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Abstract: Tensor models appear as the higher dimensional extension of the so-called matrix models describing 2D quantum gravity through the sum
over triangulations of surfaces. In the light of the recent $1/N$ expansion for these tensor models, we uncover a new class of tensor models for 4D
and 3D gravity which are renormalizable at all orders of perturbation theory. An overview of two papers, [arXiv:1111.4997 [hep-th]] and
[arXiv:1201.0176 [hep-th]], on the renormalization of these tensor models and their beta function will be given.
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Introduction: From Matrix to Tensor Models

Generalities

Matrix models for QG: A successfull story

e Mid 80's: Statistical mechanics of random matrices for 2D quantum
gravity (QG)

/g|,aln, \ L / [)t”" 220(

Lty / dM e~ iTM

Review by Di Francesco etal, Phys. Rep. 254 (94)]

[tant tool: 1/N expansion ['t Hooft, Nucl. Phys. B, 72 (74)]
pn of genus = 0 sector (planar graphs) of the model

Joseph Ben Geloun Perimeter Institute, January, 2012

Pirsa: 12010132 Page 4/90



Introduction: From Matrix to Tensor Models

Generalities

Matrix models for QG: A successfull story

o Mid 80's: Statistical mechanics of random matrices for 2D quantum
j"'F'd‘Jll\.’ ((‘)(.}

/_-|,1_n,

(Review by Di Francesco etal, Phys. Rep. 254 (94)]

e Important tool: 1/N expansion ['t Hooft, Nucl. Phys. B, 72 (74)]
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Intreduction: From Matrix to Tensor Models

Generalities

A piece of random triangulated surface

Joseph Ben Geloun Perimeter Institute, January, 2012
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Introduction: From Matrix to Tensor Models

Generalities

and its dual matrix realization

Emergen I laking the continuum limit, g —+ g., the integral is

&

dominated by (planar) diagrams with infinite number of vertices with smaller

and smaller area ~~ phase transition to continuum 20 gravity coupled to
Liouville fields

Joseph Den Geloun Perimeter Institute, January, 2012
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Introduction: From Matrix to Tensor Models

Generalities

Tensor Models for QG

@ Tensor models: Dynamical triangulations [Ambjorn etal MPL A6 91];
tensor group models [Boulatov, MPL A7 (92)]

o Missing 1/N expansion ~+ Numerical results

@ Connection with Spin foams (covariant version of | senberger &

Rovelli, CQG 18 (01)]
e GFT: A fundamental framework for background fre
Freidel, [JTP 44 (05); D. Oriti gr-qc/0607032)

@ Tensor models are quantum field models (TFT): Renorma

jut before, let us visualize the 3D case

Joseph Ben Geloun Perimeter Institute, January, 20
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Introduction: From Matrix to Tensor Models

Generalities

ure: 3D simplices for TFT: Each triangle corresponds to a field and the interaction

s given by a tetrahedron
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Introduction: From Matrix to Tensor Models

Renormalization of Tensor Field Theories (TFT)

Power countings: Boulatov's model “-u idel etal PR D80 (U‘J” [F.-Mun n etal
CQG 26 (09)]

( madels (Gurau, 0907, 2582, CMP 304 (11)| Homology for graphs
triangulates only pseudo-manifold [f-lll.lu CQG 27 (lU]I

Extension and refinement of power-countings and locality principle

a 3L 1)(L 2 2 -
:\’_r dathiodal), is certainly true for CGFT in D dimensions [BG etal CQG 27
(2010)]; Cellular (co)homology power counting [Bonzom & Smerlak LMP 93
(10)]

Locality Principle: Boulatov's model 3 relevant operators (of the Laj form)
which should be added in the action [BG & Bonzom IJTP 50 (11)]

Joseph Den Geloun Perimeter Institute, January, 2012
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Introduction: From Matrix to Tensor Models

I ]

Renormalization of Tensor Field Theories (TFT)

@ Power counting Boulatov's model |[ reidel etal PR D80 (“"” lr.'LlJ‘_II' n etal

CQG 26 (09)]
models [Gurau, 0907.2582, CMP 304 (11 )| Homology for graphs

triangulates only pseudo-manifold [Gurau, CQG 27 (10)]

@ Extension and refinement of power-countings and locality principle
a (L 1D 4 y "=
A, e / is certainly true for CGFT in D dimensions [BG etal CQG 27
(2010)]; Cellular (co)homology power counting [[Lm/uln & Smerlak LMP 93
(10)]
Locality Principle: Boulatov's model 3 relevant operators (of the n form)
which should be added in the action llif. & Bonzom IJTP 50 ( ilJl
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Introduction: From Matrix to Tensor Models

1/N expansion and more...

