Title: Old Physics, New Tricks, and the Theory of Atomic Dark Matter

Date: Jan 05, 2012 11:00 AM

URL: http://pirsa.org/12010125

Abstract: Cold dark matter (CDM) is a central pillar of the current cosmological paradigm. While CDM

Pirsa: 12010125 Page 1/42

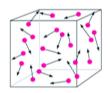
Pirsa: 12010125 Page 2/42

Dark Matter: Inferring the Invisible

- **Early Development:** Based on the uniqueness of the 5 regular (3D) solids and the only 4 known elements (fire,water, earth and air), Plato postulates the presence of an invisible element in the Universe (*quinta essentia*).
- **First Hint:** Zwicky's observation of the Coma Cluster in the early 1930s led him to postulate the presence of large amounts of non-luminous matter inside the cluster. For **40 years (!!)**, his observation is mostly ignored.
- Mainstream Success: Observations of galactic rotation curves catapult dark matter to the central stage of modern cosmology.
- Three decades later: We are still looking for what dark matter is made of (and its not for a lack of trying!!).
- In the mean time: Dark Matter has taken a life of its own in popular media...

Pirsa: 12010125 Page 3/42

Pirsa: 12010125 Page 4/42

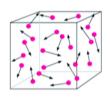

...Yet we still do not know what it is.

- It comprises about 83% of all matter in the observable Universe.
- We only have observed dark matter through its gravitational interaction (worrying?).

Modified Gravity?
$$\longrightarrow G_{\mu\nu} = 8\pi G \, T_{\mu\nu}$$
 Dark Matter?

• It appears cold (negligible free-streaming), collisionless (negligible heat transfer) and non-interacting (neutral).

Pirsa: 12010125


...Yet we still do not know what it is.

- It comprises about 83% of all matter in the observable Universe.
- We only have observed dark matter through its gravitational interaction (worrying?).

Modified Gravity?
$$\longrightarrow G_{\mu\nu} = 8\pi G \, T_{\mu\nu}$$
 Dark Matter?

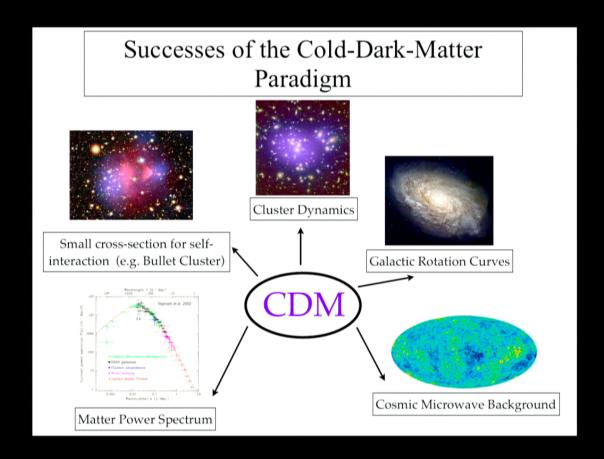
• It appears cold (negligible free-streaming), collisionless (negligible heat transfer) and non-interacting (neutral).

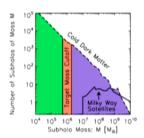
Pirsa: 12010125

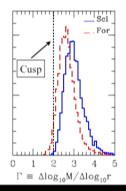
...Yet we still do not know what it is.

- It comprises about 83% of all matter in the observable Universe.
- We only have observed dark matter through its gravitational interaction (worrying?).

Modified Gravity ?
$$\longrightarrow G_{\mu\nu} = 8\pi G \, T_{\mu\nu}$$
 Dark Matter ?

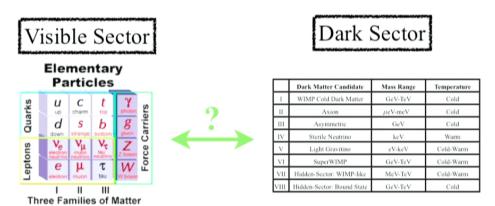

• It appears cold (negligible free-streaming), collisionless (negligible heat transfer) and non-interacting (neutral).


