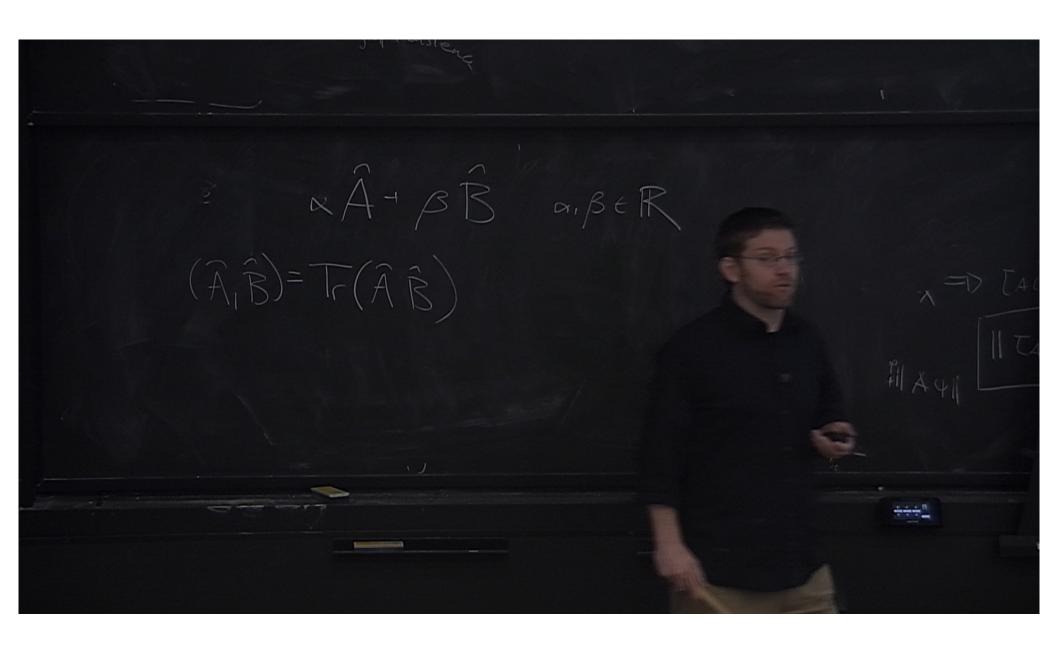
Title: Foundations of Quantum Mechanics - Lecture 5

Date: Jan 06, 2012 11:30 AM

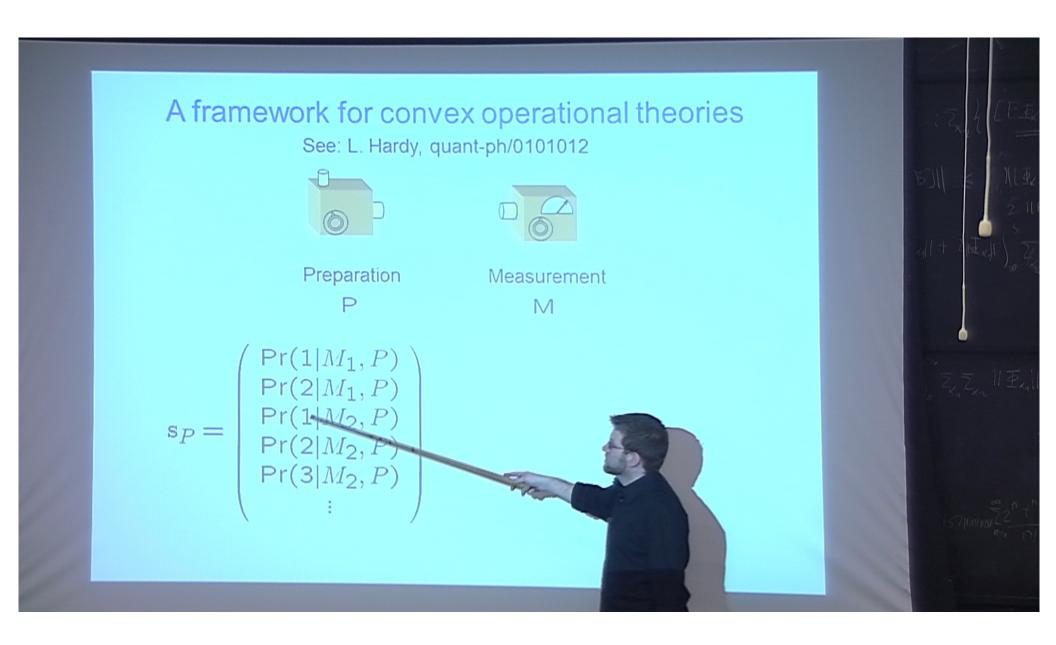
URL: http://pirsa.org/12010042

Abstract:

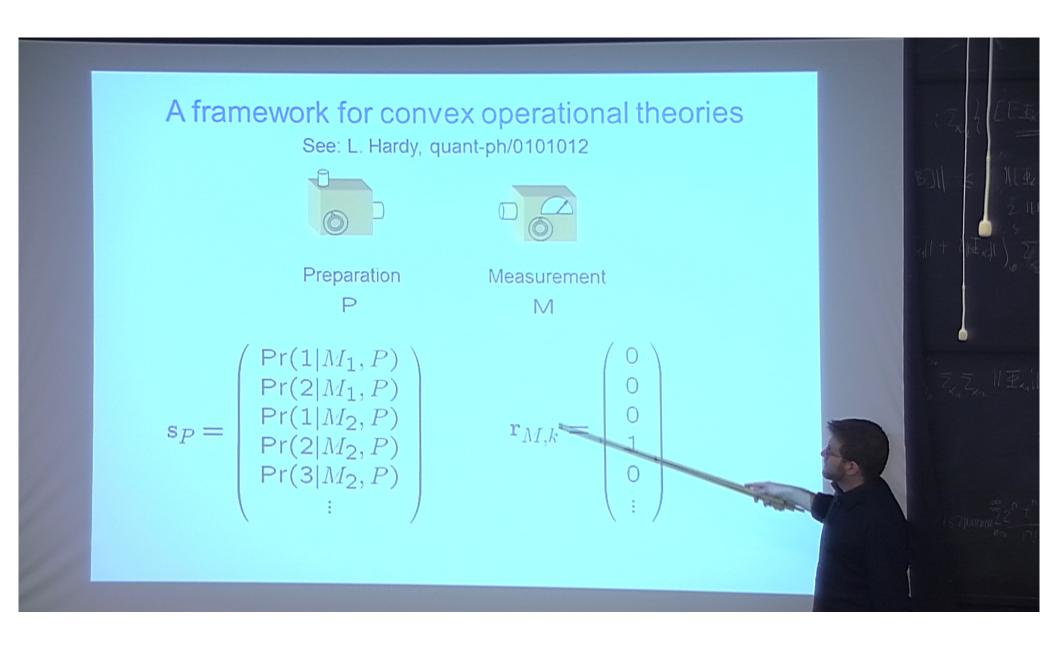
Pirsa: 12010042 Page 1/50



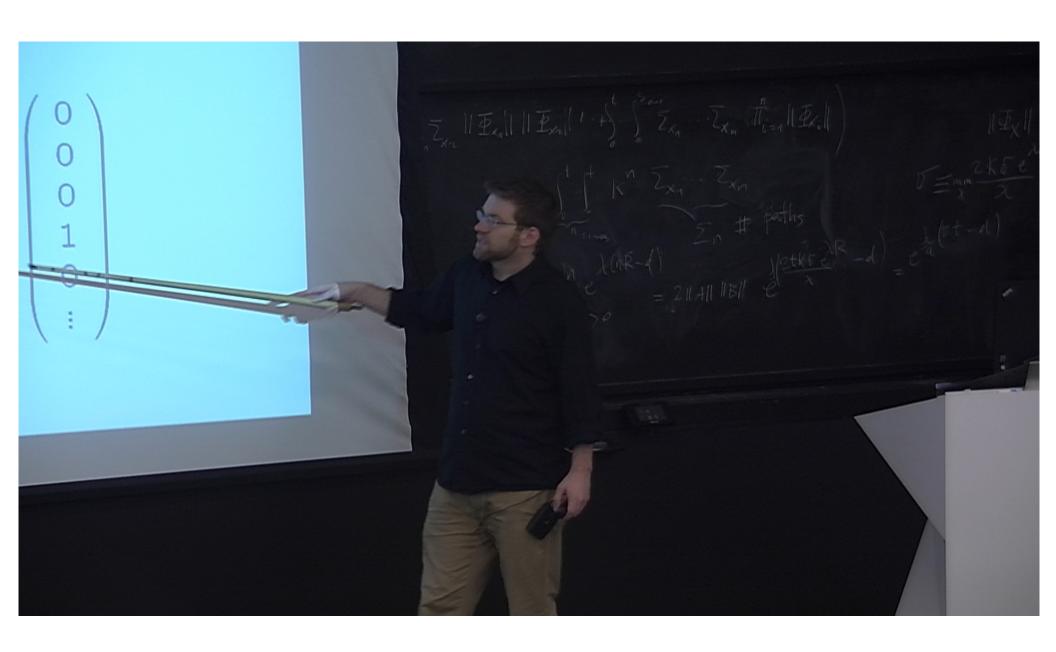
Pirsa: 12010042 Page 2/50



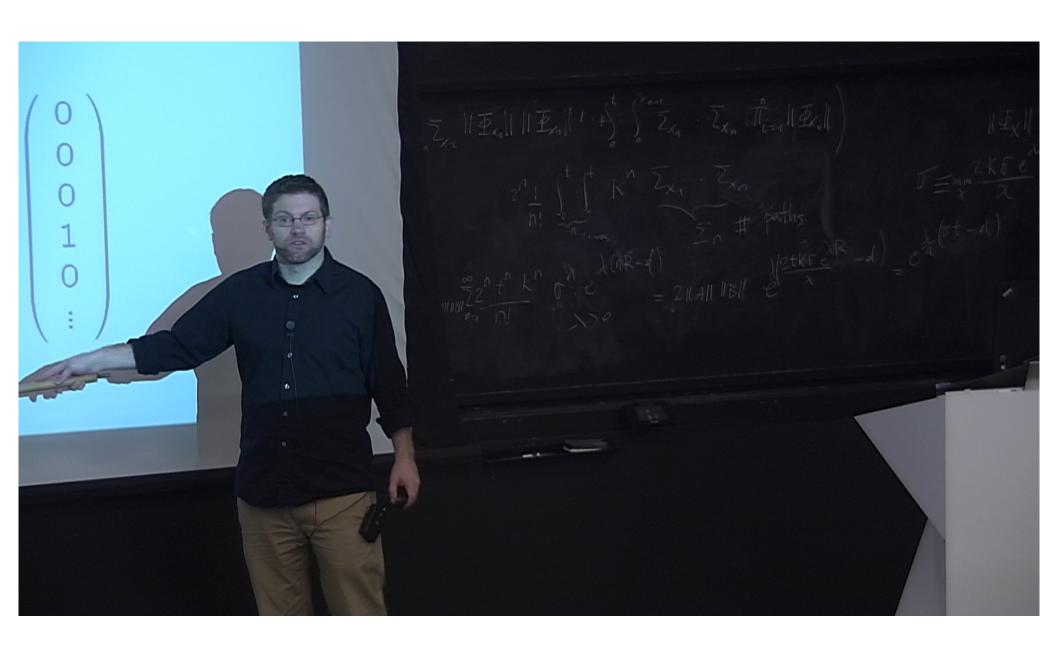
Pirsa: 12010042 Page 3/50



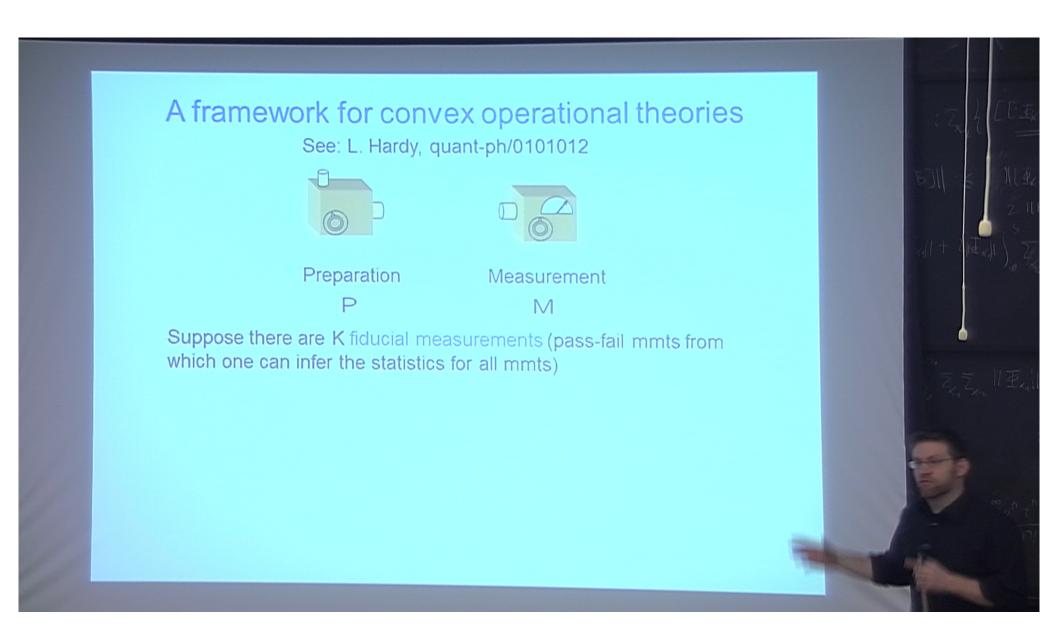
Pirsa: 12010042 Page 4/50



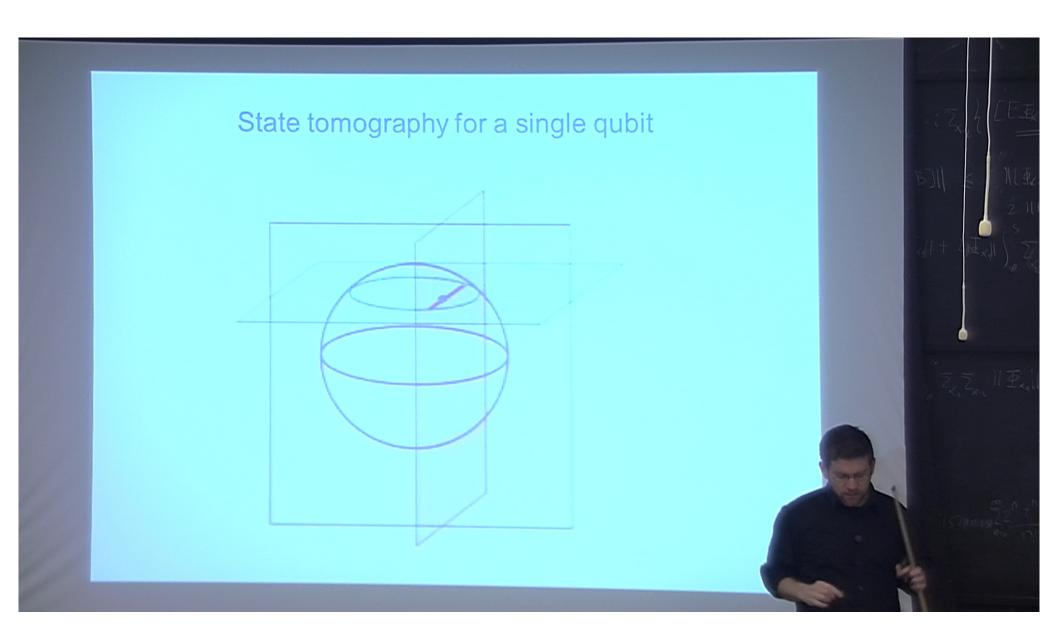
Pirsa: 12010042



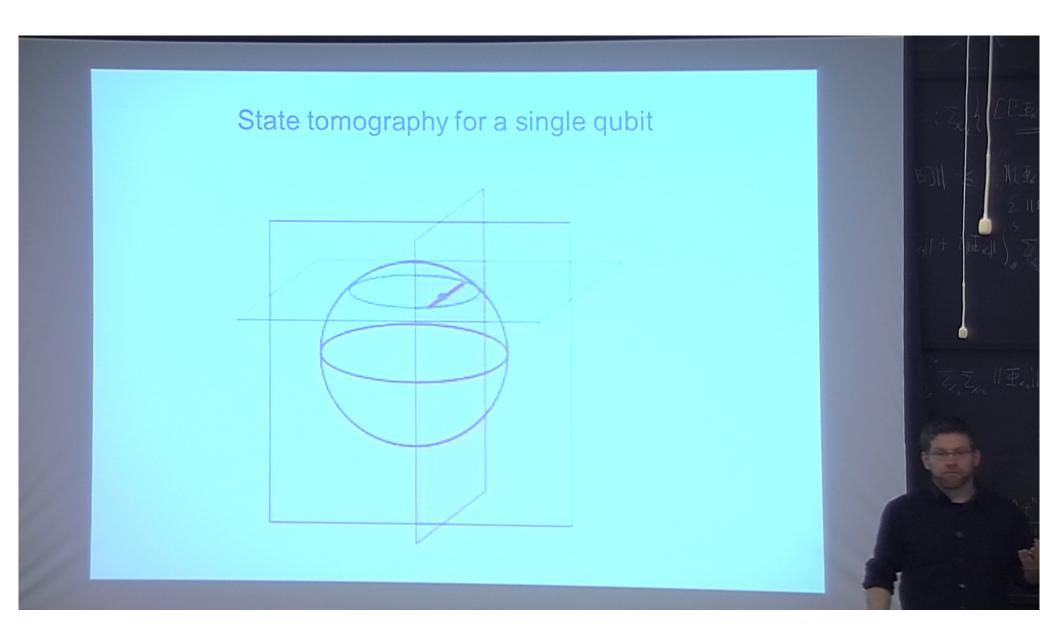
Pirsa: 12010042



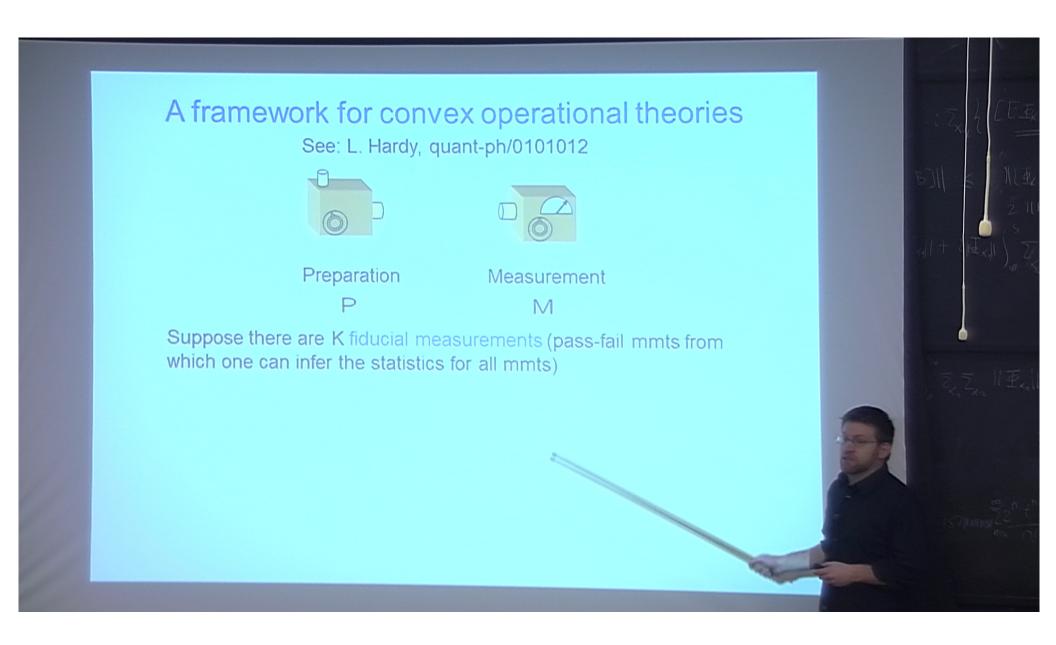
Pirsa: 12010042 Page 7/50



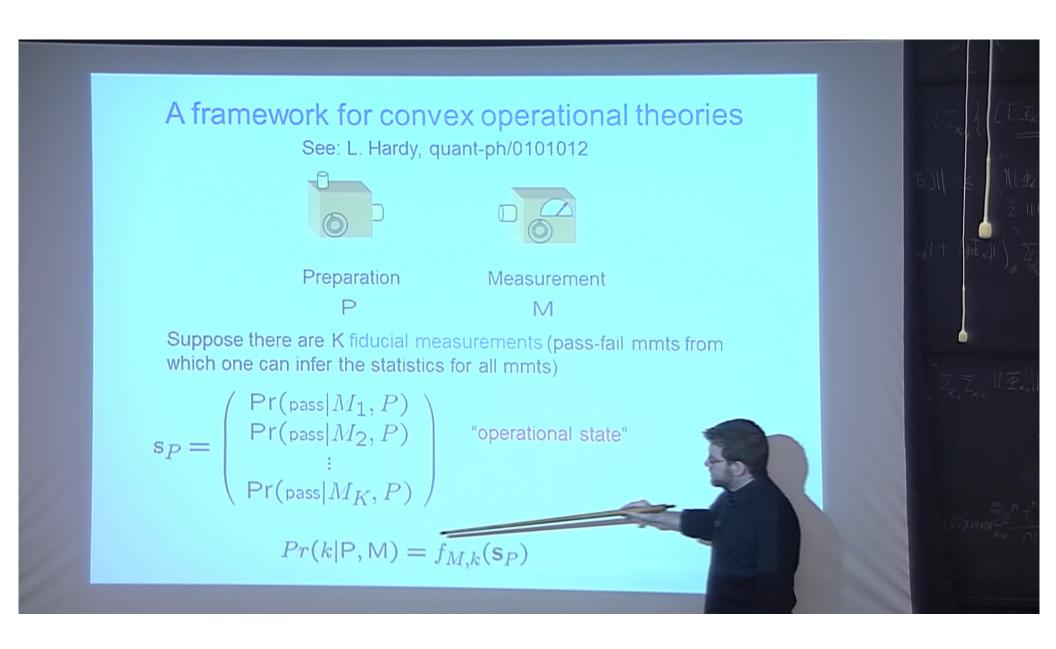