Tensor 1/N expansion: [Gurau, AHP 12 (11)]

¢ Combinatorial expansion - Rough idea: (1) Decompose your tensor graph G
in sub-ribbon graphs (call them “jackets" J). (2) Associated with such each
ribbon graph 3 a simplicial surface for which the ordinary notions of topology
apply (in particular the genus gy). (3) Extend the notion of genus for the total
dual simplexe associated with your initial graph G as the sum of genera of all of
its sub-ribbon graphs w(G) = >, gy

C

. )]
e Only graphs for which w(G) (i.e. dual to %) dominate in the partition
function of colored TFTs (GFT as well as iid models on compact groups) at

N — oo, N is the cut-off in your momentum representations

e Other interesting developments: Critical behavior of colored TFT at large
N [Bonzom etal NPB 853 (11)]; Extension of the Visaro algebra [Gurau, NPB
852 (11)]; Generalized Ising model on random lattices [1108.6269 (hep-th]];
Universality class of random tensor models [1111.0519 [math PR]]

Joseph Den Geloun Perimeter Institute, January, 2012
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Introduction: From Matrix to Tensor Models

And today ...

A new class of renormalizable theory of TFT for gravity

My goals
e To show you the main ingredients of the madel in 4D;
e To gives you the main steps of the renormalizability proof in 4D;

[JBG & Vincent Rivasseau arXiv:1111.4997 [hep-th], accepted in Commun

Math. Phys. (2012)]

e Discuss the /J-functions of the 3D analog model: The model is asymptotically
free in the UV,

[JBG & Dine Ousmane Samary arXiv:1201.0176 [hep thj ]

e Perpectives

Joseph Ben Geloun Perimeter Institute, January, 2012
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Introduction: From Matrix to Tensor Models

And today ...

A new class of renormalizable theory of TFT for gravity

My goals
e [o show you the main ingredients of the madel in 4D:
e To gives you the main steps of the renormalizability proof in 4D:

!]I'i(; & Vincent Rivasseau arXiv:1111.4997 [Pl- p-th], accepted in Commun

Math. Phys (L’UI.’)]

e Discuss the /3-functions of the 3D analog model; The model is asymptotically
free in the UV

[JBG & Dine Ousmane Samary arXiv:1201.0176 [hep-th] ]

e Perpectives
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Renormalization: An overview of -a:

Qutline

O Renormalizat

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview ol 0:

The model

e The action and partition function

4. il Rl
5 /(f‘- [ ~(=A + m")o ‘“-"(»_]) 2z /(/;uf--)'

e The measure dyic(») is Gaussian and normalized with covariance

C(p) = 1/[(27)"(p" + m")]

e Schwinger functions

t’(‘_l
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Renormalization: An overview of @:

Multiscale analysis

e Scales: High (low) momenta p probe short (large) distances
e Renormalization re-organize the divergences of the perturbation series in a

cansistent way according to scale:

e Decomposing the propa in scales: (

» decomposition of the propagator means that for any graph ¢, we have to
ver an independant scale index for each line of the graph ~- Scale
ions
bgraph: connected subset of lines of G such that all internal indices

r scale than any external scale

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview of ¢:

Multiscale analysis

e Scales: High (low) momenta p probe short (large) distances
e Renormalization re-organize the divergences of the perturbation series in a
consistent way according to scales

e Decomposing the propa in scales: (

¢ [he decomposition of the propagator means that for any graph G, we have to
sum over an independant scale index for each line of the graph ~- Scale
attributions

e High subgraph: connected subset of lines of G such that all internal indices

are of higher scale than any external scale
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Renormalization: An overview of é:

Multiscale analysis

e Example of a high graph

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview of ¢>:

I [

Multiscale analysis

e Example of a high graph

A2
Multiscale attribution on a graph

Joseph Ben Geloun Perimeter Institute, January, 2
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Renormalization: An overview of ¢

¥ ¥

Multiscale analysis

e Example of a high graph

v
Multiscale attribution on a graph

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview of tﬁ:

Power-counting, locality principle

e Given a graph G: n number of vertices with L number of lines and N,
external legs

e The propa bound yields: for each line M* and each spatial integration
MY For a high graph, one can perform only n — 1 (number of vertices -1)

spatial integrations ( bound)

Ag K Mt (G) =2L—4(n—1)

use also 4n = 2L + Nex
e Locality Principle: Every high subgraph looks more and more “local
its smaller internal scale becomes much bigger than any of its external sca

Here "local” graph means either a mass term s (2pt graphs) or a verte

X (4pt graphs)

e Perturbative renormalization tells you that vou can hange (rent

parameters of your initial theory in order to “beat’ those (]|\f|’-”il’-|'\f

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview of @:

¥

Power-counting, locality principle

e Given a graph G: n number of vertices with L number of lines and N,
external legs

e The propa bound yields: for each line M*' and each spatial integration
MY For a high graph, one can perform only n l (number of vertices

spatial integrations ( bound)
Ag K mat-4tn-1) (G)=2L-4(n-1)

use also 4n = 2L + N,
e Locality Principle: Every high subgraph looks more and more “local’ when
its smaller internal scale becomes much bigger than any of its external scales