Pirsa: 12010125 Page 7/42

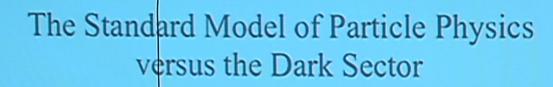

Pirsa: 12010125 Page 8/42

Possible Hints of Physics Beyond Cold Dark Matter

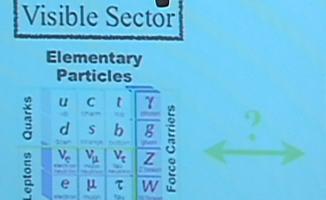
1. **Dwarf Galaxy Problem:** the number of detected dwarf galaxies in the Local Group of the Milky Way appears to be much lower than predicted by the CDM paradigm. (Moore et al. 1999; Strigari et al. 2007)


2. Mass Profile of Dwarf Spheroidal (dSph)
Galaxies: the inner mass profile of dSphs is observed to be consistent with a "core" of constant density while CDM simulations predict a "cuspy" profile. (de Blok, W. J. G., 2010; Walker, M. G. & Penarrubia, J., 2011)

Pirsa: 12010125 Page 9/42


The Standard Model of Particle Physics versus the Dark Sector

• There is rich physics in the Visible Sector, why not also in the Dark Sector?



 How much freedom do current observations leave for new physics in the Dark Sector?

Pirsa: 12010125 Page 10/42

 There is rich physics in the Visible Sector, why not also in the Dark Sector?

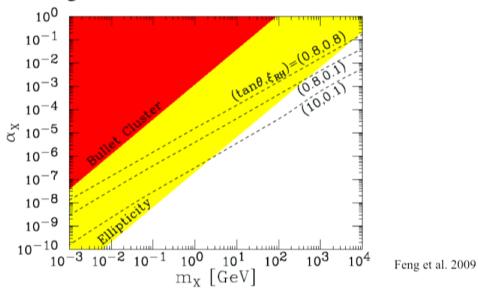
Three Families of Matter

Dark Sector

	Dark Matter Candidate	Mass Ra	operature
1	WIMP Cold Dark Matter	GeV-Te	C-64
ш	Axson	reVineVan	-0.4
ш	Assumetric	Get W	6.2
D.	Stenle Neutrino	401 (04)	
V.	Light Gravitino	11111	Co ma
VI.	SuperWIMP	GAVEN Z	Col en
VII	Hidden-Sector WIMP-tike	MANTA	100A TO
vm	Hidden-Sector, Bound State	Gentler	

How much freedom do current observations leave for physics in the Dark Sector?

Pirsa: 12010125 Page 11/42


Outline

- 1. Interacting Dark Matter: Observations and constraints.
- 2. Atomic Dark Matter: An Introduction.
- 3. Thermal History of Atomic Dark Sector, Kinetic Decoupling.
- 4. Evolution of Perturbations: Matter Power Spectrum, Cosmic Microwave Background.
- 5. Astrophysical Constraint: Ellipticity of dark matter halo.
- 6. Future Directions.

Pirsa: 12010125 Page 12/42

Interacting Dark Matter

Interacting dark matter is viable if it is weakly interacting and has a large mass:

Pirsa: 12010125 Page 13/42

Atomic Dark Matter

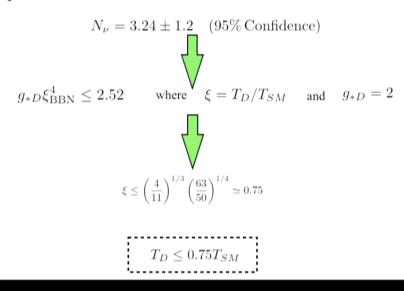
D. Kaplan et al., JCAP 05 (2010) 021D. Kaplan et al., JCAP 1110 (2011) 011

