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Abstract: Recent years have seen a renewed interest, both theoretically and experimentaly, in the search for topological states of matter. On the
theoretical side, while much progress has been achieved in providing a general classification of non-interacting topological states, the fate of these
phases in the presence of strong interactions remains an open question. The purpose of this talk is to describe recent developments on this front. In
the first part of the talk, we will consider, in a scenario with time-reversal symmetry breaking, dispersionless electronic Bloch bands (flatbands) with
non-zero Chern number and show results of exact diagonalization in a small system at 1/3 filling that support the existence of a fractional quantum
Hall state in the absence of an external magnetic field. In the second part of the talk, we will discuss strongly interacting electronic phases with
time-reversal symmetry in two dimensions and propose a candidate topological field theory with fractionalized excitations that describes the low
energy properties of aclass of time-reversal symmetric states.
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Outline

This talk is divided into two parts:

Part 1 : We will discuss flat band models in 2-D with non-trivial
topology as a route to obtain FQHE without an external magnetic
field. We will present results of exact diagonalization in a small
system showing supporting evidence for a 1/3 filling fraction
Quantum Hall state.

Part 2 : We will introduce a candidate time-reversal symmetric
topological field theory as a way to describe an Interacting
Topological Insulator in 2-D. We will discuss the constraints
imposed by time-reversal symmetry on the structure of the bulk
and edge states. We will also present results of exact
diagonalization for a flat-band Hamiltonian that respects TRS and
will discuss the various ground state orders that are obtained as
interactions are considered.
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Landau Levels and the Quantum Hall Effect
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Landau levels are interesting

Partially filled Landau levels = FQHE
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FIG. 1. Overview of diagonal resistivity py, and Hall resistance py, of sumple deseribed in text. The use of a hybrid magnet with
fixed buse field required composition of this figure from four different traces (breaks at =12 T), Temperatures were 150 mK ex-
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Are there other ways to get flatbands?

Are they as interesting as Landau levels?
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Integer Quantum Hall effect without Landau levels

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)
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Two competing “masses”

t> . Haldane mass
115 . Staggered chemical
potential

Low energy excitations have dispersion:
E%(k) = k* + (to — j15)°

it/ pis| > 1= |C| =1 (C'hern Insulator at half-filline)
to/pis| < 1= C=0 ("Trivial Insulator at half-filling)
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Integer Quantum Hall effect without Landau levels
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Integer Quantum Hall effect without Landau levels
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Can one get perfect flatbands?
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Can one get perfect flatbands?

Flattening:

» Preserves the existence of the single particle gap
» Preserves the Chern number of the bands

» Does it preserve locality?

We are interested in the hierarchy of energy scales :

W< U<< A

Wierm————
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Integer Quantum Hall effect without Landau levels

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)
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Can one get perfect flatbands in a local hoping
Hamiltonian?
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Are they as interesting as Landau levels?

Can one support a fractional Hall effect when flat

bands with non-zero Chern number are partially
filled?
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Is there a fractional quantum Hall effect?

Two distinctive properties of a FQHE:

(i) Quantization of the Hall conductance
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(ii) Topological ground state degeneracy
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Add interactions
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Is there a FQHE?

Many-body Chern number as a response to twisted boundary
conditions (Niu and Thouless):

1\
W (r+N x))=e”"|W, (r)
UV (o N v SV ()
V. (r+N,y))=e™|W¥,(r)
2
e | y
_— ( = _ Y (Y \JJ
O-:f::lj - I_I C 2—1—] -I yE|0.2n] V)} IY‘VY‘ Iy

3x6 plaquettes (36 sites |
v=1/3 lower band (6 particles

Pirsa: 12010133 Page 29/58



Is there a FQHE?

Many-body Chern number as a response to twisted boundary
conditions (Niu and Thouless):

1\
W (r+N.x) =e|W._(r)
Y X Y
W (r+N,y))=e"|¥,(r)
2
2 | .
_ ('= ) w oY I/
O-:f::lj - I_I C 2—1—] -I YE|0.2n] V)} IY‘VY‘ Iy

3x6 plaquettes (36 sites |
v=1/3 lower band (6 particles |

Pirsa: 12010133 Page 30/58



Gap and Ground state degeneracy
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Gap and Ground state degeneracy
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"Effective” Girving-MacDonald-Platzman algebra for Cl's

iq-r

Density:  po(q) = e
Guiding-center Density:  p(q) = eldR. R, R3] = iz, ;If,,

1 5
[p(q). p(q")] = 2i S|n(-2q X q'15)p(q + Q') Girving-Macdonald-Platzman (s5)
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[5(q). p(q")] ~ i(q xq) - .%( _I._?),)ﬁ(q -q')  (lowq.q expansion)

/_)(q) ]_)(‘H:“\h,\' I)]"’_i(‘('[(‘ll onto a (.‘llﬁ’llll |N”||l Parameswaran-Roy-Sondhi (11)

Derivation assumes that the “Berry” curvature B(k) is uniform in
k-space, which is not a generic feature. In particular, for the
2-band models used in ED studies, B(k) is not be uniform!
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Open questions:

1) What is the many-body wave function of the Fractional Chern
Insulator? This is a much harder problem than in the uniform B
case since single particle wavefunctions in a Chern band do not
have “nice’ properties of LLL wavefunctions.