Here “local” graph means either a mass term =——— (2pt graphs) or a vertex

x (4pt graphs)

e Perturbative renormalization tells you that vou can change (renormalize) the

parameters of your initial theory in order to "beat” those divergences
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Renormalization: An overview of \ﬂ:
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Renormalization: An overview of ¢:

¥

Power-counting, locality principle

e Given a graph G: n number of vertices with L number of lines and N,
external legs

e The propa bound yields: for each line M and each spatial integration
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Renormalization: An overview of 0:

f I

The f-function and Landau ghost
e Evolution of the coupling constant A, at one loop

0
d A

di

I'he four-point function governing the flow of A

e The RG flow of A (with A > 0) diverges in finite time: This is the Landau

ghost (60's). ( @ )
¢ Asymptotic freedom in the 70's of non-Abelian gauge theories (meaning that
in the UV, the theory flow towards a theory without interac tions) saves both
the Renormalization and, in fact, QFT. ( QF 1 )

Joseph Ben Geloun Perimeter Institute, January, 2012
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Renormalization: An overview of d’:

] 1

The d-function and Landau ghost

e Evolution of the coupling constant A, at one loop

! \ INE i>0
d A
dli

I'he four-point function governing the

e The RG flow of A (with A > 0) diverges in finite time: This is the Landau

ghost (60's). ( )
e Asymptotic freedom in the 70's of non-Abelian gauge theories (meaning that
in the UV, the theory flow towards a theory without interactions) saves both

the Renormalization and, in fact, QFT. ( QF 1 )
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Renormalization: An overview of ‘ﬁ:

The [-function and Landau ghost
e Evolution of the coupling constant A, at one loop

0
dA;

cli

'he four-point function governing the flow of A

® The RG flow of A (with A\ > 0) diverges in finite time: This is the Landau

ghost (60's). ( QI )
e Asymptotic freedom in the 70's of non-Abelian gauge theories (meaning that
in the UV, the theory flow towards a theory without interac tions) saves both

the Renormalization and, in fact, QFT. ( QF1 )
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A Building the ¢ tensor model _ .
% Temsor model Multiscale analysis, power.counting and generalized locality principle
Renormalization In direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, 2* : U(1)"

is called color. In Fourier modes

[pi] = (p1.p2. p3. pa)

where h; € U(1) and 7 534 2y, o, ha, ha)
e Kinetic part of the action for four fields a = 1

ghin,1,2,3,4 \/ T B
st J,

e Interaction part of the action is the standard colored action in 4 dimensions
[Gurau, color GFT]|

Joseph Ben Geloun Perimeter Institute, January, 2012
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" Building the $° tensor model
o° Temsor model Multiscale analysis, power-counting and generalized locality principle
1 Renormalization in direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, " : U(1)" —» C, a = 0,1

is called color. In Fourier modes

\ "|‘ AR GTRTE GWATS g ( y I.“.-l (p1, p2

where h U(1) and ©f 534 2'(hy. ha, hy
e Kinetic part of the action for four fields a

e Interaction part of the action is the standard colored action in 4 dime
[Gurau, color GFT]
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\ Building the ¢ tensor model e
% Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, 2" : U(1)"

is called color. In Fourier modes

D Pl ™" 2020 gl €[0.: [p] = (Pr. P2 p3. pa) -

where h U(1) and 1 5134 2y ha, ha, hy)

e Kinetic part of the action for four fields a

¢ Interaction part of the action is the standard colored action in 4 dimensions
[(mr.nu color GI I]
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Bullding the ¢° tensor model i
‘.9° Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, »* U(I]:

is called color. In Fourier modes

.‘\‘ o€ "1 g'P2%2 g'P3T1 g'P4T4 i ; (] (p1, 2. P3. P4)

where h; € U(1) and 7 5

e Interaction part of the action is the st: i dimensions
[Gurau, color GFT]| :
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- Building the $° tensor model
#® Temsor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, " U(I]"

is called color. In Fourier modes

Y ol €711 2014010 g € [0, (2] = (pr.p2. p3. pa)

where h U(1) and 2 hy. ha. hy

e Kinetic part of the action for four fields a

>

e Interaction part of the action is the standard colored action in 4 dimensions
[Gurau, color GFT]|
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A Building the ¢ tensor model ;
@o Tensor model Multiscale analysis, power counting and generalized locality principle
Renormalization in direct space