Pirsa: 12010042 Page 8/50



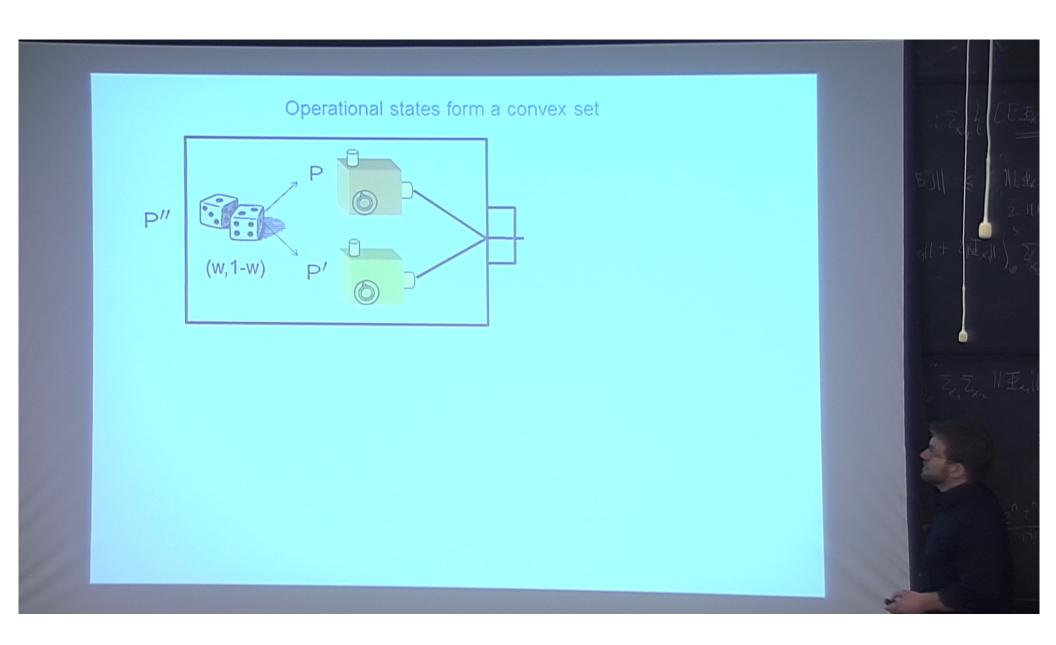
Pirsa: 12010042



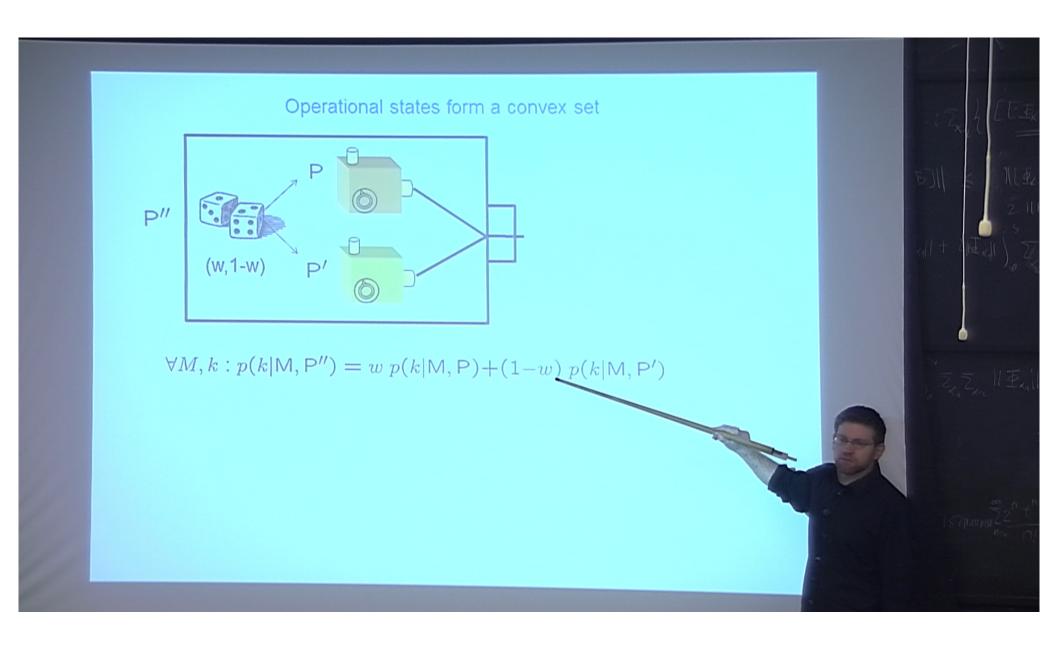
Pirsa: 12010042 Page 10/50



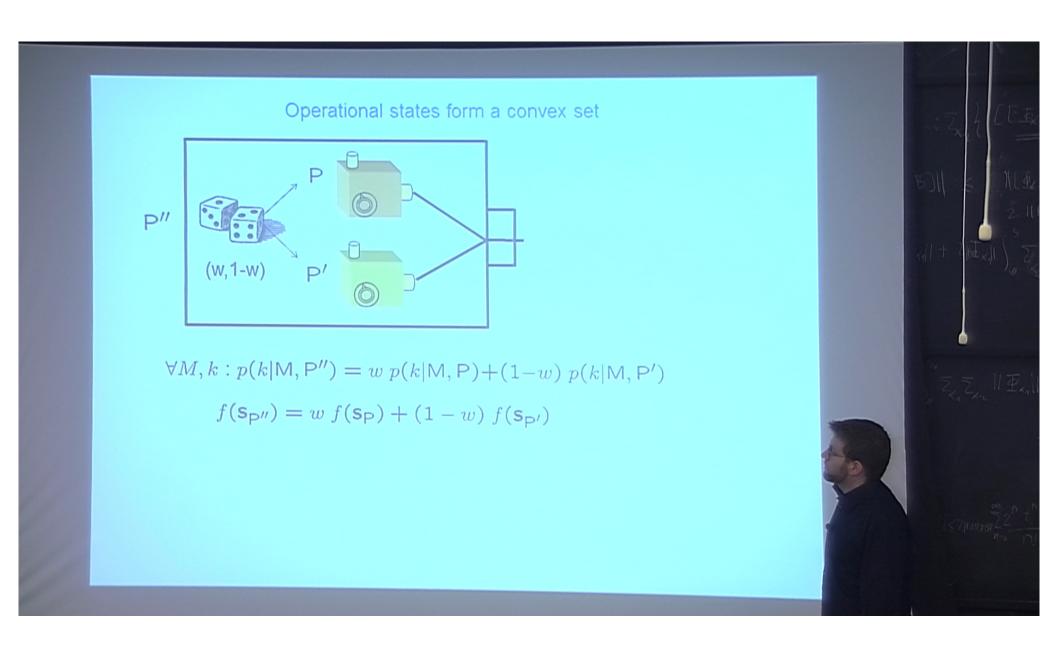
Pirsa: 12010042 Page 11/50



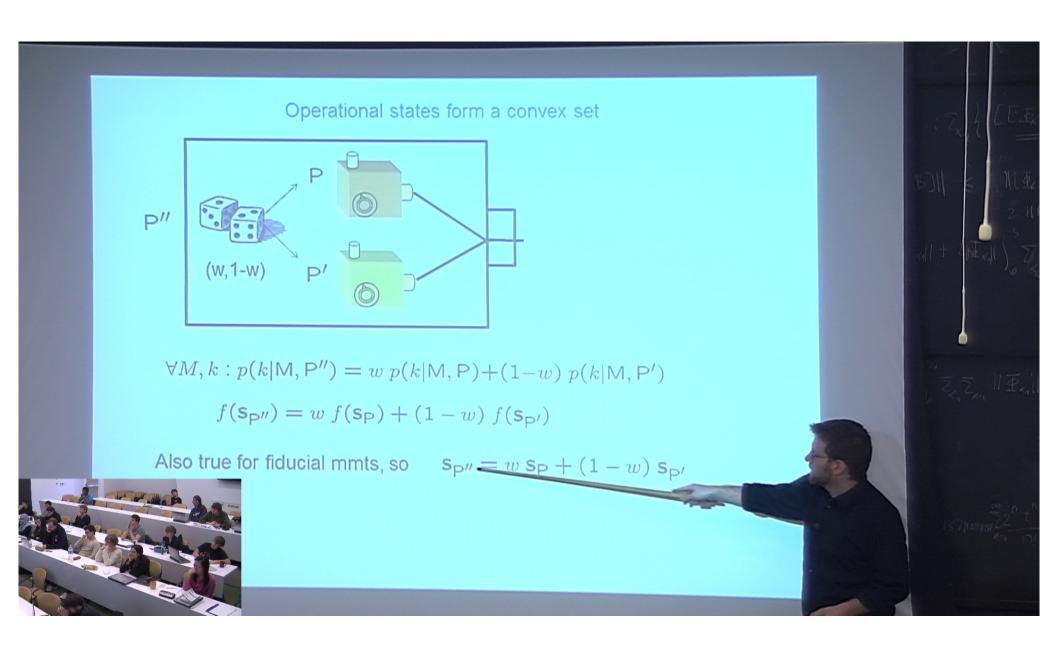
Pirsa: 12010042 Page 12/50



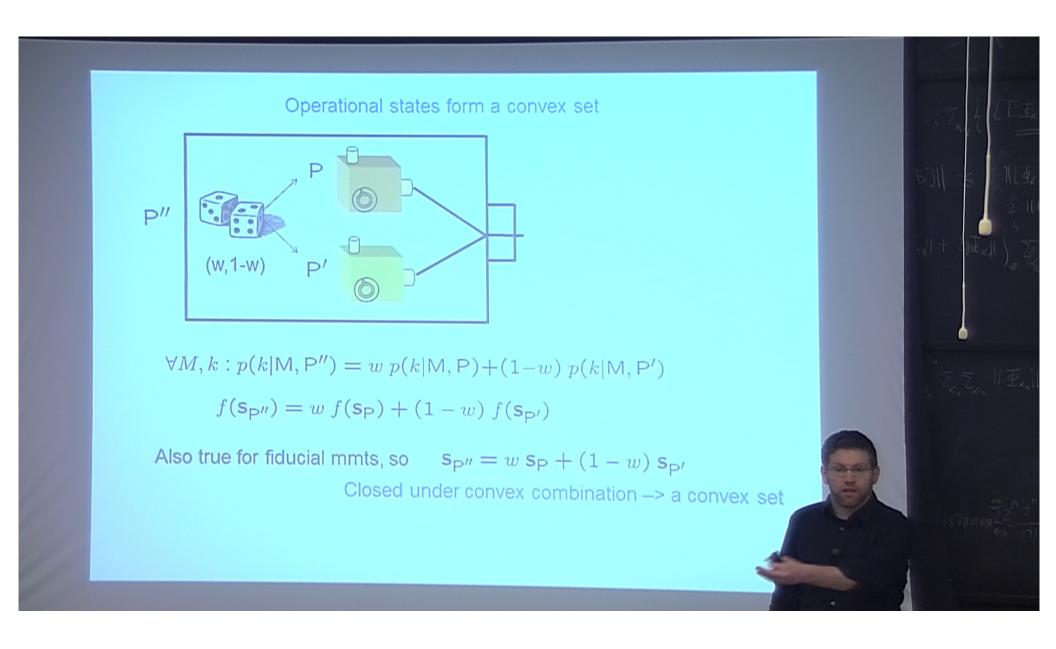
Pirsa: 12010042 Page 13/50



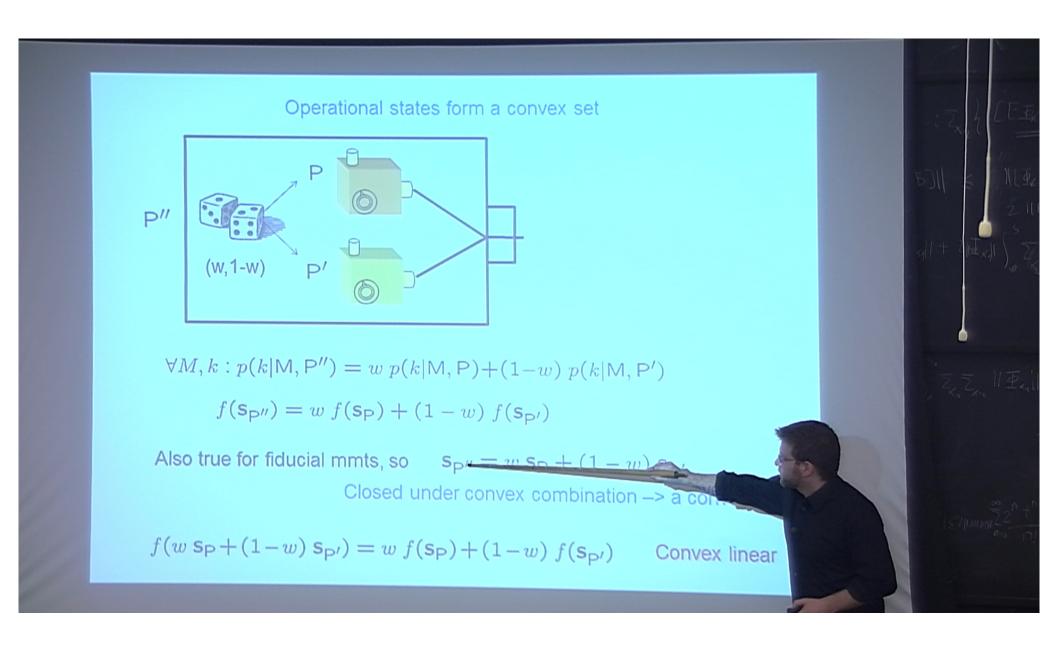
Pirsa: 12010042 Page 14/50



Pirsa: 12010042 Page 15/50



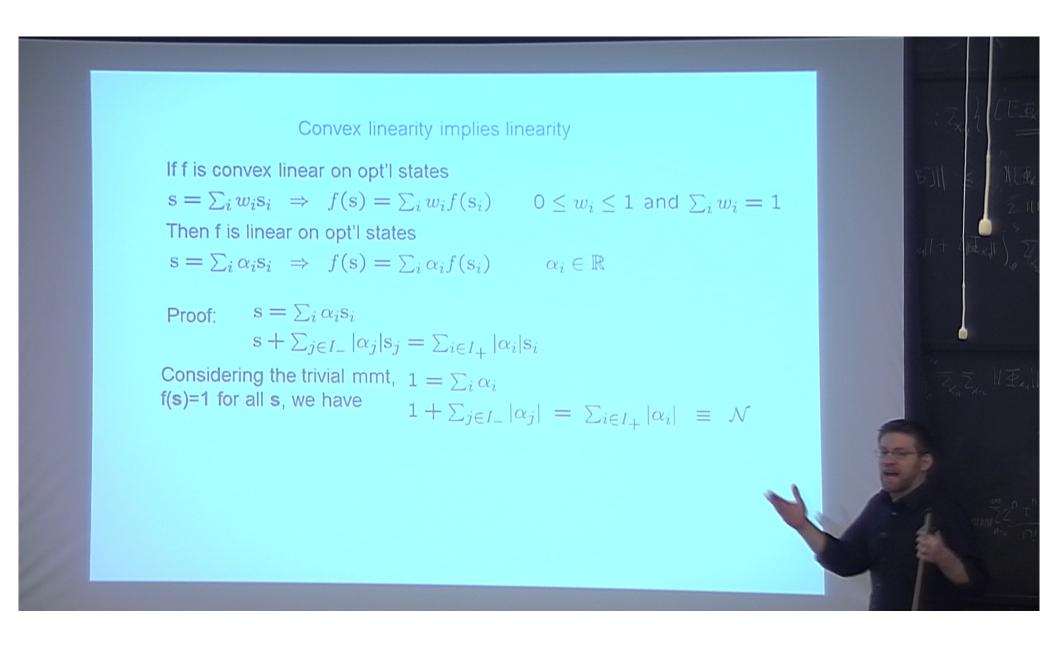