2) Landau levels are characterized by C = 1. The lattice problem
opens the possibility of exploring strongly correlated states on
C > 1 bands. (Unknown territory!)

3) Materials 7!
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Part 2

2D Fractional Topological Insulators
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Chern-Simons theory and the v = % FQHE (odd integer p)

A, external EM field, a,: statistical gauge field
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Au(t.x) 5 g A (—t.x)
a,(t.x) 5 g an(—t.x)
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TRS abelian fractional topological insulator

Simplest scenario: Two decoupled FQH states with opposite
chiralities (Levin and Stern, 2009).

Pair of gauge fields a; ,, and a5, transforming under TR as
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2-D BF field theory

1
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Hierarchy of Time-Reversal Symmetric BF theories
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BF &= —_¢€ | 7\ \

A A

Let j’f be the conserved currents of quasi-particle excitations. The
hierarchy theory is achieved via the following flux attachment
condition that preserves TRS:

o= -/(J“)(')V a’(\i). po. ¥ €7

The constraint means that any pair of flux quanta, arising when
") and a7 each support a vortex, creates a quasi-particle with
)

P-.

a'
charge 2 /(1) p, and spin 2 /'
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Hierarchy of Time-Reversal Symmetric BF theories
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Hierarchy of Time-Reversal Symmetric BF theories

Introduce two new gauge fields 3(*) by

~ ]- ; ~(4
o= 2 et ) 3(E)

a9 GHo__
L = = s k=0

The second level of the hierarchy is described by the Lagrangian
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Hierarchy of Time-Reversal Symmetric BF theories

Introduce two new gauge fields 3(*) by

1
Ji =

A ~( I ) ‘ i
j ()}"‘?\ N (),“Jj: :O

The second level of the hierarchy is described by the Lagrangian
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General hierarchy structure:

A n) (+)
}{(”'1) ( ,7{”)| / ) . {){H' 1) (i_;(n)_ O)
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Hierarchy of Time-Reversal Symmetric BF theories
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General hierarchy structure:
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TRS abelian 2-D field theory
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TRS abelian 2-D field theory
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Stability of the edge modes

‘UV'-, (t.x) = e LT Ky @ (tx) . Bormi-Bose operators
A 1 ’ + . . .. -
P = '2_l' Q,- r)\(b,- . charee ll(‘]lhl'f_\
H = Ho + H,
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Tunneling among the different edge branches:

Hipt 1= — / Z hy(x ):cos(T'ch)(x)*“I(X)):

TTQR=0
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Bulk-Edge Correspondence

- , 1
S 2y JLIp '
Sk = /<|t<| xet! ( __K{;' ‘gi.;f‘)f’a}'-f’

Gauge-fixing condition consistent with TRS:

aa=K*Va. V=X,VE,. K=-%,K%,

(\;QS‘K ) ) , ,
O — - — ()1‘?2 - ()231 == O = 31 — f)ld) 32 — ().Id)
0ag

Assume edge located on the x-axis at y = 0

N A
Sk= g [ dt [ dx [@9)" Koo~ (@10)" V0] (z.x.0)

b(t.x) B> T, O(—t.x) + TKITHQ. T = (8 (1))
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Stability of the edge modes

\U|] (t.x) :=:e T Ky @5 (6X) . Foprmi-Bose operators
. 1 A .
N = o Q; J. P, . charge density
H = HO T Hilll
LI
. |
Hy = [ dx —0,¢" V O &
0 4_ X X
0

Tunneling among the different edge branches:

Hipt 1= — / Z hy(x ):cos(T'K&)(x)*“l(X)):

TTQ=0
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Stability of the edge modes

Restrict to TRS interaction:

Hip -= / Z hy(x): cos(T'K&)(X) ""”I(X)) :
I.TTQ=0

hy(x) = hzl r(x).

ap(x) = (_Hzl r(x)+ 7T T, Q) mod 2.

Edge modes unstable to processess in which:

T'KT' =0 .

Haldane’s eriterion
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Stability of the edge modes

R r[)l (f{ — A) 1 0

r is the smallest integer such that all the N components of the
vector r (rn — A)~t o are integers.

Z» classification:

J|(‘)

R = odd = at least one edge branch remains eapless (sta

R = cven = edee states are unstable to disorder

Even though the edge modes might be all gapped, the bulk theory

s still interesting, contrary to the non-interacting case!
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Stability of the edge modes

R: f[)l(f{—A) li)

r is the smallest integer such that all the N components of the
vector r (n — A) ™t o are integers.

Z» classification:

R = odd = at least one edee branch remains gapless (stable)

R = cven = edee states are unstable to disorder

Even though the edge modes might be all gapped, the bulk theory

s still interesting, contrary to the non-interacting case!
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Summary

» We have investigated electron bands with non-zero Chern
number. In the limit where the band width becomes much
smaller than the separation between bands and the particle
Interactions, we have found evidence for a FQHE at 1/3
filling.

» We have presented a hierarchical construction of an abelian
toplogical field theory in 2-D that respects TRS, which can be
a candidate theory for describing 2-D interacting Tls. The
bulk theory describes fractionalized quasipaticles and edge
excitations are made of counter-propagating pairs.

» We have numerically studied the spectrum of a TRS
symmetric lattice hamiltonian. We have found three different
ground states depending on the different parameters of the

interactions. In special, we have found a case where TRS is
spontenously broken and the ground state is a cohexistence of

a ferromagnet and a FQHE.
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