Color model and integration [Gurau NPB (11), Bonzom etal NPB (11)]

e Consider five complex (rank 4) tensor fields, " : U(1)"

is called color. In Fourier modes

\ A, e g 0y Lipa04 ( , (2] = (pr.p2.p3. pa)

where h; € U(1) and 1534 "(hy. ha. hy. ha)

e Kinetic part of the action for four fields a

S [ #tasa

e Interaction part of the action is the standard colored action in 4 dimensions
[Gurau, color GFT]
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Building the " tonsor model
@° Tonsor model Mutiscale analysis, power. counting and generalized locality principle
Renormalization in direct space

] i

Color model and integration

e The last color 0 is dynamical [BG and Rivasseau|
(11)

where A ., » denotes the Laplacian on U( 1) St ac ting on the strand

\5)
index s. The corresponding Gaussian measure of covariance ( (=4 + m*)~!
is noted as {/fr.

e Integrate over the four colors 1,2,3,4 [Gurau NPB (11)]

function with an effective action for the last tensor

i / diclo] e

where the sum in B is performed on all bubbles, or connected v
with colors 1 up to D = 4 and p vertices; f(p, D) is a positive fur
number of vertices and the dimension; w(B) >, gy is the sum O
sub-ribbon graphs called jackets J of the bubble, and Trs[3"¢')
tensor network operators. Graphs with w(B) = 0 are called melons

Joseph Ben Geloun Perimater Institute, January, 2012
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\ Bullding the ¢° tensor model
% Tensor model Muiltiscale analysis, power counting and generalized locality principle
Renormalization in direct space

] i

Color model and integration

e [he last color 0 is dynamical [BG and I€|v.|~.u‘.n|]

(11)
where A i o denotes the Laplacian on U(1) Sl ac ting on the strand

I'he corresponding Gaussian measure of covariance ( (=2
is noted as dji

index ¢ s

e Integrate over the four colors 1,2,3,4 [Gurau NPB (11)]: The partition

function with an effective action for the last tensor

/tf,,; (2]

\ “ [‘\ "\Ji- f”\.”" ) (13)
& Sym(53) X

Mrs (2" (12)

where the sum in B is performed on all bubbles, or connected vacuum graphs

with colors 1 up to D = 4 and p vertices; f(p, D) is a positive function of the
number of vertices and the dimension; w(B3) >, g is the sum of genera of
sub-ribbon graphs called jackets J of the bubble, and Trs[z°, ‘] are called

tensor network operators. Graphs with w(8) = 0 are called melons

Joseph Ben Geloun Perimeter Institute, January, 2012
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Building the ¢° tensor madel
Mudtiscale analysis, power. counting and generalized locality principle

#° 'lm model
! Renormalization in direct space

Color model and integration

e [he last color 0 is dynamical [BG and |€|\f.|<.‘.4‘.|ll|

(11)

where A e A

denotes the Laplacian on U(1) ok
index

acting on the strand

I'he corresponding Gaussian measure of covariance ( (-A + m*)
is noted as dyi.
e Integrate over the four colors 1,2,3,4 [Gurau NPB (11)]: The

partition
function with an effective

action for the last tensor

{ \ "\Ji\

N

& Sym(3)

where the sum in B is performed on all bubbles, or connect

with colors 1 up to D = 4 and p vertices; f(p,D)is a pos

number of vertices and the dimension (13)

‘\' 18118 the
sub-ribbon graphs called jackets J of the bubble, and ||;.~[_7”.

are called
tensor network operators

Graphs with w(B) = 0 are called melons
Joseph Ben Geloun Perimeter Institute, January, 2012
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Building the ¢9 tonsor model
#® Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Fut i

Color model and integration

e [he last color 0 is dynamical [BG and RI\.".I“HMI[I]

(11)

where A i,y o denotes the Laplacian on U(1) St ac ting on the strand
l
index s. The corresponding Gaussian measure of covariance ( (=2

m'j
is noted as dji

e Integrate over the four colors 1,2,3,4 [Gurau NPB (11)]

['he partition
function with an effective action for the

0

last tensor

/ dpc[2Y

\C (AA )i A (D) .
.y 'y','lrl(/w']" 51 (12)

where the sum in B is performed on all bubbles, or connected vacuum graphs
with colors 1 up to D = 4 and p vertices:

f(p, D) is a positive function of the
number of vertices and the

dimension; w(B3) > ., 8 is the sum of genera of
sub-ribbon graphs called jackets J of the bubble, and Tru[z°, “] are called
tensor network operators. Graphs with w(B) = 0 are called melons
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A Building the $9 tensor model S
#% Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

The ©° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector

- \i3
Y Tt
— Sym(B5) gliag

e [0 get a renarmalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

/

permutations

permutations

/ . 2,3.4 17,234 3 4/ 1,2¢.3 4 -+ permutations

where the sum is over all 24 permutations of the four color indices

Joseph Ben Geloun Perimater Institute, January, 2012
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A Bullding the ¢° tensor model .
#% Tensor model Mudtiscale analysis, power-counting and generalized locality principle
J Renormalization in direct space