Pirsa: 12010042 Page 16/50



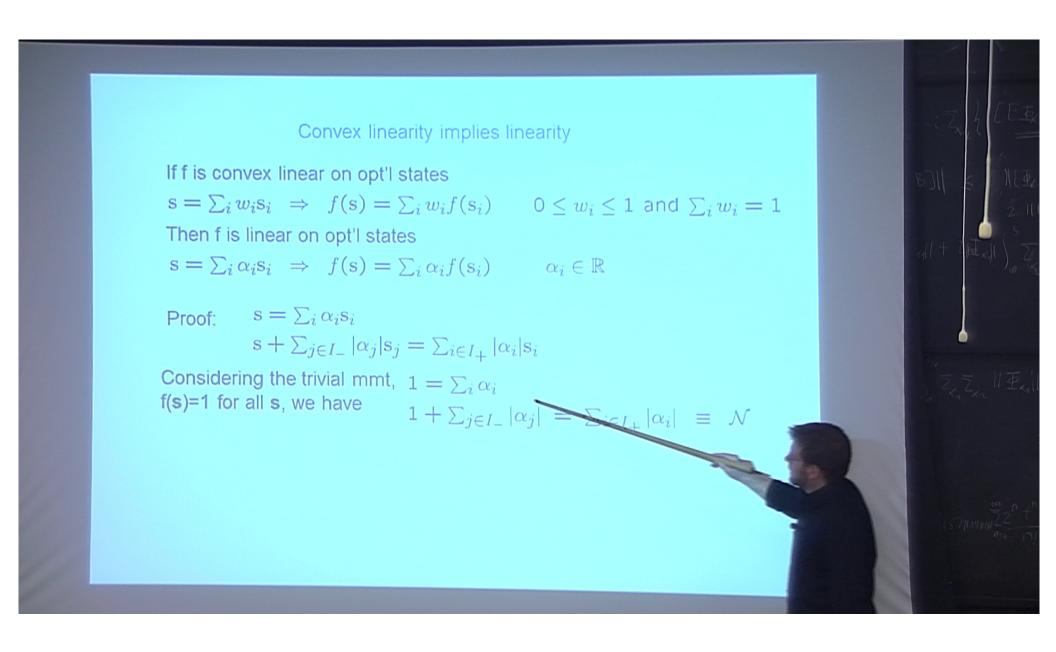
Pirsa: 12010042 Page 17/50

Convex linearity implies linearity If f is convex linear on opt'l states $\mathbf{s} = \sum_{i} w_{i} \mathbf{s}_{i} \Rightarrow f(\mathbf{s}) = \sum_{i} w_{i} f(\mathbf{s}_{i}) \qquad 0 \leq w_{i} \leq 1 \text{ and } \sum_{i} w_{i} = 1$ Then f is linear on opt'l states $s = \sum_{i} \alpha_{i} s_{i} \Rightarrow f(s) = \sum_{i} \alpha_{i} f(s_{i}) \qquad \alpha_{i} \in \mathbb{R}$

