region of CTC

• φ is compact coordinate, but $g_{\varphi\varphi}$ goes through zero at $\vartheta = \vartheta_c = 2 \arctan(L/2n)$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-TN

- the stress current takes the same form as before
 - thus this is the same fluid, but with a different Randers frame
 - the bulk Misner string extends radially out to a "Misner vortex" that we've located at $\vartheta=\pi$, still cloaked by a region of CTCs
- the total vorticity of the fluid reproduces the NUT charge

$$n = -\frac{1}{4\pi} \int_{S^2} \omega$$

- this is a Dirac monopole-like vortex
- AdS–Kerr gives a dipole, without net NUT charge, $\int_{S^2} \omega = 0$
- there is presumably a multipole generalization, e.g., $\omega \sim P_{\ell-1}(\cos \vartheta)e^1 \wedge e^2 \quad :- (S: \ell = 0, TN: \ell = 1, K: \ell = 2)$

4 D > 4 B > 4 B > 4 B > 1 B 9 9 9

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-TN

• near $\theta=0$, the boundary metric becomes (for both K and TN) the Som-Raychaudri metric, corresponding to $(\rho \sim \vartheta << 1, \Omega \sim a, n)$

$$e^0 \simeq dt + \Omega
ho^2 d\phi, \quad e^1 \simeq d\rho, \quad e^2 \simeq
ho d\phi$$

this is in fact a solution to Einstein eqs. with rotating charged dust; it is of Gödel type, and has CTCs for $\rho > 1/\Omega$

- the full Kerr boundary metric has no CTCs, but TN does.
- near $\vartheta \sim \pi$, the Kerr bdy. metric is again Som-Raychaudri, but the TN bdy. metric

$$e^0 \simeq dt + (4n - n\rho^2/L^2)d\phi, \quad e^1 \simeq d\rho, \quad e^2 \simeq \rho d\phi$$

"spinning string" or vortex metric [Chapline & Mazur 09]

- 4 ロ > 4 回 > 4 回 > 4 回 > 4 回 > 1 回 9 Q C

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Taub-NUT

Spinning string metric

- according to Chapline & Mazur, given a vortex in a superfluid, solutions of Schrodinger equation in an effective metric of this form reproduce superfluid hydrodynamic properties
- such effective vortex metrics are such that the vortex is surrounded by a region of CTCs
- so perhaps there is a holographic interpretation of AdS-TN in terms of a rotating vortex fluid. The apparently sick region of CTCs in the bulk geometry is reinterpreted as the analogue metric surrounding a vortex
- note though that this is a neutral fluid (i.e., not a superfluid vortex)

4 D > 4 D > 4 E > 4 E > 4 E > 9 Q (

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

23 / 35

Pirsa: 12020126 Page 24/39

AdS-Taub-NUT Spinning string metric according to Chapline & Mazur, given a vortex in a superfluid, solutions of Schrodinger equation in an effective metric of this form reproduce superfluid hydrodynamic properties such effective vortex metrics are such that the vortex is surrounded by a region of CTCs so perhaps there is a holographic interpretation of AdS–TN in terms of a rotating vortex fluid. The apparently sick region of CTCs in the bulk geometry is reinterpreted as the analogue metric surrounding a vortex note though that this is a neutral fluid (i.e., not a superfluid vortex) Vorticity Perimeter: Feb 10, 2012 23 / 35

Pirsa: 12020126 Page 25/39

The Zermelo Frame

- the Randers frame is inertial: the integral lines of $\underline{e}_0 = \partial_t$ are geodesics (\underline{e}_0 generates geodesic congruence)
- vorticity shows up as the rotation of the spatial frame along the congruence

$$abla_{oldsymbol{\underline{e}}_0} oldsymbol{\underline{e}}_lpha = \omega_{lphaeta} \eta^{eta\gamma} oldsymbol{\underline{e}}_\gamma$$

- the fluid's *physical surfaces* consist of points synchronous in this frame. Since $dt(\partial_j) = 0$, we can define a physical orthonormal spatial frame $\underline{z}_{\alpha} = L^j_{\alpha} \partial_j$. These do not coincide with \underline{e}_{α} .
- an orthonormal Lorentz frame is then given by

$$egin{align} & \underline{z}_0 = rac{1}{\gamma}(\partial_t + W^i\partial_i), \quad \underline{z}_lpha = L^j_lpha\partial_j \ & z^0 = \gamma dt, \quad z^lpha = L^lpha_i(dx^i - W^idt) \ \end{matrix}$$

with

$$\gamma^{-2} = 1 - a^{ij}b_ib_j, \quad W^i = -\gamma^2 a^{ij}b_j$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

The Zermelo Frame

- this frame of reference is known as the Zermelo frame
- it has an old interpretation in terms of minimum time problems for a ship sailing in a wind Wⁱ
- in this frame, the boundary metric reads

$$\hat{g} = rac{1}{\lambda} \left[-dt^2 + h_{ij} (dx^i - W^i dt) (dx^j - W^j dt) \right] \ h_{ij} = \lambda (a_{ij} - b_i b_j) = \lambda L^{\alpha}{}_i L^{\beta}{}_j \delta_{\alpha\beta} \,, \quad \lambda \equiv 1/\gamma^2 \,.$$

