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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012
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Preparation Measurement
= M

P A 12)
PI’(2|;‘\11. i)
Pr( 14
Pl'(z‘j\,[z,.
Pr(3| Mo, P)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

- U —
O

Preparation Measurement
= M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)
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State tomography for a single qubit
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012
<~ B B] @a
(@) - (4«”

Preparation Measurement
P M

Suppose there are K fiducial measure! (pass-fail mmts from
which one can infer the statistics for all mmts)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

) B
) ©)

Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

Pr(pass|A1, P) °

Sp = Pr(Dass.;\[z_ 1;‘)

Pr(pass| Mg, P)

Pr(k|P,M) = fyrr(sp)
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Operational states form a convex set
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Operational states form a convex set

VM, k : p(kIM, P") = w p(k|M, P)+(1—w) p(k|M, P")
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VM, k : p(k|M, P") = w p(k|M, P)+(1—w) p(k|M, P")

_[l(SPH) = w f(Sr.-) + (1 w) f.(S‘r,.‘-)
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Operational states form a convex set

YM, k. ]’J(LZIM\ PH) —7) !J(/."i\/], P)4+(1—w) ‘_n(' kIM. P

I/'(Spu) — 4§, ‘f‘(Sr,) -t (_1 w) .f'(Sr,f )
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orm a convex set

VM, k : p(kIM,P") = w p(k|M, P)+(1—w) p(k|M, P

f(spr) =w f(sp) + (1 — w) f(sp)

r

Also true for fiducial mmts, so  Spr = w Sp + (1 — w) Spr

'l Y. ] ¥ |
\,]‘-J;u\- un
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form a convex set

VM, k : p(k|M,P") = w p(k|M, P)+(1-w) p(k|M, P")
'/l(SPH) = w _/'(Sp) + (1 —w) "’

Also true for fiducial mmts, so

f(wsp+(1-w) spr) =w f(sp)+ (1 —w) f(Spr) Convex linear
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Convex linearty impl

If f is convex linear on opt'l states

S=3;w;s; = f(s)=Y,w;f(s;) <w; <1 and ) ; w;

Ay

Then f is linear on opt'l states

-—

s=Siasi = f(5) = Dionf(s)
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Convex linearity implies linearity

If f is convex linear on opt'l states

S=2;w;s; = f(s)=Y,w;f(s;) O<w; <1 and >, w;
Then f is linear on opt'l states

si = f(s)=%ia;if(si)

Sl \"‘_.;' &y

Proof: 8= X; ;s

s+ Sier_lagls; = Sicr, laals,

]

Considering the trivial mmt, 1 = 5. ¢,

f(s)=1 for all s. we ha e
() ) W M l”|‘.'\4/"/ |y
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Convex linearity implies linearity

If f is convex linear on opt'l states
s=Yiws; = f(s)=T;wif(s;) O0<w;<1andy,w=1
Then f is linear on opt'l states

S = Ei Q;S; = /("’) = )i “'/‘/‘(‘H“)

Proof: 2= 1.:; x,;S,

S+ 2Ljer lagls

Considering the trivial mmt,
f(s)=1 for all s, we have
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Convex linearity implies linearity

If f is convex linear on opt'l states
s=;wis; = f(s)=T;wif(s;) 0<w; <1 andy;w,
Then f is linear on opt'l states

S = SJ 5, = /(“”) — :\_:I H\'-f(hf)

Proof: S = )_; oS,

P

Considering the trivial mmt, 1 = .
f(s)=1 for all s, we have 1Ty
1SR

e L G || -~
Thus: 778 + 2 el RjFSj = X
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Convex linearity impl

If f is convex linear on opt'l states
s=2;wis; = f(s)=3,;w;f(s;) Ofw; £1and ) . uw; =1

Then f is linear on opt'l states

—

Siaisi = f(s) =T, aif(si)

S =

S+ 2jer_ lals; = 2i Iy lcals;

Considering the trivial mmt, 1 — S o

f(s)=1 for all s, we have ..# |
( ) ’ l_ —|— -‘\JI'-i" |f\,‘ —

Thus: \IH + 2jel ]i{:.’-l&,' =P
EF(8) + Ter Bilss
/(H) o \i:z “J./.(S.')
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Convex linearity implies linearity

If f is convex linear on opt'l states
S=3,;w;s; = f(s)=%,w;f(s;) O w; S 1 and Yl w; =1
Then f is linear on opt'l states

SE=R ST A (S = o f(s;)

Therefore dr: f(s) =r-s
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Convex linearity implies linearity

If f is convex linear on opt'l states
s=2iwis; = f(s)=Ljwif(s;) O0<w

Then f is linear on opt'| states

=

s=)ia;8; = f(s)=3,;a;f(s;)

Therefore dr: f(s) =r-s
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A convex operational theory

Preparation
p

S[; E 'J;”

‘operational states”

S = Convex set

Measurement
M

Ak € o

operational effects”

R = Interval of
positive cone
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A convex operational theory

® >

Preparation Measurement
= M

SpES g & e
‘operational states" “operational effects”

S = Convex set

G T | E B L e ‘- : f Ll
S and R characterize the opera lonal theor\
‘ tNeory

[)'f‘(llnf“:), M) — rl[;. . S["
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Operational classical theory