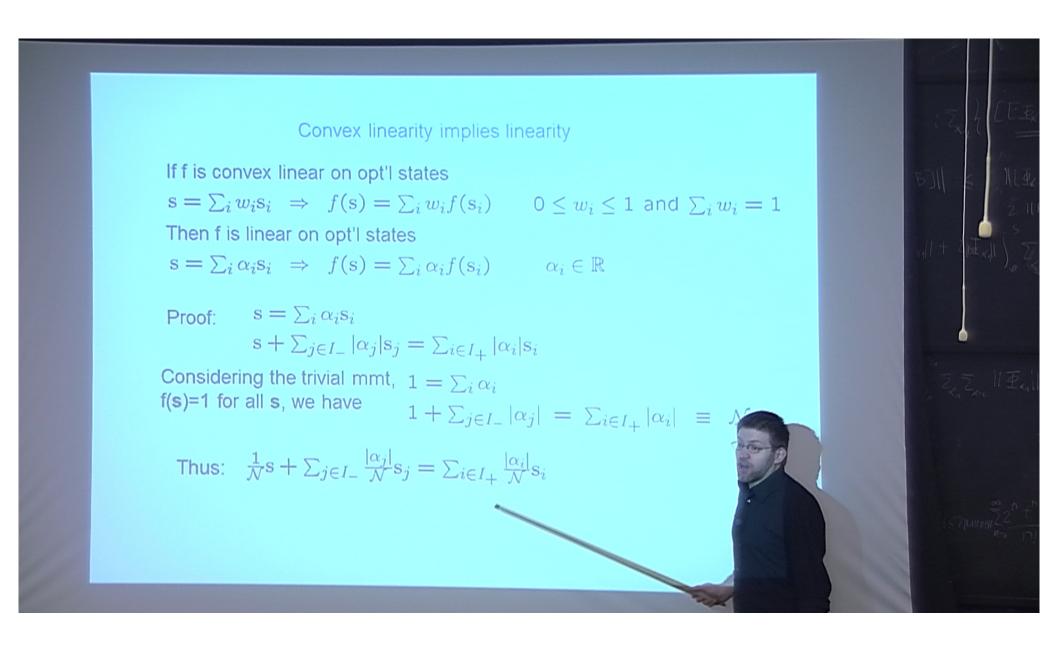
Pirsa: 12010042 Page 18/50



Pirsa: 12010042 Page 19/50



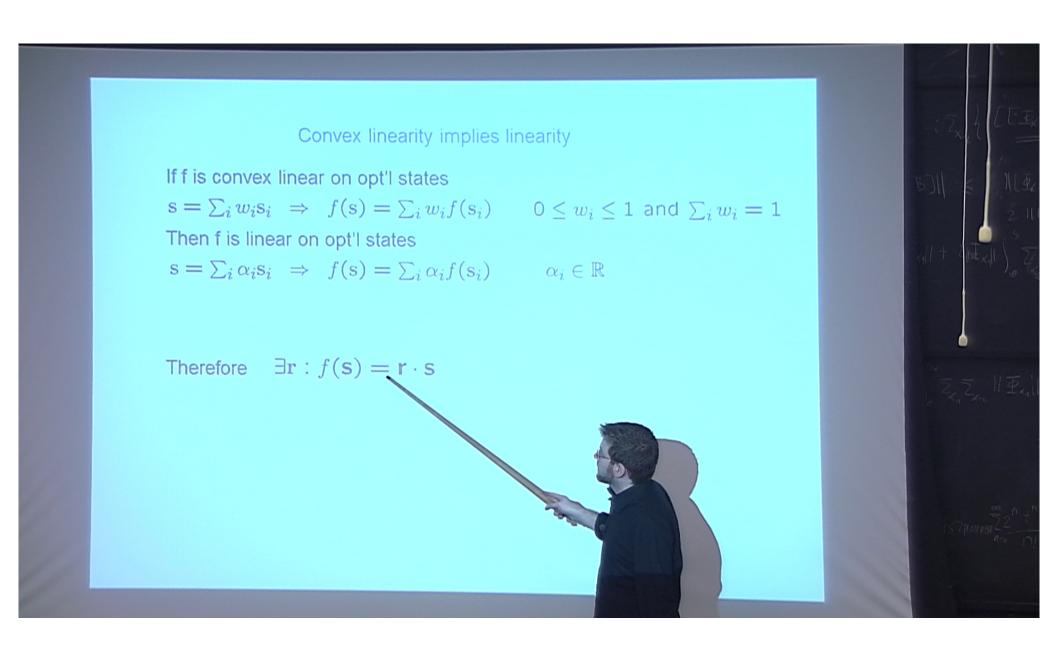
Pirsa: 12010042 Page 20/50



Pirsa: 12010042 Page 21/50

Convex linearity implies linearity If f is convex linear on opt'l states $\mathbf{s} = \sum_i w_i \mathbf{s}_i \; \Rightarrow \; f(\mathbf{s}) = \sum_i w_i f(\mathbf{s}_i) \qquad 0 \leq w_i \leq 1 \; \text{and} \; \sum_i w_i = 1$ Then f is linear on opt'l states $s = \sum_{i} \alpha_{i} s_{i} \Rightarrow f(s) = \sum_{i} \alpha_{i} f(s_{i}) \qquad \alpha_{i} \in \mathbb{R}$ Proof: $s = \sum_{i} \alpha_{i} s_{i}$ $s + \sum_{j \in I_{-}} |\alpha_{j}| s_{j} = \sum_{i \in I_{+}} |\alpha_{i}| s_{i}$ Considering the trivial mmt, $1 = \sum_i \alpha_i$ f(s)=1 for all s, we have $1 + \sum_{j \in I_{-}} |\alpha_{j}| = \sum_{i \in I_{+}} |\alpha_{i}| \equiv \mathcal{N}$ Thus: $\frac{1}{N}s + \sum_{j \in I_{-}} \frac{|\alpha_{j}|}{N} s_{j} = \sum_{i \in I_{+}} \frac{|\alpha_{i}|}{N} s_{i}$ $\frac{1}{N}f(\mathbf{s}) + \sum_{j \in I_{-}} \frac{|\alpha_{j}|}{N} f(\mathbf{s}_{j}) = \sum_{i \in I_{+}} \frac{|\alpha_{i}|}{N} f(\mathbf{s}_{i})$ $f(\mathbf{s}) = \sum_{i} \alpha_{i} f(\mathbf{s}_{i})$

Pirsa: 12010042 Page 22/50



Pirsa: 12010042 Page 23/50

Convex linearity implies linearity

If f is convex linear on opt'l states

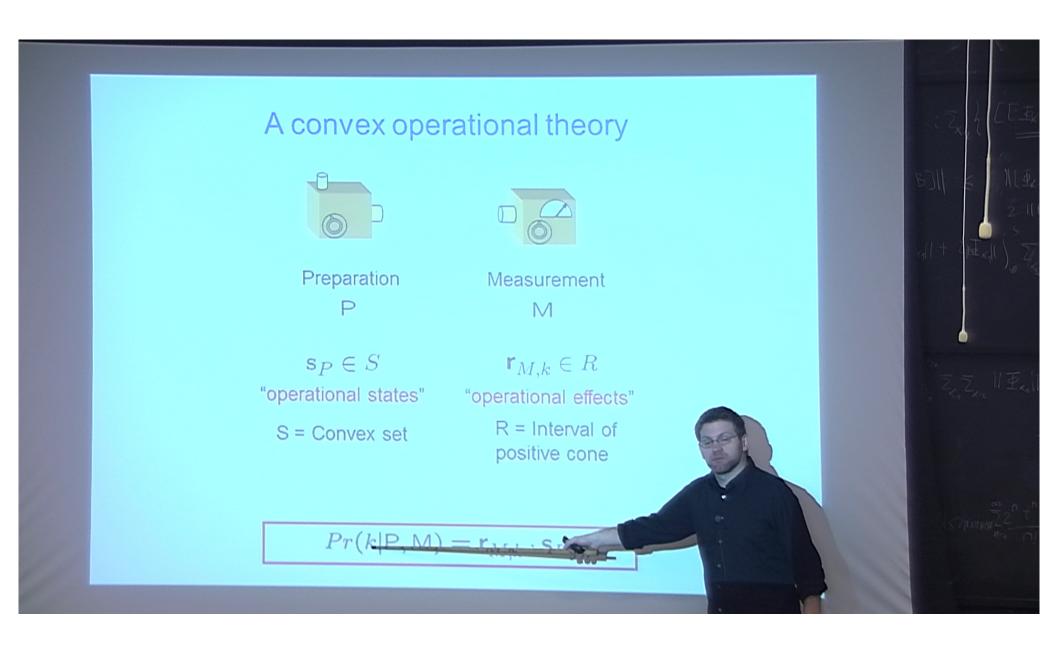
$$\mathbf{s} = \sum_i w_i \mathbf{s}_i \ \Rightarrow \ f(\mathbf{s}) = \sum_i w_i f(\mathbf{s}_i) \ 0 \le w_i \le 1 \text{ and } \sum_i w_i = 1$$

Then f is linear on opt'l states

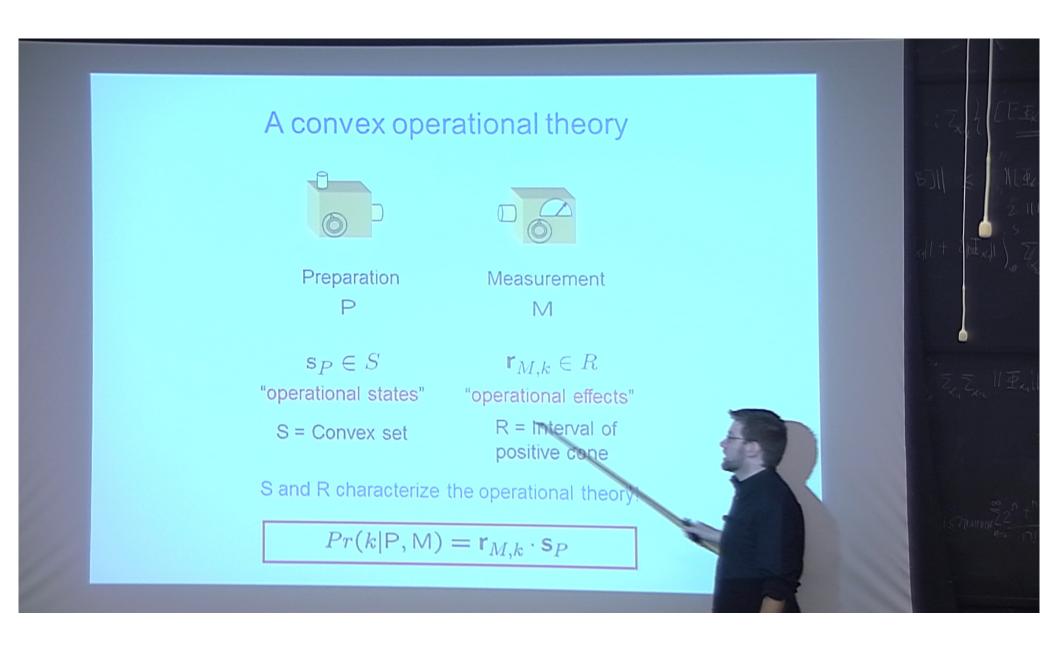
$$s = \sum_{i} \alpha_{i} s_{i} \Rightarrow f(s) = \sum_{i} \alpha_{i} f(s_{i}) \qquad \alpha_{i} \in \mathbb{R}$$