The ©° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector
\

NTE .
e Sym(8) Tra|

e lo get a renormalizable theory: truncate this action to a finite number o
marginal and relevant terms

e Consider the following monomials of order six at most, given by

/

permutations

/

permutations

/ 2,3,4 11,234 P12 3 & 91,2 At permutations

where the sum is over all 24 permutations of the four color indices
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A Bullding the ¢® tensor model
¢° Tensor madel Multiscale analysis, power.counting and generalized locality prine iple
Renormalization in direct space

The ¢° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector
\

h s '
£ Sym(B) Trus|

e [o get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

|

permutations

permutations (15)
/ 3.4 211,234 P10 2 3 4 21,203 40 -+ permutations (16)

where the sum is over all 24 permutations of the four color indices

Joseph Ben Geloun Perimeter Institute, January, 2012
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- Bullding the ¢° tensor madel
#° Tonsor model Multiscale analysis, power. counting and generalized locality principle
Renormalization in direct space

The ¢° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector
\ \i
L e
T

e To get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

[

permutations

permutations

/ 1,2,3,4 § A @1 3 4 1,23 4 permutations

where the sum is over all 24 permutations of the four color indices

loseph Ben Geloun Parimeter Institute, January, 2012
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- Bullding the ¢° tensor model
-9‘ Tensor model Mudtiscale analysis, power counting and generalized locality principle
Renormalization in direct space

The ¢° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector
[ I

e To get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

Lo

permutations

|

permutations

/ 1,2,3,4 ¥11,2,3,4 ¥1',2' 3" 4" ©1,2'.3 4 permutations

where the sum is over all 24 permutations of the four color indices
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A Building the ¢ tensor model
% Tonsor model Multiscale analysis, power counting and generalized locality principle
Renormalization in direct space

The ° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector
[H.[

e o get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

X

permutations

|

permutations

/ +1,2,3,4 ¥17,2.3.4 (20,30 4" 21,2 3 4 -+ permutations

where the sum is over all 24 permutations of the four color indices
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\ . the ¢‘ tensor model
#° Tensor model Multiscale analysis, power counting and generalized locality principle
r Renormalization in direct space

The ¢° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector

Ty 13
2 sym(s) "ol (13)

e [o get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

/_

permutation

[ @

permutation

/ 1,2,3,4 17,2,3.4 P1 3 4¢ (21,273 .4 permutations (16)

where the sum is over all 24 permutations of the four color indices

Joseph Ben Geloun Perimeter Institute, January, 2012
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\ the O‘ tensor model 1 g
#% Temor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

The ©° tensor model [BG & Rivasseau (11)]

e Concentrate only on the melonic sector

A8 (13
3 Sym( 1) (7, )

e [o get a renormalizable theory: truncate this action to a finite number of
marginal and relevant terms

e Consider the following monomials of order six at most, given by

/

permutations

|

permutations

/ #1.2.3.4 2.3.4 91’ 2 % & 1.2¢ 3 4 permutations (][,)

where the sum is over all 24 permutations of the four color indices
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v the 0‘ tensor model h
#° Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in disect space

The ©° tensor model: Feynman graphs

e Feynman graphs are tensor like: fields are represented by half lines with four
strands (representing tetrahedron), propagators are lines with the same
structure meanwhile, vertices are non local objects (4-simplexes)

' ‘

propagator

Vertices of the type Vi (left) and Vg2 (right)
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\ the @9 tensor model _
#% Temor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

The ©° tensor model: Feynman graphs

e [he renormalization analysis leads to add to the action another »"-type term

that can be called an “"anomaly,” namely

|

!

ire: Vertices of the type Vi (left) and

Joseph Ben Geloun Perimeter Institute
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the “ tensor model g
‘,6 Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

The ¢° tensor model

e UV cut-off A and Counterterms: cut-offed propagator C"; Introduce usual
bare (" and renormalized couplings ¢"", ¢ CT". Propagatar (
coefficients: renormalized mass m* and the renormalized wave function 1

e [he action of the model

The model defined by (18) is renormalizable at all orders of perturbation theory
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Bullding the #° tensor model
#° Tensor model Multiscale analysis, -counting and generalized locality principle
Renormalization in direct space

Multiscale analysis: Direct space

e Scale decomp. and bound on the propa

C({q > (a.)