S can be any probability distribution

S = a simplex

r can be any vector of conditional probabilities

R = the unit hypercube

(p(1).p(2),.p(3)) (p(pass|l).p(pass|2).p(pass|3))

0,0,1) | (0,0,1)1 (0.1.1)

|
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any trace one positive opc- ato

8

S = the convex set of such opera
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any trace one positive operator
S = lhr convex at of such operat
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any trace one positive opcra

S = the conve 3t of such oper:

I can be any positive operator less than identity

R = an injgrval of the positive
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any trace one positive oporator
S = the convex set of such opera

I can be any positive operator less than |dor1t1tv
R = an interval of the positive cone
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r.-s >0 Vs ¢

;\;:;'.' r. S = 1
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r,.-.s >0 VYse S
> krleS=1 Vse S

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A.B) = Tr(AB)
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r,..-s >0 VYse S
\\t'.‘ r;'. =1 NS - S)

Y —

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A, B) = Tr(AB)

Each S is a density operator p
Each set {Vx} is a set of Hermitian operators { £} }
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r.-s >0 VYse& S

‘::”r r. S = 1 VSe S

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A.B) = Tr(AB)

Each S is a density operator p
Each set {Fx } is a set of Hermitian operators £}
'y S= (Ep,p) = Tr(ELp)
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r.-s >0 VYse S
\_'_:; R ST— LV STEnS

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A, B) = Tr(AB)

Each S is a density operator p
Each set {1} is a set of Hermitian operators { £}
rk '8 = (E/.:: f)) = TT’(E;;:[)) < the form of the
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r;} suchthat r.-s >0 VYse S
1;; Fr. S = 1 Vse S

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A, B) = Tr(AB)

Each S is a density operator p
Each set {V'x} is a set of Hermitian operators { £} }
Mg S = (E[.:a f)) = TF(E;‘:[)) & the form of the
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A little bit of axiomatics

Suppose one takes as given that

S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r.} suchthat r.-s >0 VYse S
2EF-S=1 Vse &

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A, B) = Tr(AB)

Each S is a density operator p

Each set {1} is a set of Hermitian operators { £}

NS = (E;l:, 1) = Tr(}f)k:p) < the form of the Born rule

all {Ex} suchthat Tr(Egp) >0 Vpe S(H)
Z/c TI’(E‘;.‘,[)) =1 \(/,() € ‘S(H)
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Tr(pEL) >0 Vpe S(H)

~ ($|E;

¥

b)) >0 Vo) e H

E;. is a positive operator

ZL‘: Tr(.{)E‘I;') =1 \\//" = S(/}‘{)
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Tr(pEL) >0 Vpe S(H)

(V| Eg|v) > 0 V|v) € H

E)j. is a positive operator

ZI;: TI’([)E/,..) =1 \"f/) = S(}_{)

(] (5, B [0) =1 Vo)
_— >1‘, -h’]/c — I

The logically possible measurements correspond to the POVMs!

(- )
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Operational formulation of quantum theory

Every preparation P is associated with a density operator p

Every logically possible measurement is physically possible

&9 Every measurement M is associated with a positive operator-valued
measure {£,}. The probability of M yielding outcome k given a

preparation P is Pr(k|P,M) = Tr(pE})

grisformation is associated with a trace-preserving completely-

L

linear map 0 — [,’ = {2)
very measurement outcome K is associated with a trace-
nonincreasing completely-positive linear map T, such that

— — __,]}.t__(f) ) / i —
p— P = A0 where 7, (D) = E,
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Operational formulation of quantum theory
Every preparation P is associated with a density operator p

Every logically possible measurement is physically possible

ﬂ—_:> Every measurement M is associated with a positive operator-valued
measure {£,}. The probability of M yielding outcome k given a
preparation P Is Pr(k|P,M) = Tr(pE,.)

Every transformation is associated with a trace-preserving completely-
positive linear map ’

0O — D
/ /

Every measurement outcome k is associated with a t

nonincreasing completely-positive linear map 7
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all {r.} suchthat r..s >0 VYse& S
>k S=1 Vse§

The real vector space is the space of Hermitian operators

(these are closed under linear combination and scalar multiplication)
The inner productis (A.B) = Tr(AB)

Each S is a density operator p

Each set {Fx } is a set of Hermitian operators £}

K
Ve S = (Ey, p) = Tr(Eyp)
Allow all { E}; } suchthat  Tr(Egp) >0 Vp € S(H)

2k Tr(Egp) =1 Vpe S(H)
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Pure preparations

Complete repeatable
measurements

Reversible
transformations

Mixed preparations

Composition rule

‘ol o Yy ! Er— £
Real versus complex fi

rays in RV

Bases for R4V

Orthogonal (det = 1)

Positive unit-trace
real matrix

Tensor product

- '[ f‘]

ol AW
complex case

r/ ”r
rays in (L_,‘\

r ™
Bases for (

Unitary

Positive unit-trace
complex matrix
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State tomography for a single qubit
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State tomography for two qubits

Source of
qubit pairs

We need 42 -1 = 15 parameters We obtain 42 -1 = 15 parameters

The mixed state of two qubits can be determined from local measurements
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State tomography for two real-amplitude qubits

Source of
pairs

We need 4(4+1)/2 - 1 = 9 parameters We obtain 32 -1 = 8 parameters
Oy @ Oy mustbe accessed globally

The mixed state of two real-amplitude qubits

cannot be determined from local measurements -- a kind of holism
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