$$\alpha_i \in \mathbb{R}$$

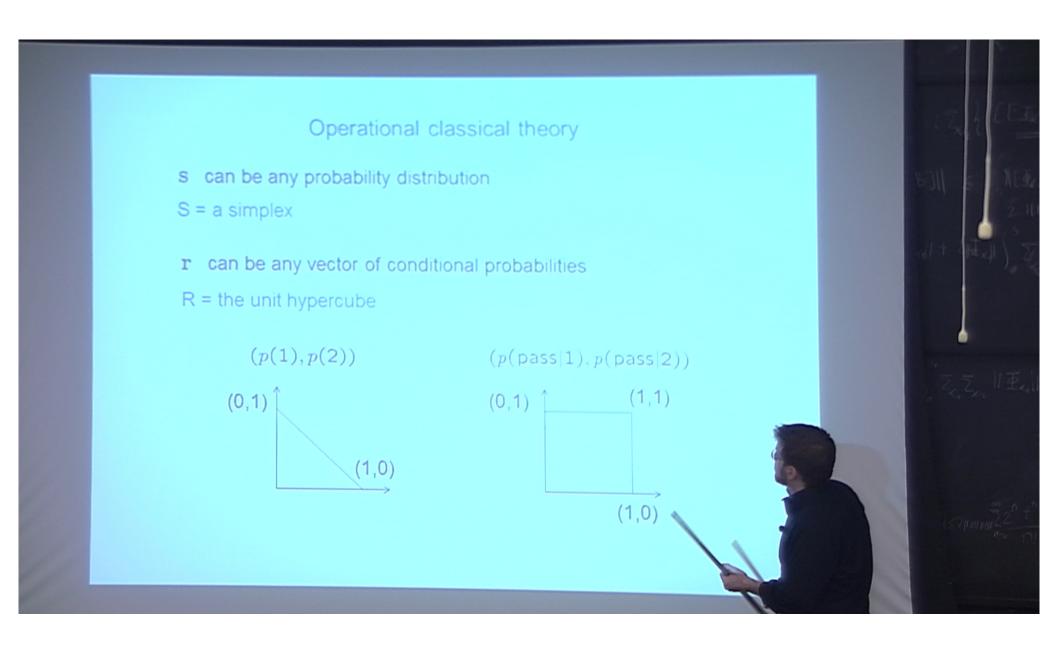
Therefore $\exists \mathbf{r} : f(\mathbf{s}) = \mathbf{r} \cdot \mathbf{s}$