- Postulate a new U(1) gauge force in the Dark Sector.
- The dark matter is made of two oppositely-charged fermions (dark electron and dark proton).
- The Dark Sector is neutral overall (no long-range force).
- The Model is fully described by 4 parameters:

$$\alpha_D, B_D, m_D, T_D$$

subject to the consistency constraint: $B_D \leq \frac{m_D}{8/\alpha_D^2 - 1}$

Atomic Dark Matter: Thermal History



- In the early Universe, the Dark Sector form a **hot ionized plasma**. The dark fermions are **tightly-coupled** to the dark radiation in an almost perfect fluid.
- At late times, two important processes happen:
 - **Recombination:** At T_D << B_D, the dark fermions can form neutral bound states.
 - **Kinetic and Thermal Decoupling:** When the interaction rate between dark matter and the dark radiation falls out of equilibrium, $\Gamma(\gamma_D \leftrightarrow \mathbf{e}) < H$

the dark-matter temperature decouples from that of the radiation and cools adiabatically.

Dark Sector: Temperature

• The limit on the number of relativistic degrees of freedom during Big-Bang Nucleosynthesis puts an upper bound on the temperature sector:

Pirsa: 12010125 Page 16/42

Dark Atoms: Recombination

- Like for regular hydrogen, recombination directly to the ground state (Case A) is highly inefficient. We therefore need to consider recombination to the n = 2 state (Case B).
- The ionization fraction Boltzmann Equation is

$$\frac{dx_e}{dz} = C_B \frac{x_e^2 n_D \alpha_B(T_{DM}, T_D) - \beta_B(T_D)(1 - x_e)e^{-3B_D/4T_D}}{H(z)(1+z)}$$

where

$$C_B = \frac{1 + K\Lambda_{2s-1s}n_D(1 - x_e)}{1 + K\Lambda_{2s-1s}n_D(1 - x_e) + K\beta_B n_D(1 - x_e)}, \quad x_e = \frac{n_e}{n_p + n_D},$$

- $\alpha_B(T_{DM}, T_D)$ is the recombination coefficient.
- $\beta_B(T_D)$ is the photo-ionization coefficient.
- C_B represents the probability that an atom in the n = 2 state will decay to the ground stabeing ionized.
- Λ_{2s-1s} is the two-photon transition rate between the 2s state and the 1s state.
- K is the rate for Lyman- α photons to redshift out of their resonance.

Pirsa: 12010125 Page 17/42

Dark Atoms: Recombination

- Like for regular hydrogen, recombination directly to the ground state (Case A) is highly inefficient. We therefore need to consider recombination to the n = 2 state (Case B).
- The ionization fraction Boltzmann Equation is

$$\frac{dx_e}{dz} = C_B \frac{x_e^2 n_D \alpha_B(T_{DM}, T_D) - \beta_B(T_D)(1 - x_e)e^{-3B_D/4T_D}}{H(z)(1+z)}$$

where

$$C_B = \frac{1 + K\Lambda_{2s-1s}n_D(1 - x_e)}{1 + K\Lambda_{2s-1s}n_D(1 - x_e) + K\beta_B n_D(1 - x_e)}, \quad x_e = \frac{n_e}{n_p + n_D},$$

- $\alpha_B(T_{DM}, T_D)$ is the recombination coefficient.
- $\beta_B(T_D)$ is the photo-ionization coefficient.
- C_B represents the probability that an atom in the n = 2 state will decay to the ground state before being ionized.
- Λ_{2s-1s} is the two-photon transition rate between the 2s state and the 1s state.
- K is the rate for Lyman- α photons to redshift out of their resonance.

Recombination Coefficients

• The canonical recombination rate is given by (Spitzer '78):

$$\alpha_B(T_{DM}) = 0.448 \frac{64\pi}{\sqrt{27\pi}} \frac{\alpha_D^2}{\mu_D^2} \left(\frac{B_D}{T_{DM}}\right)^{1/2} \ln\left(\frac{B_D}{T_{DM}}\right)$$

