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Abstract: We prove an uncertainty relation for energy and arrival time, where the arrival of a particle at a detector is modeled by an absorbing term
added to the Hamiltonian. In this well-known scheme the probability for the particle's arrival at the counter is identified with the loss of
normalization for an initial wave packet. The result is obtained under the sole assumption that the absorbing term vanishes on the initial wave
function. Nearly minimal uncertainty can be achieved in atwo-level system.
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ArXiv: 1109.5087

Overview

® Short introduction to energy-time UR

® Fixing the setting: absorbing detectors

h
® The URs: [ATAE > 5@ , AH-(T) > 1.37 h\fpj

® Sketch of proof of the URs for fully

: = 1 total absorption
absorbing detectors (p = 1) [ orobability

® Understanding why \/p appears
® Minimum uncertainty

® Simplest example: two-level system
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ATAFE > const - h

® Usually invoked in a handwaving fashion...
® We are looking for a preparation UR:

B A Fand AT are standard deviations of
outcome distributions for energy and time,
measured separately on identically prepared
systems (wave function ).

= What is the time distribution ?
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What is time ?

® First we have to precisely define "time”:

® We consider particle detection time, i.e. time of
arrival (to the detector).

® Basic problem: no "time operator” having CCR
with H exists (Pauli thm):analogy to QP fails.

B A solution: use some POVM

® Approaches: (1) covariant POVM
e HIP ([t ta]) e ™M = F([ty + t,t2 + t])

[ only for systems with continuous energy spectrumj

(2) absorbing detector (our choice here!)
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Absorbing detector

Complex Potential G.R.Allcock, Ann. Phys. (N.Y))
&ﬁ 53 253 (1969)

R.F.Werner, Ann. Inst. H.
Poincare Phys.Theor. 47 429
(1987).

Particle

A

® Add an imaginary potential —iD to the Hamiltonian

.

X

B K — [ ;D generates a contraction semigroup
_itK/h

€
® Interpret 1 — |[e ¥4 as the probability of
absorption before time ¢, of a particle prepared
with wave function ¢
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Absorbing detector

® Probability for absorption during [t1,t2] can be
written as (Y| F([t1,t2])v), where

F([tl,tg]) e— (e—ith/h,)*e—ith/h, - (e—ith/h,)*e—ith/h,

is the time observable (POVM).

3 El'otal absorption probability: p=1— lim ™/ ]

® Normalized probability density for absorption:
@J’(t) = jt e~ K72 the time distribution}
D

Can be determined experimentally from
the "click”™ statistics of a real detector !
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The uncertainty
relation

(T := / t P(t)dt expectation of absorption time
0
(AT)? := / t2P(t)dt — (T')? variance of absorption time
J0O

(AE)? := (|H?*yp) — (¢|Hy)?  variance of energy

Assumption: Dy =0 (K¢ =Hy)
Initial wave function has no overlap with the detector

N

f h
* ATAE 2 2 VP — total absorption
\L probability

AH - (T) > 1.37 hy/p
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Sketch of proof (for»-1)

® |dea: transform the system so that time and

energy become conjugate operatoprs:
time distribution

e Find a wave function J+ such that P(t) = ||(J)(t)||?

® We take (J¢)(t) = {(‘)/m\/DeMw’ t20

t<0

, ' 2, ik, —itK d , itk | —itK.,
IV = 5 (e K plDe ) = — 2 (e~ *Kple~ ) = P()

JJ=1

B Jy is the wave function in the "time space” L*(R) ® H

® Assumption Dy =0 :{> no jump at zero
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Sketch of proof (»-1)

Compute HJy (well-defined because Jv

has no jump at zero):

(HJY)(t) = ih/2/h VD e 5" —i K /R)y = (JK)(t) = (JHY)(t)

i

(AR)? = | HIY|? - (Jo|HIp)? = |HY|? - ($|HY)? = (AE)?

/ ||2 (1)
= [ el

— (F)? = (AT)?

AVEIPS

=p> { AEAT >

AE - (T) > 1.37h 1
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Understanding case r<!1

® Why does the square root /p of the absorption
probability appear in the UR? E):l lim |l ‘“"wlzj

® Start with a system H, H, D,y with p=1

H = M®Ho, .

® A new system: |y _ po (WIHS) [do) (ol (Add to the Hilbert
D = Do space a part not seen
W = ‘/i‘"" & VI = Ao by the detector)

arbitrary parameter € [0, 1

n " — ] » ™

Semlgroup: e itK .‘IALI;JP — V//\(i'. it K ,c‘hw ® \/1 - )\fﬂ it{Y| Hy) oo ) {d ll‘lhotl p, — A
. . . . _l d ot § , ! __
time distribution:  P(t) = — & & |le 1Ky |12 = B(¢ (T')' =(T)
0=~ %! IP=re) = (=4

new energy moments:
(W' |H'Y') = (Y| Hy) |:> AV Lol 12— Lty L BT 2fy\ 2 -\ 2
\uh'."|3 P | HY||? + (1 - p') (| HY)? (AE) T “II v ” (L) II] v ) @AE)

vy

B FAr the naws cevetam: AFRAT! S (519 /-

.
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Minimum uncertainty

For the standard QP UR we can find the
distributions that saturate the UR.

We can do the same for energy-time UR...

The time distributions P.,,(t) saturating

AHAT > (h/2)/p are just given by gaussians
The corresponding ones for

AH - (T) > Ch\/p are given by the Airy function

Open question: how does the wave
function look in the position space?
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Simplest example

® Hamiltonian: H = g (0 Q) For instance: Rabi oscillation:

Q0 for a laser driven atomic
.. f 1 transition
® |nitial state (lower level): v = (0)
® Absorption at the upper level D= ;’ (8 2)

d

e Compute ri)=-3

le~ "> tO get AT

® How close to the minimal uncertainty can

we get! (PO), P ® )
INO \*J"‘\\
2] h/ m 5 /
® AE=:0, AT smallest when
04
h 0.3
AEAT = —— =~ 0.707h > 0.500k .
N = \/QQ I:> V2 0.2 ". \
0.1 N
AE - (T) =v2h~ 141k > 1.37 .
\_ 1 2 3 4 5 J
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