- this is a non-inertial frame, $\nabla_{\underline{z}_0}\underline{z}_0 \neq 0$ Zermelo observers see a rotating fluid
- the Fermi derivative, which disentangles the intrinsic fluid rotation from that of the frame motion is

$$D_{\underline{z}_0}\underline{u} = \frac{a^{ij}}{\sqrt{\lambda}} \left(\left(\frac{\partial_i \lambda}{2\lambda} + \omega_{ik} b^k \right) L^{\alpha}_{j} \underline{z}_{\alpha} + \frac{\partial_i \lambda}{2\lambda} b_j \underline{e}_0 \right) .$$

- 4 ロッ 4 回 > 4 思 > 4 思 > - 夏 - かりの

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

The Zermelo Frame

- at each point, Wⁱ are the components of the relative velocity of the two observers
- for AdS–Kerr, the Fermi derivative vanishes and $W=-a/L^2\underline{e}_2$: the Zermelo metric can be made conformal to a static metric by a global Lorentz boost [Bhattacharyya et al, 08]
- for AdS–TN, this is not possible
 - the fluid velocity in the Zermelo frame has norm $||V|| = 2n/L \tan(\theta/2)$, which exceeds unity at $\theta > \theta_*$, which coincides with the region of CTC
 - indeed, the (local) Lorentz transformation between Randers and Zermelo goes singular there
- so a fluid observer can't boost himself into the synchronous frame

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

Acoustic Metrics

 note also that the Zermelo form of the metric belongs to the class of acoustic metrics

$$ds^2 = rac{
ho}{c_s} \left(-c_s^2 dt^2 + h_{ij} (dx^i - W^i dt) (dx^j - W^j dt)
ight)$$

that describes sound propagation in a (perfect) classical fluid, where

$$c_{S}=1/\sqrt{\frac{\partial \rho}{\partial p}}$$
 $(\rho, p=\ ext{local mass density and pressure}$

 h_{ij} is local geometry supporting fluid

 W^i is the local fluid velocity field

- sound propagates on the acoustic cone (null surfaces)
- should interpret the boundary metric of AdS–TN in terms of such an analogue geometry?
 - the CTC boundary would then be interpreted as an acoustic horizon

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Taub-NUT **Acoustic Metrics** the notion of acoustic horizons ("dumb holes") has been considered in the past in a holographic context in much simpler geometries [Das, et al] engineer holographic geometries that have boundary metric with acoustic horizon can look at behavior of plane-wave excitations — become rapidly oscillating near the horizon, inside horizon all modes become right-moving would like to find evidence that the holographic fluid should be interpreted in this way Vorticity Perimeter: Feb 10, 2012 28 / 35

Pirsa: 12020126 Page 30/39

- in the rest of the talk, I will describe simple attempts to understand the holographic physics
- we are far from a complete picture
- so consider a massive bulk scalar field propagating on the AdS–TN geometry
- AdS–TN has SU(2) × U(1) isometry and scalar solutions will organize in representations.
- the generators are (introduce $x \equiv \sin^2 \theta/2$, $x \in [0, 1]$)

$$H = -i\partial_{t} = -i\hat{e}_{0}$$

$$L_{3} = -i(\partial_{\varphi} - 2n\partial_{t})$$

$$L_{\pm} = ie^{\pm i\varphi} \left(2n\sqrt{\frac{x}{1-x}} \partial_{t} \mp i\sqrt{x(1-x)} \partial_{x} + \frac{1-2x}{2\sqrt{x(1-x)}} \partial_{\varphi} \right)$$
(2)

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

PARATA E VOCA

• the SU(2) generator is twisted with ∂_t

$$L_3 = -i(\partial_{\varphi} - 2n\partial_t)$$

and the orbits of the SU(2) will not be closed curves, but helices

$$e^{i\chi L_3}\Phi(t,\phi)=\Phi(t-2n\chi,\phi+\chi)$$

ullet consequently, scalar modes of $L_3=m,\,H=\omega$ will have the form

$$\Phi(r,t,x,\varphi) = \sum_{m,\omega} \Phi_{m,\omega}(r,x) e^{i(m-2n\omega)\varphi} e^{-i\omega t}$$

• for brevity, we will write $\Omega \equiv 2n\omega$

4 D > 4 D > 4 D > 4 D > 4 D > 10 P

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

• the resulting Klein-Gordon operator for mass μ is

Klein-Gordon

$$\left[\partial_r\left[(r^2+n^2)V(r)\partial_r\right]+(r^2+n^2)\left(\frac{\omega^2}{V(r)}-\mu^2\right)-C+\Omega^2\right]\Phi_{m,\omega}(r,x)=0$$

• where C is the SU(2) Casimir

$$C = -\partial_x [x(1-x)\partial_x] + m^2 + \frac{(\Omega + (2x-1)m)^2}{4x(1-x)}$$