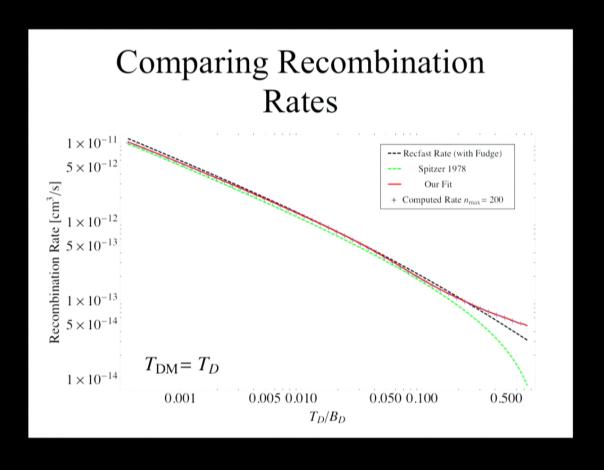
- This misses the dependence on the dark radiation temperature when $T_D > T_{DM}$.
- This fails to take into account the effect of high-n states (~14% correction).
- Does not capture the correct behavior for $T_{DM} \le B_D$ and $T_{DM} \ge B_D$.
- We compute the recombination coefficient exactly:

$$\alpha_B(T_{DM}, T_D) = \alpha_{n=2}(T_{DM}, T_D) + \sum_{n=3}^{n_{max}} \sum_{l=0}^{n-1} \alpha_{nl}(T_{DM}, T_D) P_{nl \to 2}$$

$$\alpha_{nl}(T_{DM}, T_D) = \frac{h^3}{(2\pi\mu_D T_{DM})^{3/2}} \int_0^\infty e^{-B_D \kappa^2 / T_{DM}} \gamma_{nl}(\kappa) \left[1 + f_{BB}(B_D(\kappa^2 + n^{-2}), T_D) \right] d(\kappa^2)$$
where
$$f_{BB}(E, T_D) = (e^{E/T_D} - 1)^{-1}$$

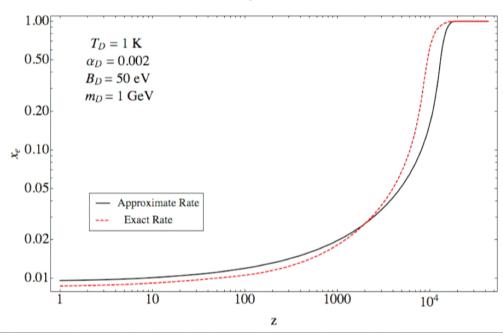
- $P_{nl\to 2}$ is the probability that a state n, l will decay to the n=2 state.
- $\gamma_{nl}(\kappa)$ encompasses the bound-free cross-section.

Thanks to Yacine Ali-Haïmoud!


Recombination Coefficients

• We compute the rate on a grid of T_D/B_D and T_{DM}/T_D up to $n_{max}=200$ and find a fitting formula of the form:

$$\alpha_B(T_{DM},T_D) = \frac{2\alpha_D^3h^2c^3}{3(2\pi\mu_D)^{3/2}\sqrt{T_{DM}}}F_{n_{max}}(\frac{T_D}{B_D},\frac{T_{DM}}{T_D})$$
 Universal dimensionless fitting function


• We obtain the photo-ionization rate through detailed balance:

$$\beta_B(T_D) = \left(\frac{2\pi\mu_D T_D}{h^2}\right)^{3/2} e^{-B_D/4T_D} \alpha_B(T_{DM} = T_D, T_D)$$

Pirsa: 12010125 Page 21/42

Ionization History: Rate Comparison

Pirsa: 12010125 Page 22/42

Thermal Decoupling: Temperature Evolution

- In the early Universe, frequent collisions between dark fermions and dark photons keep the Dark Sector in thermal equilibrium at a single temperature.
- Once the energy transfer rate between the radiation and the dark matter becomes comparable to the Hubble rate, the dark matter starts cooling adiabatically.

$$\Gamma_{ther} \sim H \longrightarrow T_{DM} < T_D$$

 Accurate temperature necessary for recombination history and determination of kinetic decoupling.

$$\Gamma_{kin} \sim H$$

Pirsa: 12010125 Page 23/42

Thermal Decoupling: Temperature Evolution

- In the early Universe, frequent collisions between dark fermions and dark photons keep the Dark Sector in thermal equilibrium at a single temperature.
- Once the energy transfer rate between the radiation and the dark matter becomes comparable to the Hubble rate, the dark matter starts cooling adiabatically.

