Title: Continuous Formulation of the Loop Quantum Gravity Phase Space
Date: Feb 01, 2012 04:00 PM
URL: http://pirsa.org/12020096

Abstract: We relate the discrete classical phase space of 1oop gravity to the continuous phase space of general relativity. Our construction shows that
the flux variables do not label a unique geometry, but rather a class of gauge-equivalent geometries. We resolve the tension between the loop gravity
geometrical interpretation in terms of singular geometry, and the spin foam interpretation in terms of piecewise-flat geometry, showing that both
geometries belong to the same equivalence class. We also establish a clear relationship between Regge geometries and the piecewise-flat spin foam
geometries. All of thisis based on <a href="http://arxiv.org/abs/1110.4833" target="_blank">arXiv:1110.4833</a>.
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Motivation and background

Some outstanding questions in LQG & spin foams

m What is the precise relationship between spin networks and
spatial geometries?

At the microscopic level, spin foams view space as composed
of flat cells, while LQG views space as a polymer geometry. Is
one — or somehow both — of these interpretations correct?

These different views of geometry suggest different forms of
volume operators. How do we choose?

If we can obtain a dynamical theory of quantum gravity, how
can we check if it is consistent with GR?
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Motivation and background

Loop ‘classical’ gravity

m Although LQG aims to quantize GR

directly, there is a non-trivial gap between
- Relativity
the two theories.

LQG uses graphs to discretize the

continuous phase space of GR, and in the
. ravi
same stroke, promotes this to a quantum 2

theory.

The key idea is to disentangle these two Loop Quantum
steps. ol

To address these questions, we need an intermediate theory of
loop ‘classical’ gravity to bridge the gap.
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Motivation and background

Outline

Review the continuous GR phase space in terms of connection
and triad variables, and the discrete spin network phase space
in terms of holonomy and flux variables.

B Employ a flatness constraint on the continuous phase space to

concretely relate it to the discrete phase space.

Explore which types of continuous geometry can be described
by the data on a spin network.

B Summarize the results and discuss how they can be used to
further develop LQG.
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Motivation and background

Continuous phase space

m A continuous phase space describing GR is P = T*A, written
in terms of the conjugate pair:

Al =Tl +~vK! € su(2); Ef" = 263 el ek € su(2);

{Ai(x), EP(y)} = 7610583 (x — y).

m We will work with the two-form E' := F‘?bCE’-CdX‘q A dx®, and
use the notation E = E't', A= A'T'.

m [he Poisson algebra is defined by the symplectic potential:

Sp — /Tr(E/\(fA).
Ji
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Motivation and background

Continuous constraints

m [he Hamiltonian is defined on a spatial three-geometry X as a
sum of the (smeared) scalar, diffeomorphism and Gauss
constraints.

m We will consider in particular the Gauss constraint:

G' = dsE' = dE' + " A EX.

m The finite SU(2) gauge transformations are:

g A=gAg !+ gdg™!; g E=gEg™!.
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Motivation and background

Continuous constraints

m [he Hamiltonian is defined on a spatial three-geometry X as a
sum of the (smeared) scalar, diffeomorphism and Gauss
constraints.

m We will consider in particular the Gauss constraint:

G = dsE' = dE' + e A EX.

m The finite SU(2) gauge transformations are:

gbA=gAg !+ gdg™; g>E=gEg™!.
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Motivation and background

Symplectic reduction

m How do we impose the Gauss constraint within the continuous
phase space?

m We define a constrained space by imposing that the variables
(A. E) satisfy the Gauss constraint:

Cc={(A,E)e T"A|G(x)=0Vx e X}.

m We also want fields related by SU(2) transformations to
represent the same physical data, so we divide out the action
of the Gauss constraint. This yields the reduced space:

Pg :=Cg/G =PJG.
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Motivation and background

Oriented graphs

m [he situation in loop gravity is rather different than the
continuous setting of GR.

LQG uses spin network
Hilbert spaces Hr associated
to oriented graphs.

An oriented graph I is a
collection of oriented edges
which meet at vertices.