[

e Local coordinate system on S* ~ U(1), parameterized by # € (0. 27)
e [he kernel (20) in direct space

C({0s};{0:})

e Slice decomposition

For alli =0,1 there exist some constants K > Q0 and & > 0 such that

Ci({0:}; {0)) < KM% e oM X5

Joseph Bon Geloun Perimeter Institute, January, 2012
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@ Tensor model analysis,
Renormalization in direct space

Multi/Monoscale Analysis: Optimal bound amplitude

e Bare amplitude associated with ¢ (connected and amputated)
Ag =) A

{
s ‘ol
/

Ag. /[ll”” LT Gt (10v.cs b {0 s DI TT 000
T s T et S ol T 0
[T /[‘”cf'f, TIT

\

¢ Monoscale Power counting
Ag.il < KM¥H!
e [he final/crude divergence degre

(¢f) 2L(C) f w (G)

Joseph Ben Geloun Perimeter Institute, January, 2012
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A Building the ¢° tensor model
° Tensor madel Multiscale analysis, ~counting and generalized locality principle
Renormalization in direct space

Multi/Monoscale Analysis: Optimal bound amplitude

e Bare amplitude associated with ¢ (connected and amputated)
Ag =) Ag,

“ |

/II I dtl “l [ Gy ({ v ev).s b A0 ooy, s DI Il (v
[T ool T bece o4 5 0t T o
[T km /|‘] ] do

¢ Monoscale Power counting
A adrl(Gs)
,‘1, KM ‘
e [he final/crude divergence degre

(&) 2L(G) + Fin (G)
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A Bullding the #9 tensor model
#° Tensor madel Multiscale analysis, -counting and generalized locality principle
Renormalization In direct space

Multi/Monoscale Analysis: Optimal bound amplitude

e Bare amplitude associated with G (connected and amputated)
Ag =) . Ao

“ |

/[[]<f~ I T Cietm U0y i {0 o s DI T T 800
/ll lrr’” ] I l f\."‘.r‘l'. bt N v I ! .\(U
[T /1“4”, ITTIT

e Monoscale Power counting
Ag.i| < KM
e [he final/crude divergence degres

(G)

Joseph Den Geloun Perimeter Institute, January, 2012
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Renormalization in direct space

Divergence degree and topology

¢

Figur A gr iph G, its color extension Geolor. the jacket J (012 314 )

the pinched jacket J, the boundary JG (itself a rank 3 te nsor)

Joseph Den Geloun Perimeter Institute, January, 2012
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g

Figur A graph G, its color extension Geotor. the jacket J (01234)

the pinched jacket J, the boundary JG (itself a rank 3 tensor)
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Building the 4!0 tensor model
#° Tensor model Multiscale analysis, -counting and generalized locality principle
Renormalization in direct space

Divergence degree and topology

The divergence degree of a 1P| graph G is an integer which writes

|
(Newt — 6], (26)

av,'
’ 2

d(G)

where gy and g, are the genus of J and J;, respectivg s the number of

connected components of the boundary graph G, th verformed on all

closed jackets J of G, and the second sum is perf indary jackets Jy

of OG

o Remark: We don't have a positive power in the

1.1 should be further worke

/, then we have

N

‘

&)

1

Joseph Ben Geloun
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Building the ¢° tensor model
#° Tonsor model Multiscale analysls, power-counting and generalized locality principle
Renormalization in direct space

Divergence degree and topology

The divergence degree of a 1Pl graph G is an integer which writes

. . 1
4(G) . g1, | = (Cog —1) = Vg = 4V{' — - [Nex — 6],  (26)

where g and g, are the genus of J and J;, respectively, Cyg is the number of

connected components of the boundary graph (G, the first sum is performed on all

closed jackets J of Gl and the second sum is performed on all boundary jackets Jy

of G

but the term

i) J

e Remark: We don't have a positive power in the number of vertices
should be further worked out (

g v, Mmoreaver

/., then we have i f 3 4\
/ . «1gy

0 and _\‘,,, 0)

)

Joseph Den Geloun Perimeter Institute, January, 2012

Page 70/90



Pirsa: 12010132

A . Building the ¢® tensor model
#° Temsor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Divergence degree and topology

The divergence degree of a 1P| graph G is an integer which writes

|
1) - Vi -4V, - [Next — 6] (26)

d(G)

where § 3 and g, are the genus of J and J;, respectively, Cyg is the number of
connected components of the boundary graph ()G, the first sum is performed on all

closed jackets J of ¢ and the second sum is performed on all boundary jackets J;

of u‘l_;‘

but the term

e) J

e Remark: We don't have a positive power in the number of vertices

- g should be further worked out (

hawve a9 ) 8 a4 i, 81, moreaver

0 and _\‘.,J 0|

Joseph Den Geloun Perimeter Institute, January, 2012
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Building the ¢® tensor model
#° Temsor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Divergence degree and topology

eorem

The divergence degree of a 1Pl graph G is an integer which writes

1
[Next — 6] (26)

f.| \/.‘!!
y 2

\'{"’

where § jand g;, 1 is the number of
connected components s performed on all
closed jackets J of G and the 3 boundary jackets J,

ol :.‘l_;
but the term
D )

have i g1, by noreaver

e Remark: We don't have a positive power in

) 1. 8la should be further worked out

/, then we

«
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\ Bullding the ¢° tensor model
#° Tensor model Multiscale analysls, power-counting and generalized locality principle
Renormalization in direct space