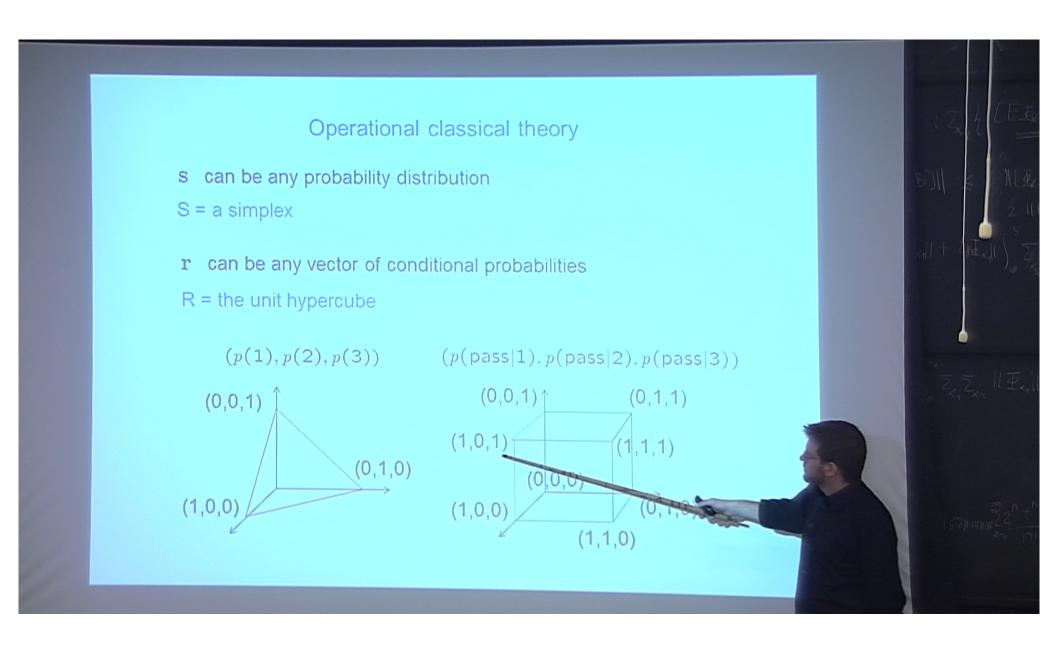
Pirsa: 12010042 Page 25/50

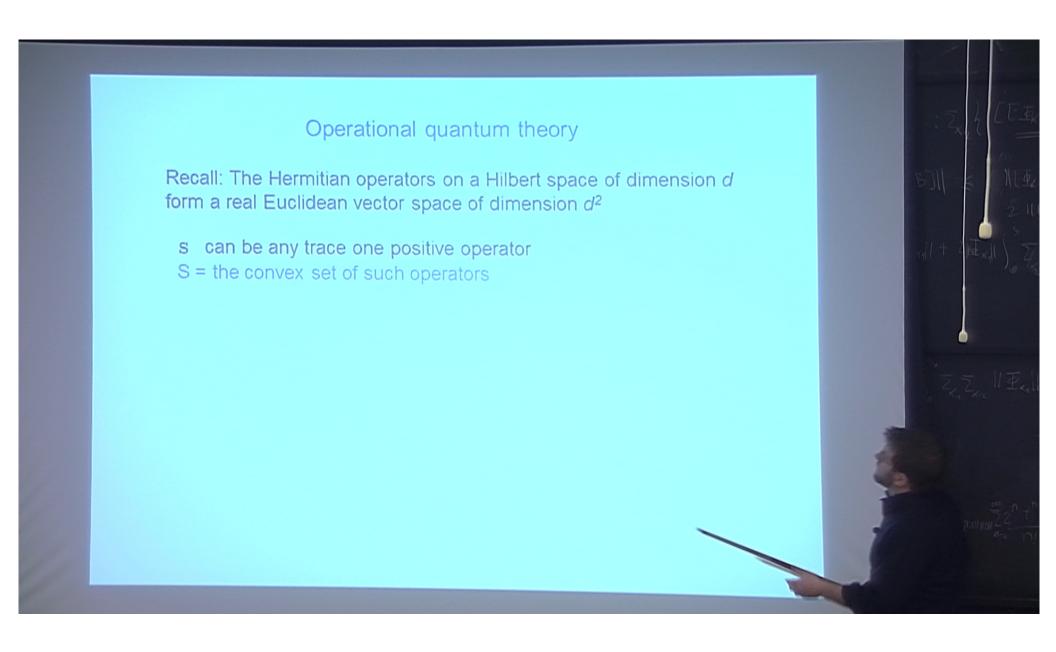


Pirsa: 12010042 Page 26/50

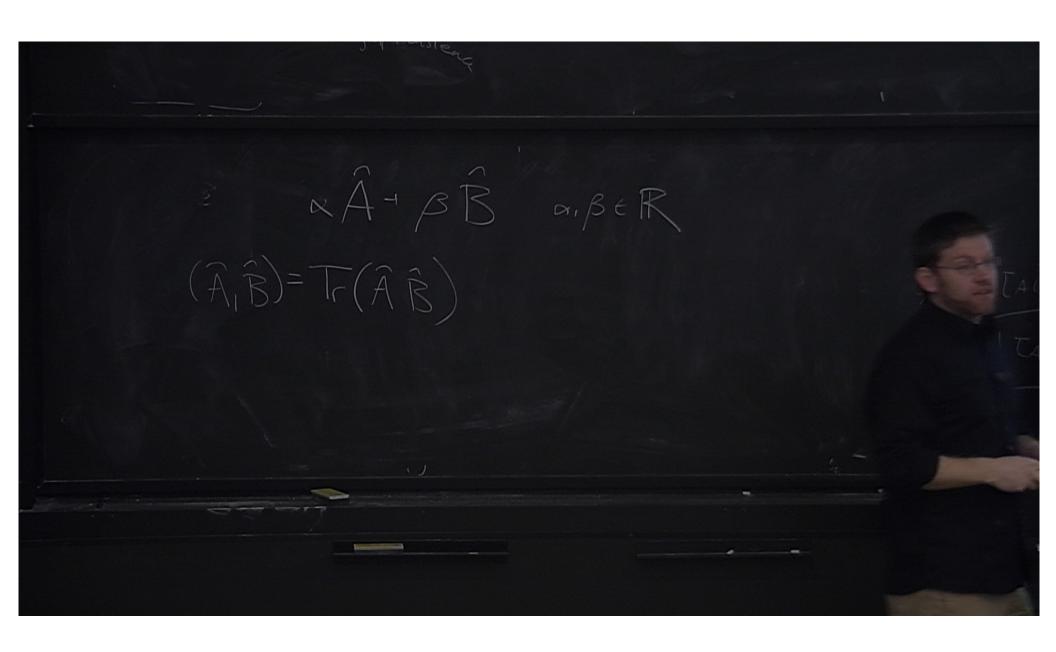


Pirsa: 12010042 Page 27/50

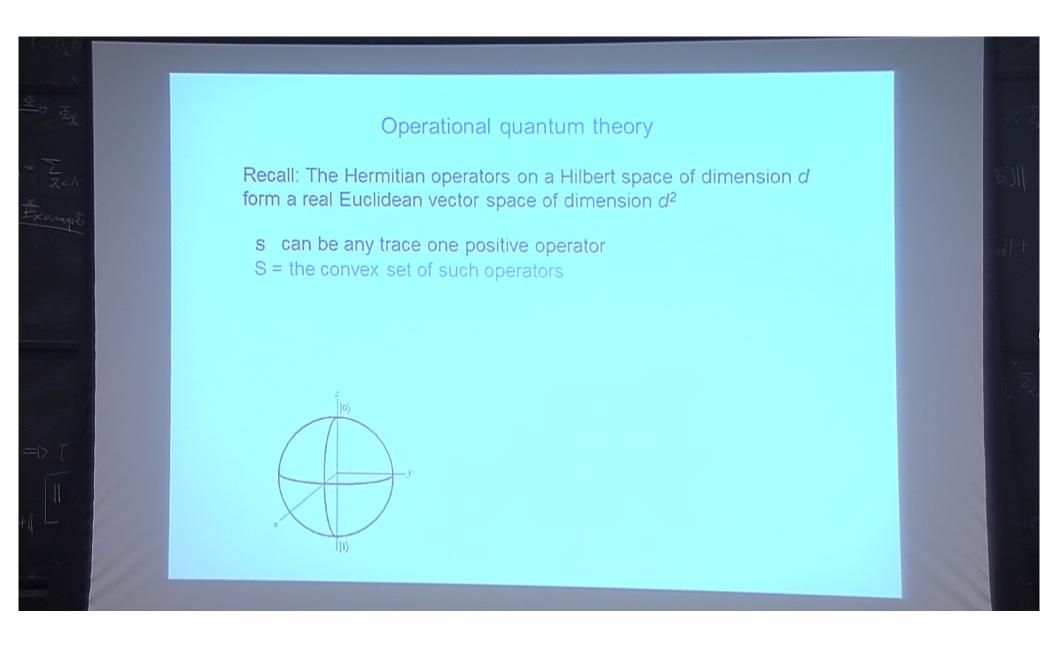


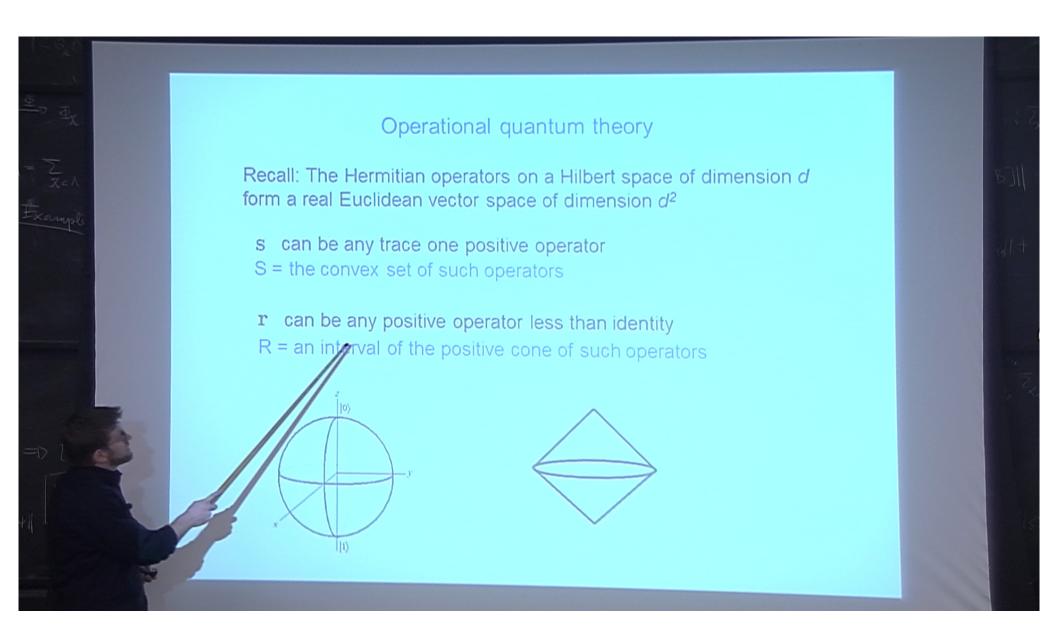


Pirsa: 12010042 Page 29/50

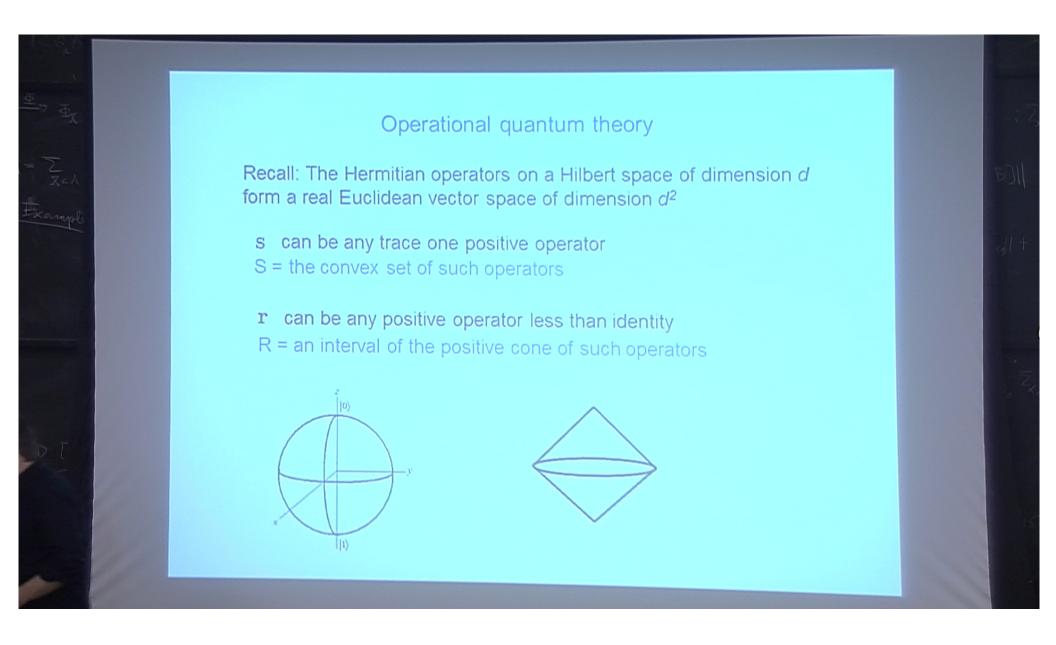


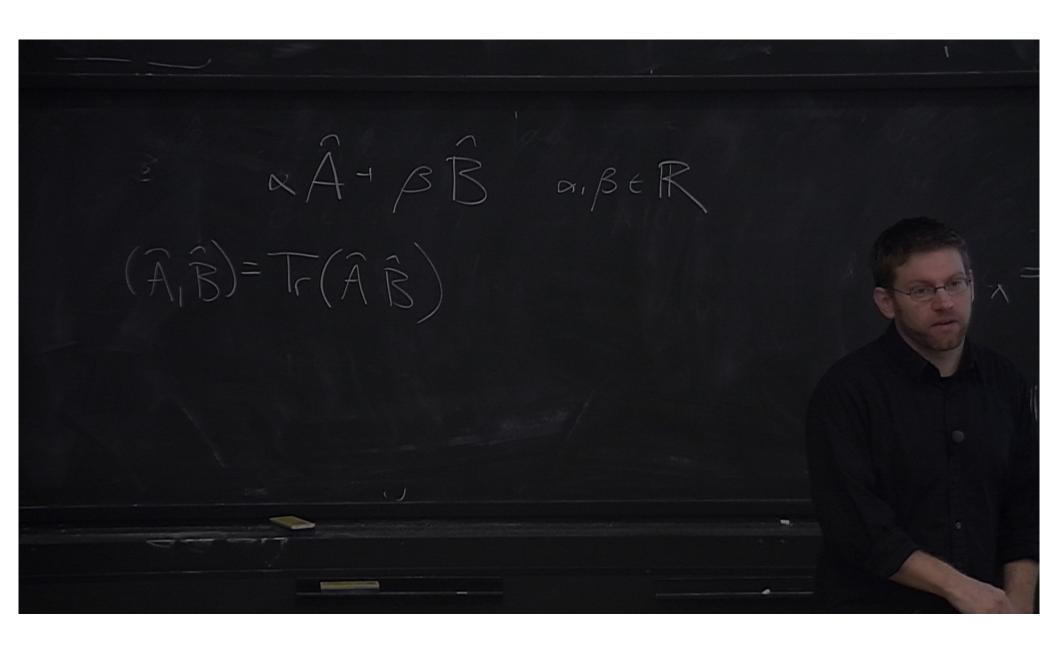
Pirsa: 12010042 Page 30/50



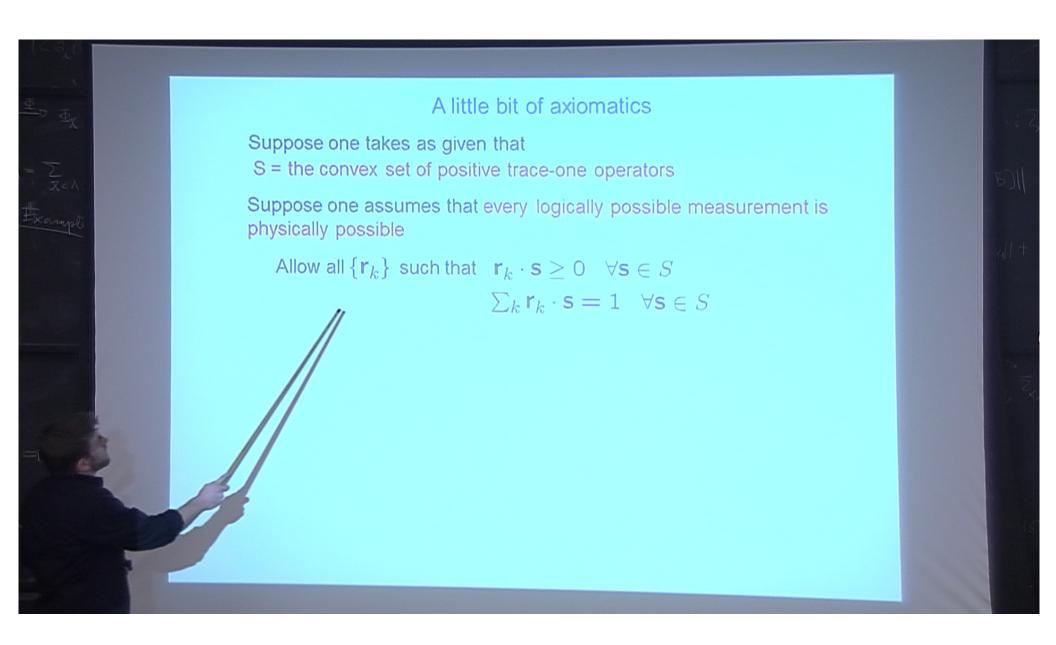


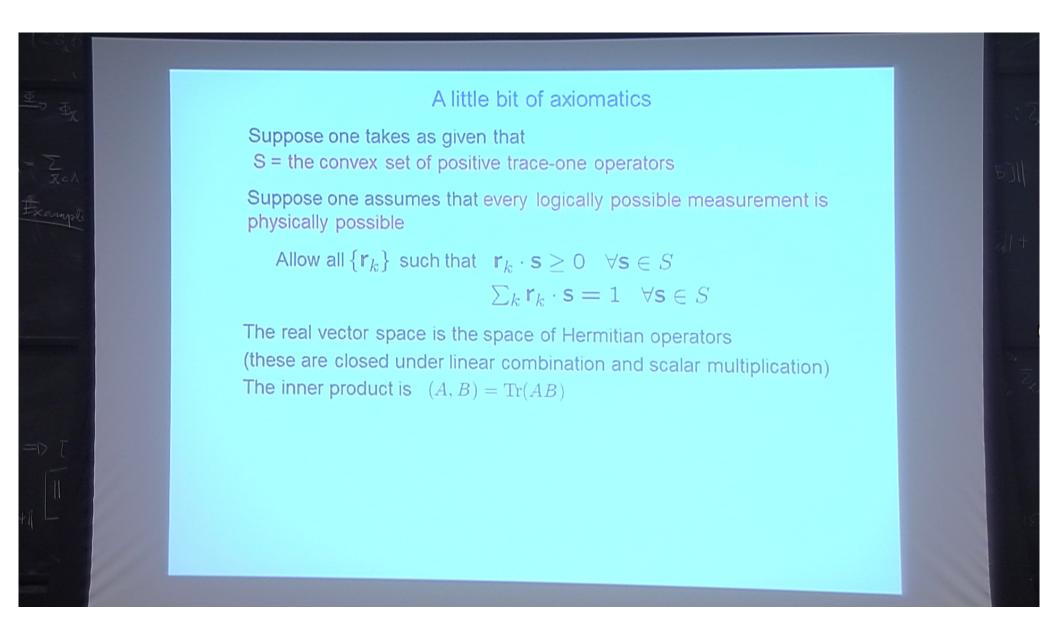
Pirsa: 12010042 Page 32/50





Pirsa: 12010042 Page 34/50





A little bit of axiomatics Suppose one takes as given that S = the convex set of positive trace-one operators Suppose one assumes that every logically possible measurement is physically possible Allow all $\{\mathbf{r}_k\}$ such that $\mathbf{r}_k \cdot \mathbf{s} \geq 0 \quad \forall \mathbf{s} \in S$ $\sum_{k} \mathbf{r}_k \cdot \mathbf{s} = 1 \quad \forall \mathbf{s} \in S$ The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is (A, B) = Tr(AB)Each **S** is a density operator ρ Each set $\{\mathbf{r}_k\}$ is a set of Hermitian operators $\{E_k\}$

Suppose one takes as given that

S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is physically possible

Allow all
$$\{\mathbf r_k\}$$
 such that $\mathbf r_k \cdot \mathbf s \geq 0 \quad \forall \mathbf s \in S$
$$\sum_k \mathbf r_k \cdot \mathbf s = 1 \quad \forall \mathbf s \in S$$

The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is $(A,B)=\mathrm{Tr}(AB)$

Each **s** is a density operator ρ Each set $\{\mathbf{r}_k\}$ is a set of Hermitian operators $\{E_k\}$

 $\mathbf{r}_k \cdot \mathbf{s} = (E_k, \rho) = \operatorname{Tr}(E_k \rho)$

Suppose one takes as given that

S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is physically possible

Allow all
$$\{\mathbf{r}_k\}$$
 such that $\mathbf{r}_k \cdot \mathbf{s} \geq 0 \quad \forall \mathbf{s} \in S$
$$\sum_k \mathbf{r}_k \cdot \mathbf{s} = 1 \quad \forall \mathbf{s} \in S$$

The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is $(A,B)=\mathrm{Tr}(AB)$

Each ${\bf s}$ is a density operator ${\boldsymbol \rho}$ Each set $\{{\bf r}_k\}$ is a set of Hermitian operators $\{E_k\}$ ${\bf r}_k\cdot{\bf s}=(E_k,{\boldsymbol \rho})={\rm Tr}(E_k{\boldsymbol \rho})$ \leftarrow the form of the Born rule

Suppose one takes as given that S = the convex set of positive trace-one operators

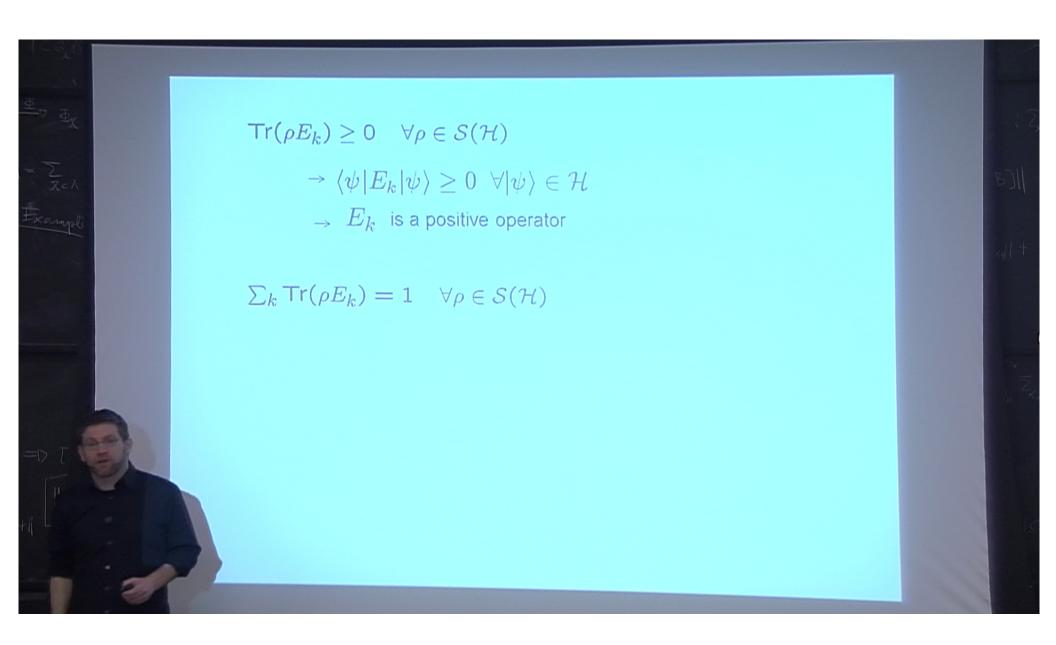
Suppose one assumes that every logically possible measurement is physically possible

Allow all
$$\{\mathbf{r}_k\}$$
 such that $\mathbf{r}_k \cdot \mathbf{s} \geq 0 \quad \forall \mathbf{s} \in S$
$$\sum_k \mathbf{r}_k \cdot \mathbf{s} = 1 \quad \forall \mathbf{s} \in S$$

The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is $(A,B)=\mathrm{Tr}(AB)$

Each \mathbf{s} is a density operator ρ Each set $\{\mathbf{r}_k\}$ is a set of Hermitian operators $\{E_k\}$ $\mathbf{r}_k \cdot \mathbf{s} = (E_k, \rho) = \mathrm{Tr}(E_k \rho)$ \leftarrow the form of the Born rule