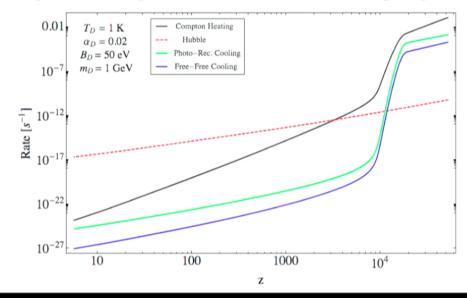
$$\Gamma_{ther} \sim H \longrightarrow T_{DM} < T_D$$

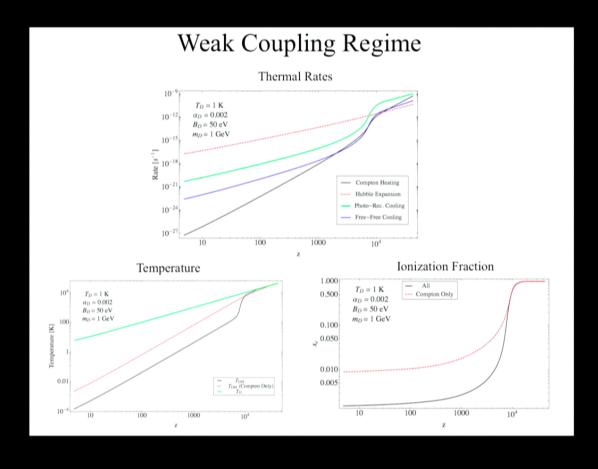
 Accurate temperature necessary for recombination history and determination of kinetic decoupling.

$$\Gamma_{kin} \sim H$$

Pirsa: 12010125 Page 24/42

Dark-Sector Temperature


- In the strong coupling regime ($\alpha_D \gtrsim 0.01$), the single most important process to maintain dark matter in thermal equilibrium is Compton Scattering.
- For all interesting cases, Coulomb scattering maintain the dark electrons and dark protons at the same temperature.
- In the weak coupling regime ($\alpha_D \lesssim 0.005$), or for $T_D/T_{SM} \ll 1$, Compton heating is not efficient enough to keep the radiation and the dark matter at the same temperature.


Pirsa: 12010125 Page 25/42

Strong-Coupling Regime

Compton heating determines thermal decoupling:

Pirsa: 12010125 Page 26/42

Pirsa: 12010125 Page 27/42

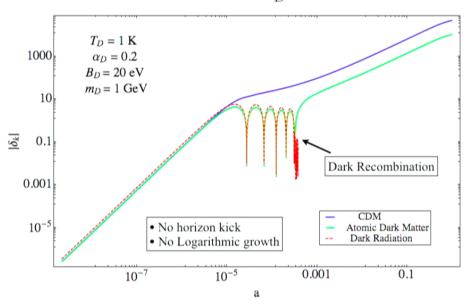
Putting all the Pieces Together

- We define T_{dec} when T_{DM} and T_D differs by 10%.
- There are many different cases:
 - Regime 1: $T_{\text{rec}} > T_{\text{dec}}$ (like regular hydrogen).
 - Regime 2: $T_{\rm rec} \approx T_{\rm dec}$.
 - Regime 3: $T_{\text{rec}} < T_{\text{dec}}$ (weak coupling).
 - Regime 4: T_{rec} undefined (no recombination).
- In all cases, $T_{kin} \geq T_{dec}$.
- Importance of kinetic decoupling: The smallest dark-matter halo is mostly determined by the temperature at which it kinematically decouples from the dark radiation.