List of primitvely divergent graphs and generalized "Locality Principle”
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Building the ¢° tensor model
#° Tensor model Multiscale analysls, power-counting and generalized locality principle
Renormalization in direct space

Divergence degree and topology

rem

The divergence degree of a 1Pl graph G is an integer which writes
4 Tdf. -

1
(Cog = 1) = Va =4V — - [N

a(G)

where § j and g, are the genus of J and Jy, respectively, Cy is the number of
connected components of the boundary graph (G, the first sum is performed on all

closed jackets J of G, and the second sum is performed on all boundary jackets J

of G

e Remark: We don't have a positive power in the number of vertices but the term

should be further worked aut ( (--') J

mareaver

&1n

/, then we have

-

Joseph Den Geloun Perimeter Institute, January, 2012
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Building the ¢ tensor model

¢° Temsor model Multiscale analysis, power-counting and generalized locality principle

Renormalization In direct space

Divergence degree and topology

The divergence degree of a 1Pl graph G is an integer which writes

. |
4(G) g og = 1) = Va = 4V}’ = = [Next - 6]

where § ; and g, are the genus of J and J,, respectively, Cyq is the number of
connected components of the boundary graph ()G, the first sum is performed on all
closed jackets J of G, and the second sum is performed on all boundary jackets J;

of G
e Remark: We don't have a positive power in the number of vertices but the term
1. | should be further worked out ( (-) J

/, then we have ' 7",’ 1 81 ., Mmoreover

\.7_‘“ 4 ) . 0 and \RJ:’ IJI l‘_, .[}(.j{)

' f
J ) . J
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Building the ¢° tensor model
Mudtiscale analysis, counting and generalized locality principle
Rencemalization in direct space
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Bullding the ¢ tensor madel
Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Anomalous term [ ? [ ©?

['he tadpole of Vg 2

e |t is difficult to interpret yet this anomalous terf

over an intermediate field as

{ u ‘ ( /(J’-‘4 J

¢ being some constant, and whose propagator is the dotted line
propagator does not have any strand: such a gravity theory gene

matter field

Joseph Ben Geloun Perimeter Institute, January, 2012
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Building the #° tensor model
Multiscale analysis, -counting and generalized locality principle
Renormalization in direct space

Anomalous term [ ¢ [ ©?

lhe tadpole of Vg2 has a disconnected boundary graph

e It is difficult to interpret yet this anomalous term: Represented as an integral

( /rf'ur

¢ being some constant, and whose propagator is the dotted line

over an intermediate field as

propagator does not have any strand: such a gravity theory gend
matter field

Joseph Ben Geloun Perimeter Institute, January, 2012
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Building the ¢® tensor model
#°® Tensor model Multiscale analysis, power-counting and generalized locality principle
Renormalization in direct space

Interpolation moves, subtractions and all that

I'he remaining analysis is more technical

e Find all counterterms and proceed to the subtractions

e Prove that all Taylor remainders are all bounded

e Bounds on Taylor remainders should provide enough decay to perform the
sum of scale attributions

e At the end: Proclaim that

Joseph Ben Geloun Perimeter Institute, January, 2012
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Duilding the #® tensor model g
.p° Tensor model Multiscale analysis, power-counting and generalized locality principle
I Renormalization In direct space

Interpolation moves, subtractions and all that

The remaining analysis is more technical

¢ Find all counterterms and proceed to the subtractions

e Prove that all Taylor remainders are all bounded

e Bounds on Taylor remainders should provide enough decay to perform the
sum of scale attributions

e At the end: Proclaim that

Joseph Ben Geloun Perimeter Institute, January, 2012
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The model
Generalized locality principle
&4 Tonsor model One loop - lunction

3D reduced model
with a slighly different dynamics

e \‘ IJJ--,( \" 12 ’”) (]‘.'t

>

1
e Interactions after color inte gration

24 b 0t a0 1 Bas Bap oy permutations

-

e Feynman graphs

Vertices of the type V4

Joseph Ben Geloun Perimeter Institute, January, 2012
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The model

Generalized locality principle
@‘ Tensor model One loop J-lunction

Theorem and List of divergent graphs

eorem

Fhe 30 tensor model described above is renormalizable at all orders and, by
identifying a a, the reduced model is asymptotically free in the UV direction

Proof. Perform a similar multiscale analysis as previously done and get the

divergence degree of connected graph ¢

(G) |(N. 4) 20 — 1)

where gog is the genus of JG (reducing the dimension the former
) gog). The list of primitvely divergent graph
/ y QI ’
Va 8¢ Cog—=1 > g 1(G)
0
0

0
0

Joseph Ben Geloun Perimeter Institute, January, 2012
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The model