• the KG equation is fully separable in the form (for any mass μ)

$$\Phi_{m,\omega}(r,x) = \sum_{\lambda} R_{\lambda,\omega}(r) Y_{\lambda,m,\Omega}(x)$$

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

$$\Phi_{m,\omega}(r,x) = \sum_{\lambda} R_{\lambda,\omega}(r) Y_{\lambda,m,\Omega}(x)$$

where

$$\begin{split} &C[Y_{\lambda,m,\Omega}] = (\lambda + \Omega^2) Y_{\lambda,m,\Omega} \\ &\partial_r \left[(r^2 + n^2) V(r) R'_{\lambda,\omega}(r) \right] + \left[(r^2 + n^2) \left(\frac{\omega^2}{V(r)} - \mu^2 \right) - \lambda \right] R_{\lambda,\omega}(r) = 0 \end{split}$$

- the functions $Y_{\lambda,m,\Omega}[x]e^{i(m-2n\omega)}$ are deformed spherical harmonics, and form representations of su(2)
- they are hypergeometrics (C = q(q + 1))

$$Y_{\lambda,m,\Omega}[x] \sim x^{\pm(m-\Omega)/2} (1-x)^{\pm(m+\Omega)/2} {}_2F_1(1+q\pm m,-q\pm m,1\pm(m-\Omega);x)$$

4 ロ > 4 回 > 4 回 > 4 回 > 4 回 > 1 回 り < (で)</p>

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- as we've seen, the boundary space-time is smooth near x=0, so we should require that the solutions are well-defined there. Depending on (m,ω) this removes one solution.
- for $\omega = 0$, there is a complete basis of unitary representations (spherical harmonics), and these are finite at x = 1 as well
- generally, we have

$$e^{i\chi L_3} Y_{\lambda,m,\omega}(x) = e^{im\chi} Y_{\lambda,m,\omega}(x)$$

and so if we require a faithful representation, we conclude $m \in \mathbb{Z}$

- one can show that L_{\pm} shift m by ± 1 , and thus we get either finite dimensional reps ($q \in \mathbb{Z}$) or non-unitary infinite dimensional reps
- careful study of the hypergeometrics show that solutions are singular at x = 1 unless $|\Omega|$ is bounded (essentially by |m|).

4 D > 4 B > 4 B > 4 B > 1 B + 9 Q C

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- the Ω outside this range, solutions blow up near x=1, are non-normalizable in the KG norm and are anyonic:
 - traversing a circle near x = 1 (at constant time), they pick up a phase

$$\Phi(t, \varphi + 2\pi, x \sim 1) = e^{-2\pi i\Omega}\Phi(t, \varphi, x \sim 1)$$

- this phase (and the blowing up of solutions) is the manifestation of the Misner vortex at x = 1. This is avoided only for quantized ω one would get such a quantization by insisting on the solutions being $L_2[0, 1]$.
- perhaps the conclusion that should be drawn is that a complete set of solutions can be constructed, but L₂ should not be the criterion
 - perhaps infalling at the CTC horizon??

4 D > 4 B > 4 E > 4 E > E = 900

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

- the Ω outside this range, solutions blow up near x=1, are non-normalizable in the KG norm and are anyonic:
 - traversing a circle near x = 1 (at constant time), they pick up a phase

$$\Phi(t, \varphi + 2\pi, x \sim 1) = e^{-2\pi i\Omega}\Phi(t, \varphi, x \sim 1)$$

- this phase (and the blowing up of solutions) is the manifestation of the Misner vortex at x = 1. This is avoided only for quantized ω one would get such a quantization by insisting on the solutions being $L_2[0, 1]$.
- perhaps the conclusion that should be drawn is that a complete set of solutions can be constructed, but L₂ should not be the criterion
 - perhaps infalling at the CTC horizon??

4 D × 4 D × 4 E × 4 E × 9 Q C

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

AdS-Taub-NUT Holography of AdS-TN let's think about the separable solutions that we've tried to find. the full geometry has a region of CTC, and the boundary of that region is a curve in (x, r) extending from the horizon to the asymptotic boundary • the separated KG equation retains no memory of that we have also been unable to find normalizable solutions. so perhaps the bulk solutions that we are interested in satisfy a boundary condition along the boundary of the CTC region – *such* solutions would be non-separable Vorticity _C Perimeter: Feb 10, 2012 35 / 35

Pirsa: 12020126 Page 38/39

AdS-Taub-NUT

Conclusions

- there has been a great deal of work in the literature engineering bulk geometries that reproduce specific hydrodynamics
- here we've considered specific bulk geometries with 'interesting' properties and attempt to give them a sensible boundary interpretation
- the scalar probe shows some interesting behaviors, but the details remain to be understood.

· ㅁㅋ (웹ㅋ (콜ㅋ (콜ㅋ (콜ㅋ () 콜 - 쒸)))

Rob Leigh (PI+UIUC)

Vorticity

Perimeter: Feb 10, 2012

36 / 35

Pirsa: 12020126 Page 39/39