Pirsa: 12010125 Page 28/42

Stages of Evolution

• Dark opacity has two main contributions:

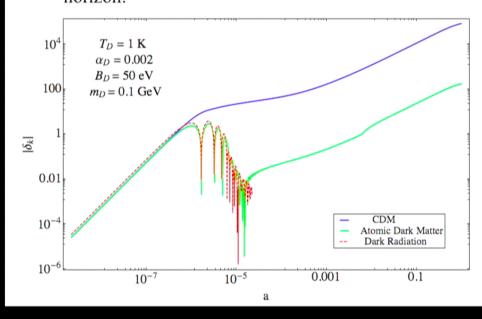

$$\tau_D^{-1} = ax_e n_D \sigma_{T,D} + a \frac{\Pi_{P-Heat}}{3n_{DM}(1+x_e)T_{DM}} \left(\frac{m_e}{m_p}\right)$$

• 4 different cases for evolution of Fourier modes:

- k < H: Perturbations outside the horizon, no evolution.
- $H < k < R\tau_D^{-1}$: Strong coupling regime, undamped acoustic oscillations.
- $H < R\tau_D^{-1} < k$: Acoustic damping regime, damped acoustic oscillation.
- R $\tau_D^{-1} < H < k$: No coupling $R = \frac{4\bar{\rho}_{\gamma,D}}{3\bar{\rho}_D}$

Strong Coupling Regime

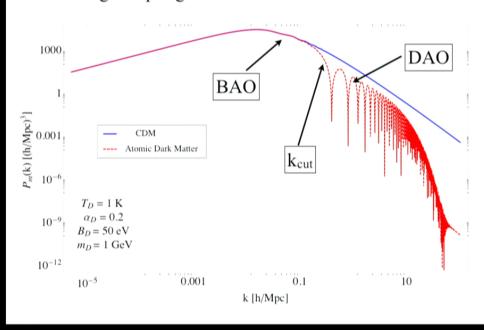
$$H \le k \le R \tau_D^{-1}$$



Pirsa: 12010125 Page 30/42

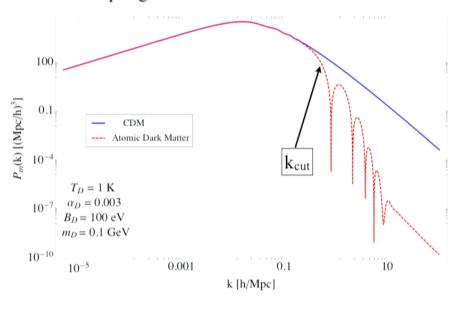
Weak Coupling Regime

$$H < R\tau_D^{-1} < k$$


• Significant acoustic damping as soon as mode enters horizon:

Pirsa: 12010125 Page 31/42

Matter Power Spectrum


Strong Coupling Case:

Pirsa: 12010125

Matter Power Spectrum

Weak Coupling Case:

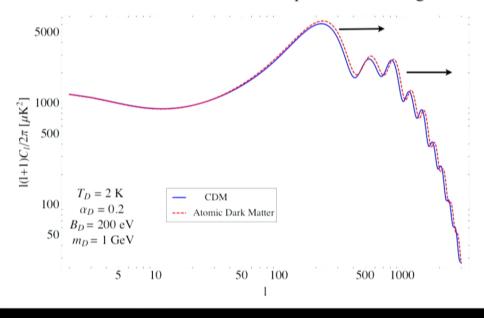
Pirsa: 12010125 Page 33/42

Cutoff Scale and Minimum Halo Mass

• We define the cutoff scale as:

$$k_{cut} \approx H \simeq \Gamma_{kin}$$

• The minimum halo mass is approximately given by:

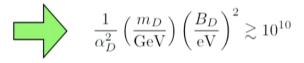

$$M_{cut} \simeq \frac{4\pi}{3} \left(\frac{\pi}{k_{cut}}\right)^3 \Omega_m \rho_{\rm crit}$$

• Considering Dwarf galaxies, we obtain a rough lower bound:

$$k_{cut} \gtrsim 250 \, h \mathrm{Mpc}^{-1}$$

Cosmic Microwave Background

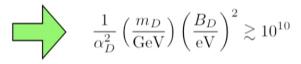
 A warm dark sector shifts matter-radiation equality, and therefore moves all the acoustic peaks toward higher l.