@ Torsor model One loop H-Tunction

Theorem and List of divergent graphs

eorem

Fhe 30D tensor model described above is renormalizable at all orders and, by
identifying a a, the reduced model is asymptotically free in the UV direction

Proof. Perform a similar multiscale analysis as previously done and get the
divergence degree of connected graph ¢
(G : (N 4 TR : |
/) ~ t—4)— ) &5+ 8og )

>

J
where gog is the genus of JG (reducing the dimension the former
.1, 81, = Bog). The list of primitvely divergent graph
Va gog Cog—1 385 || wel@)
0 0
] 0

0 0
0
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The model
Generalized locality principle
&* Tensor model One loop - function

One loop A-function of the model

e First relax: A = A

e 3 wave function renormalization (wifr) Le=1213

y (£1£243)

e After renormalization: the wf couplings satisfy the equations

e Wi

e Self-energy 2.(by, by, by) My . 1P| 2-pt

graphs
¢ Dynamics of constant couplings A, . -f1
F4¢(0,0,0.0.0.¢
(£12223)5
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The model

Generalized locality principle
@4 Tensor model One loop A-function
¥ I

One loop [-function of the model

o First relax: A — A

e 3 wave function renormalization (wfr) Z

e After renormalization: the wf couplings satisfy the equations

a (55 )

e Self-energy 2.(by. by, b3) Obybaby Obybaby J1p: SUmM of amput
graphs
e Dynamics of constant couplings A, l.-tunctions encoded by
Ms,(0,0,0,0,0,0)
(£122723)
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The model
Generalized locality principle
@* Tensor model One loop A-function

One loop [-function of the model

where M4, (a1, a2. a3, a}. a5, a3) sum of amput. 1P| 4-pt function

for other 4 use permutations

justified by the renormalization prescription

e The wave function and coupling “ren" terms are given by

Z l
A \

where &, L/(ae|p1]| + ag|p2] 4 f:r}" ¢ 1,2.3 £ e, € £ / is

‘P
logarithmically divergent when removing the UV cutoff and corresponds to the

bubble four-point function divergence
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The model
| Generalized locality principle
@ Tensor model One loop A-function

) [}

One loop [-function of the model

e Focus on « 1 and merge all a, to a fixed value a

O ) Y ] |,r'[ P y m) |
e Assume A2 3 12 3A1, with a2 3 some constants

the model is safe at one-loop
e If 2(ar “3) 1 then /4, 0 and the model is free (charge
screening phenomenon). This is the case of equal coupling constants A, A

and /4, 1 for any coupling constant

e If 2(02 + 03) I then /4y > 0 such that the model possesses a Landau ghost
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The model
Generalized locality principle

@4 Tensor model One loop A-function

One loop [-function of the model

e Focus on « | and merge all a, to a fixed value a

o

) )

\' ] |.f"f P Ps mj'|

e Assume A\ A1, with a2 3 some constants

the model is safe at one loop
o If 2(cva + ag) 1 then /4, 0 and the model is

screening phenomenon). This is the case of equal coupling constants A,

1l for any coupling constant
0 such that the model possesses a Landau ghost

(charge
A

and /4,
o If 2(v2 4 a3) ] then /1

Joseph Ben Geloun Perimeter Institute, January, 2012
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Conclusions: Future Prospects

e [ensor madels of the kind presented here are simplified models for QG but
turns out to be just renormalizable; Nature seems to favor such theories having
long-lived logarithmic flows which can perpetuate along scales
e This is certainly encouraging for those who believe that QG should be
described by a QFT
e Future prospects

Deepening the analysis of the 4D model: UV behaviour and its 4-functions

Deepening the consequence of the renormalization: Ward-ldentities
lopological graph polynomials, et

Generalize the result to other frameworks U(1) — SU(2); GFT models with
their gauge invariance condition on fields; Tensor models over 2" with an IR
regulator in propagator in the form 1/(p° ) (generalized Grosse-Wulkenhaar
tensor model)

Iry to find an answer to an interesting, legitimate and, unfortunately really
difficult question: "How can we make contact with GR using this formalism 7"
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Conclusions: Future Prospects

e Tensor models of the kind presented here are simplified models for QG but
turns out to be just renormalizable; Nature seems to favor such theories having
long-lived logarithmic flows which can perpetuate along scales
e [his is certainly encouraging for those who believe that QG should be
described by a QFT
e Future prospects

Deepening the analysis of the 4D model; UV behaviour and its /#-functions

Deepening the consequence of the renormalization: Ward-ldentities
lopological graph polynomials, etc

Generalize the result to other frameworks U(1) — SU(2); GFT models with
their gauge invariance condition on fields; Tensor models over 2" with an IR
regulator in propagator in the form 1/(p° + x*) (generalized Grosse-Wulkenhaat
tensor maodel)

Iry to find an answer to an intere sting, legitimate and, unfortunately, really
difficult question: "How can we make contact with GR using this formalism ?"
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