The continuous Hilbert space is a direct sum of Hilbert spaces
associated to all graphs H = $&Hr.
r

m A particular Hr corresponds to a truncation of the theory.
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Motivation and background

Discrete phase space

m Hr can be developed from the quantization of a classical
phase space Pr [Rovelii & Speziale].

m To each edge of the graph, we assign a holonomy h, € SU(2)
and a flux X € su(2), giving a phase space P, := T*SU(2)
on each edge.

m Under orientation reversal we have:

h-1 = hZ1, X1 = —h71X, he.

e e

m [he phase space of the entire graph is:

Pr := x T*SU(2)...
e
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Motivation and background

Discrete phase space

m Hr can be developed from the quantization of a classical
phase space Pr [Rovelii & speziale].

m To each edge of the graph, we assign a holonomy h, € SU(2)
and a flux X € su(2), giving a phase space P, := T*SU(2)
on each edge.

m Under orientation reversal we have:

h-1 = hZ1, X1 = —hZ1X, he.

e e

m [he phase space of the entire graph is:

Pr:= x T*SU(2)...
e
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Motivation and background

Poisson algebra of Pr

m [ he Poisson brackets are:

{he.hef} 0;
{XefXé,} — (Seeff-fj ka;

e

{Xé he’} _’iee"’rihe + Oer-t heTi-

m This algebra is defined by the symplectic potential:

[Alekseev & Malkin]

Op, = ZTr (Xedheh) .
e
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Motivation and background

Discrete constraints

m Since the graph is not (yet) embedded within a manifold, the
phase space is manifestly diffeomorphism invariant.

m [ he Gauss constraint is defined at each vertex as:
6= T xr 3 X
=v elt(e)=

m [he finite gauge transformations generated by this constraint
are:

=
gy > he 8s(e )hegt( )’ gy > Xe = gs(e)Xegs(e)-

m [he reduced phase space is obtained by taking the double
quotient: P& := x T*SU(2)e /G .
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Motivation and background

The story so far

m GR is written in terms of an infinite dimensional continuous
phase space P.

m Loop gravity uses a union of finite dimensional discrete phase
spaces, and for practical purposes the theory is often
truncated to the phase space associated to a single graph Pr.

m Our goal is to find an isomorphism between Pr and a reduced

form of P.

m We will prove the isomorphism by defining a one-to-one map
from continuous to discrete data, and showing that this map

Is invertible.
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Relating the continuous and discrete phase spaces

Dual graphs

m In order to determine a set of discrete data from the
continuous variables, we embed a graph I within Z.

m We then choose a cellular
decomposition that is dual to
[" such that:

m There is a single vertex of
I inside each cell C,;

m Each edge of [ intersects a
single face F, at a point.

m [ he intersections of dual
faces define a dual graph I'*.
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Relating the continuous and discrete phase spaces

Defining holonomies and fluxes

m The holonomies are given by h.(A) := eﬁ.];A .
m The traditional definition of flux is Xe := [z E(x). However,
this does not transform covariantly, i.e. g X, # gs(e)Xeg;;).

[Freidel & Speziale, Thiemann, Wieland]

m \We use the definition:

Xeur(A ) i= [ hr (E()

S e

m This explains why the fluxes do not commute since they
capture information about both intrinsic and extrinsic
geometry.
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Relating the continuous and discrete phase spaces

Defining holonomies and fluxes

m The holonomies are given by h.(A) := eﬁ.];A :

m The traditional definition of flux is Xe := [z E(x). However,
this does not transform covariantly, i.e. g X, # gs(e)Xegi;).

[Freidel & Speziale, Thiemann, Wieland]

m \We use the definition:

X(F.x) (A E) ;:/ hr, (x)E(x)h:

s e

m This explains why the fluxes do not commute since they
capture information about both intrinsic and extrinsic
geometry.
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Relating the continuous and discrete phase spaces

Choice of map

m We have established a one-to-one map:

- P — Pr
(ALE) — (he(A).X(Fe'We)(A. E))

m The map depends on the following choices:

m an embedding of (I, ™);
m a face F. dual to each edge;
m a system of paths 7, for each flux.

m Different choices lead to different holonomies and fluxes.

m Given only the discrete data, we cannot determine the
continuous fields. How then can we invert the map?
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Relating the continuous and discrete phase spaces

Dual graphs

m In order to determine a set of discrete data from the
continuous variables, we embed a graph I within Z.

m We then choose a cellular
decomposition that is dual to
I such that:

m There is a single vertex of
[ inside each cell C,;

m Each edge of [ intersects a
single face F, at a point.

m [ he intersections of dual
faces define a dual graph I'*.
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Relating the continuous and discrete phase spaces

Choice of map

m We have established a one-to-one map:

& P = Pr
(ALE) — (he(A).X(,.—e'ﬁe)(A. E))

m The map depends on the following choices:

m an embedding of (I, ™);
m a face F. dual to each edge;
m a system of paths 7, for each flux.

m Different choices lead to different holonomies and fluxes.

m Given only the discrete data, we cannot determine the
continuous fields. How then can we invert the map?
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Relating the continuous and discrete phase spaces

Partially flat connection

m The key to eliminating the ambiguity in the map 7 is a flat
connection.

m We impose this within each C, and F,, but allow curvature on
[*, by using the following smeared constraint:

Fr=(@) := / di A F'(A), where ¢(x)=0V x €™,
JL

m [he gauge transformations generated by the flatness
constraint are:

5™ A =0; 57T E = dad.
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Relating the continuous and discrete phase spaces

Benefits of flatness

m The holonomy along an edge is path independent:

= as(e)(x)_lat(e)(x). where a, (x) := exp / A.

m [he flux is the same for any choice of paths 7,:

Xfur) = X, = [ 2l EG)an (x).

m Moreover, the flux is independent of the choice of face. If F.
and F. bound a region R:

o = [ d(a,(x)"TE(x)ay(x
. ‘/Rav(x) (1AE(x)av(x)—.[R | (a0 () E(x)au (x))
Xr. — XF:.
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Relating the continuous and discrete phase spaces

Flatness and Gauss constraints

m We want to relate the continuous and discrete phase spaces
using the flatness and Gauss constraints.

m We enforce SU(2) invariance everywhere except the vertices:

Or(a) = [ rl"(tlAE);. where a(x) =0V x € V.
J

m In fact, with the partially flat connection we can show:

daE(x) = )  G,83(x —v).

vevr
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Relating the continuous and discrete phase spaces

Reduced continuous phase space

m We will see that the reduced continuous phase space:

Prr =P/ (Fr« x Gr),

is the continuous analog of Pr.
m We also consider the full Gauss constraint G = Gr x Gy.

m We will see that the fully SU(2) invariant phase space:

Pe., = PJ(Fr+ x G),

is the continuous analog of PrG.
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Relating the continuous and discrete phase spaces

Constraint solutions

m Let us look more closely at the continuous variables in the
reduced phase space.

m | he solution to the flatness and Gauss constraints can be
written locally as:

A = a,(x)da,(x)~1; E = a,(x)X,(x)a,(x)1,

where X, € Q2 (X.5u(2)) is closed outside of the vertex.

m This solution extends throughout 2 by demanding continuity
across faces:

vy (X) = av (x)he; Xu, = hg* Xy (x) he.
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Relating the continuous and discrete phase spaces

Constraint solutions

m Let us look more closely at the continuous variables in the
reduced phase space.

m | he solution to the flatness and Gauss constraints can be
written locally as:

A= av(x)(lav(x)_l; E = av(X)Xv(x)av(x)_l'

where X, € Q?(X, su(2)) is closed outside of the vertex.

m This solution extends throughout 2 by demanding continuity
across faces:

awm(X) = ay(X)he; e he_lel(x)he.
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Relating the continuous and discrete phase spaces

Holonomies and fluxes from Pr r+« data

m | he holonomies and fluxes are:

m Jr+« X Gr generates the following transformations:

a(x) = &(x)au(x),

Xo(x) = Xo(x)+d (av(x) " o(x)av(x)) -

m | hese transformations leave the holonomies and fluxes
Invariant:

-1 1

he — au(x)” &(X)an, (x) = ay (x) ™ ay,(x).

Xe — /(Xv-i—(l(a;l(,')av)):/ . 2
5 = I
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Relating the continuous and discrete phase spaces

Constraint solutions

m Let us look more closely at the continuous variables in the
reduced phase space.

m | he solution to the flatness and Gauss constraints can be
written locally as:

A= av(x)(lav(x)_l; E = QV(X)XV(X)QV(X)_l'

where X, € Q?(X, su(2)) is closed outside of the vertex.

m This solution extends throughout 2 by demanding continuity
across faces:

vy (X) = av (x)he; Xu, = hg Xy (x) he.
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Relating the continuous and discrete phase spaces

Holonomies and fluxes from Pr r+« data

m | he holonomies and fluxes are:

m Jr« X Gr generates the following transformations:

a(x) = &(x)au(x),

Xo(x) = Xo(x) +d (av(x) " o(x)av(x)) -

m | hese transformations leave the holonomies and fluxes
Invariant:

-1 1

he — ay,(x)”