Pirsa: 12010125 Page 35/42

Ellipticity of Dark-Matter Halos

- Shapes of dark-matter halos of elliptical galaxies and clusters are elliptical.
- On the other hand, collisions of DM particles drive the halo toward isothermality and isotropize the mass distribution.
- We therefore have the constraint:


$$n_{DM}\langle\sigma_{coll}v\rangle<rac{1}{ au_{dyn}} \quad ext{ with } \quad \sigma_{coll}\sim 4\pirac{lpha_D^2}{B_D^2}$$

Ellipticity of Dark-Matter Halos

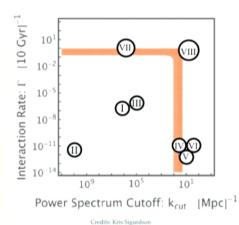
- Shapes of dark-matter halos of elliptical galaxies and clusters are elliptical.
- On the other hand, collisions of DM particles drive the halo toward isothermality and isotropize the mass distribution.
- We therefore have the constraint:

$$n_{DM} \langle \sigma_{coll} v \rangle < \frac{1}{ au_{dyn}} \quad \text{ with } \quad \sigma_{coll} \sim 4\pi \frac{\alpha_D^2}{B_D^2}$$

Key Points

- The theory of Atomic Dark Matter is a simple and effective testbed for 'physics beyond CDM'.
- It has a rich thermal history. Kinetic decoupling is delayed compare to a typical WIMP.
- It retains the success of CDM on cosmological scales but modify the properties of DM of galactic scales.
- It makes new and easily-calculable predictions (cutoff, DAO).
- It is not ruled out by observations.

Pirsa: 12010125 Page 38/42

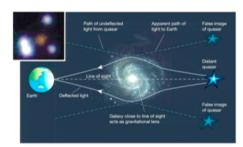

Future Directions

- Work out the exact constraints on the 4 parameters.
- Are DAO detectable?
- Add a connector sector with the Standard Model.
- Study direct-detection and indirect-detection signatures.
- How does atomic dark matter behave during halo collapse?

Pirsa: 12010125 Page 39/42

Ruling Out Dark-Matter Candidates

* Detection of a minimum-mass cutoff can rule out some prominent dark-matter candidates:

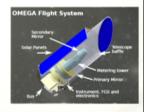


	Dark Matter Candidate	Mass Range	Temperature
1	WIMP Cold Dark Matter	GeV-TeV	Cold
II	Axion	μeV-meV	Cold
Ш	Asymmetric	GeV	Cold
IV	Sterile Neutrino	keV	Warm
V	Light Gravitino	eV-keV	Cold-Warm
VI	SuperWIMP	GeV-TeV	Cold-Warm
VII	Hidden-Sector: WIMP-like	MeV-TeV	Cold-Warm
VIII	Hidden-Sector: Bound State	GeV-TeV	Cold

Pirsa: 12010125 Page 40/42

Studying Dark-Matter Substructures through Strong Gravitational Lensing

 Strong lenses displaying multiple images of a background source are powerful probes of dark-matter substructures within galactic halos.


* Needed: precise measurements of gravitational time delays, image positions, and image magnifications.

HE0435-122

DSS 0924+021

Pirsa: 12010125 Page 41/42

The Calculation

* Would like to compute the Probability Density Function (PDF) of obtaining a given set of lensing observables. For example, the timedelay PDF is:

$$P_{\phi}(\phi_1, \phi_2, \phi_3) = \int \prod_{j=1}^{N} \left\{ dm_j d^2 \mathbf{x}_j P_s(x_j, y_j, m_j) \right\} \prod_{i=1}^{3} \delta \left(\phi_i - \sum_{k=1}^{N} \frac{m_k}{\pi} \ln \frac{|\mathbf{x}_i - \mathbf{x}_k|}{|\mathbf{x}_0 - \mathbf{x}_k|} \right)$$

* Better Approach: Compute PDF for a single clump.

$$P_1(\phi_1, \phi_2, \phi_3) = \int dm d^2 \mathbf{x} P_s(\mathbf{x}, m) \prod_{i=1}^3 \delta\left(\phi_i - \frac{m}{\pi} \ln \frac{|\mathbf{x}_i - \mathbf{x}|}{|\mathbf{x}_0 - \mathbf{x}|}\right)$$

HE0435-1223

* Compute Characteristic Function (Fourier Transform) and use:

$$Q_N(\mathbf{k}) = (q_1(\mathbf{k}))^N$$
.