&(x)av,(x) = ay (x) " ay,(x),

Xe — /(Xv—+—(l(a;1(,')av)):/ y,
JF, - -~
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Mapping Prr- to Pr

m We have established a one-to-one map from the constrained
continuous data to the discrete data, that is invariant under
the action of Fr« x Gr:

E: Pr_r* Bt Pr

m A single spin network maps to an equivalence class of
continuous geometries:

(AE)~ (g A g Y (E+dad)g)

m A similar map exists between the SU(2)-invariant phase
spaces: 79 : Pf ., — PF
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Relating the continuous and discrete phase spaces
Mapping Prr- to Pr

m We have established a one-to-one map from the constrained
continuous data to the discrete data, that is invariant under
the action of Fr+ x Gr:

2 pr_r* — Pr

m A single spin network maps to an equivalence class of
continuous geometries:

(AE) ~ (g A g Y (E+dad)g)

m A similar map exists between the SU(2)-invariant phase
spaces: 79 : Pf . — PF
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Relating the continuous and discrete phase spaces

Continuous analog of LQG phase space

m Using that dX, = G,8°(x — v) and the compatibility across
faces, we can show:

Op = /Tr (E NOA) ZTr erﬁh h, ):@pr.
JL

m Since symplectic forms are invertible by definition, this result
proves the isomorphism:

EEDe—F

m A similar argument proves the fully SU(2) invariant phase
spaces are also isomorphic.

Jonathan Ziprick Perimeter Institute
Continuous formulation of the Loop Quantum Gravity phase space [L. Freidel, M. Geiller, JZ, arXiv:1110.4833]

Pirsa: 12020096 Page 34/40



Introduction Continuous +» Discrete Conclusion
0000000000800

Relating the continuous and discrete phase spaces

Continuous analog of LQG phase space

m Using that dX, = G,8°(x — v) and the compatibility across
faces, we can show:

Op, .. = /Tr (E AGA) ZTr (XeShehZ1) = Op..
JL

m Since symplectic forms are invertible by definition, this result
proves the isomorphism:

EE DL}

m A similar argument proves the fully SU(2) invariant phase
spaces are also isomorphic.
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Relating the continuous and discrete phase spaces

Gauge choices

m The flatness constraint presents a wealth of gauge choices for
the electric field.

m A choice of gauge is a map from the discrete data to the
continuous phase space,

T: Pr e Cr_rm
TEaae T oo

m A good gauge choice must be diffeomorphism covariant, i.e.
&*T is equivalent to T defined on (I, ")
m We have found two gauge choices that satisfy this condition:

spin foam geometry: piecewise flat-metric;
LQG geometry: singular E field.
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Relating the continuous and discrete phase spaces

Choices of geometry

m Using distributional forms, we can use discrete data to
construct a singular electric field as in the LQG interpretation:

= hr(x) " Xehr,(x)de(x)

where de(x) = ] (53 — y)eikdx’ Adxd A dyk.
m We use an e><|stence proof to show that a spin foam geometry

composed of piecewise metric-flat cells is also available.

m In the spin foam gauge, when the faces and edges bounding
the cells can be made flat, we obtain a Regge geometry.
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Summary and discussion

Summary

m We considered the discrete holonomy-flux phase space
associated to a graph, whose quantization yields a spin
network Hilbert space.

m We reduced the continuous phase space of GR using flatness
and Gauss constraints.

m [he reduced continuous phase space is isomorphic to the
discrete phase space.

m [ his relates the semiclassical kinematics of LQG to GR in a
precise manner: the discrete phase space corresponds to a
class of gauge-equivalent continuous geometries.
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Summary and discussion

Some outstanding questions in LQG & spin foams

m What is the precise relationship between spin networks and
spatial geometries?

At the microscopic level, spin foams view space as composed
of flat cells, while LQG views space as a polymer geometry. Is
one — or somehow both — of these interpretations correct?

These different views of geometry suggest different forms of
volume operators. How do we choose?

If we can obtain a dynamical theory of quantum gravity, how
can we check if it is consistent with GR?
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Summary and discussion

Provocative statement

Is it possible to express the classical dynamics of gravity in
terms of holonomies and fluxes (on all possible graphs)?

If the answer is:

m Yes = The quantization of gravity will be reduced to the
quantizations of finite-dimensional systems.

m No = A quantization in terms of holonomy-flux variables
cannot express the quantum dynamics. LQG cannot work.
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