A little bit of axiomatics Suppose one takes as given that S = the convex set of positive trace-one operators Suppose one assumes that every logically possible measurement is physically possible Allow all $\{\mathbf{r}_k\}$ such that $\mathbf{r}_k \cdot \mathbf{s} \geq 0 \quad \forall \mathbf{s} \in S$ $\sum_{k} \mathbf{r}_{k} \cdot \mathbf{s} = 1 \quad \forall \mathbf{s} \in S$ The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is (A, B) = Tr(AB)Each **S** is a density operator ρ Each set $\{\mathbf{r}_k\}$ is a set of Hermitian operators $\{E_k\}$ $\mathbf{r}_k \cdot \mathbf{s} = (E_k, \rho) = \mathrm{Tr}(E_k \rho) \quad \leftarrow \text{ the form of the Born rule}$ Allow all $\{E_k\}$ such that $\mathsf{Tr}(E_k ho) \geq \mathsf{0} \quad \forall ho \in \mathcal{S}(\mathcal{H})$ $\sum_{k} \operatorname{Tr}(E_{k}\rho) = 1 \quad \forall \rho \in \mathcal{S}(\mathcal{H})$



Pirsa: 12010042 Page 42/50

 $\operatorname{Tr}(\rho E_k) \geq 0 \quad \forall \rho \in \mathcal{S}(\mathcal{H})$ $\Rightarrow \langle \psi | E_k | \psi \rangle \ge 0 \ \forall | \psi \rangle \in \mathcal{H}$ $_{
ightarrow}$ E_k is a positive operator $\sum_{k} \operatorname{Tr}(\rho E_{k}) = 1 \quad \forall \rho \in \mathcal{S}(\mathcal{H})$ $\Rightarrow \langle \psi | (\sum_{k} E_{k}) | \psi \rangle = 1 \ \forall | \psi \rangle \in \mathcal{H}$ $\rightarrow \sum_{k} E_{k} = I$ The logically possible measurements correspond to the POVMs!

Pirsa: 12010042 Page 43/50

Operational formulation of quantum theory

Every preparation P is associated with a density operator ρ

Every logically possible measurement is physically possible

 $lap{}$

Every measurement M is associated with a positive operator-valued measure $\{E_k\}$. The probability of M yielding outcome k given a preparation P is $Pr(k|P,M) = Tr(\rho E_k)$

Every transformation is associated with a trace-preserving completely-positive linear map $ho o
ho' = \mathcal{T}(
ho)$

Every measurement outcome k is associated with a trace-nonincreasing completely-positive linear map T_k such that

$$ho
ightarrow
ho_k = rac{T_k(
ho)}{{
m Tr}[T_k(
ho)]}$$
 where $T_k^\dagger(I) = E_k$

Operational formulation of quantum theory

Every preparation P is associated with a density operator ρ

Every logically possible measurement is physically possible

Every measurement M is associated with a positive operator-valued measure $\{E_k\}$. The probability of M yielding outcome k given a preparation P is $Pr(k|P,M) = Tr(\rho E_k)$

Every transformation is associated with a trace-preserving completely-positive linear map $ho o
ho' = \mathcal{T}(
ho)$

Every measurement outcome k is associated with a trace-nonincreasing completely-positive linear map \mathcal{T}_k such that

$$ho
ightarrow
ho_k = rac{T_k(
ho)}{{
m Tr}[T_k(
ho)]}$$
 where $T_k^\dagger(I) = E_k$

Suppose one takes as given that
S = the convex set of positive trace-one operators

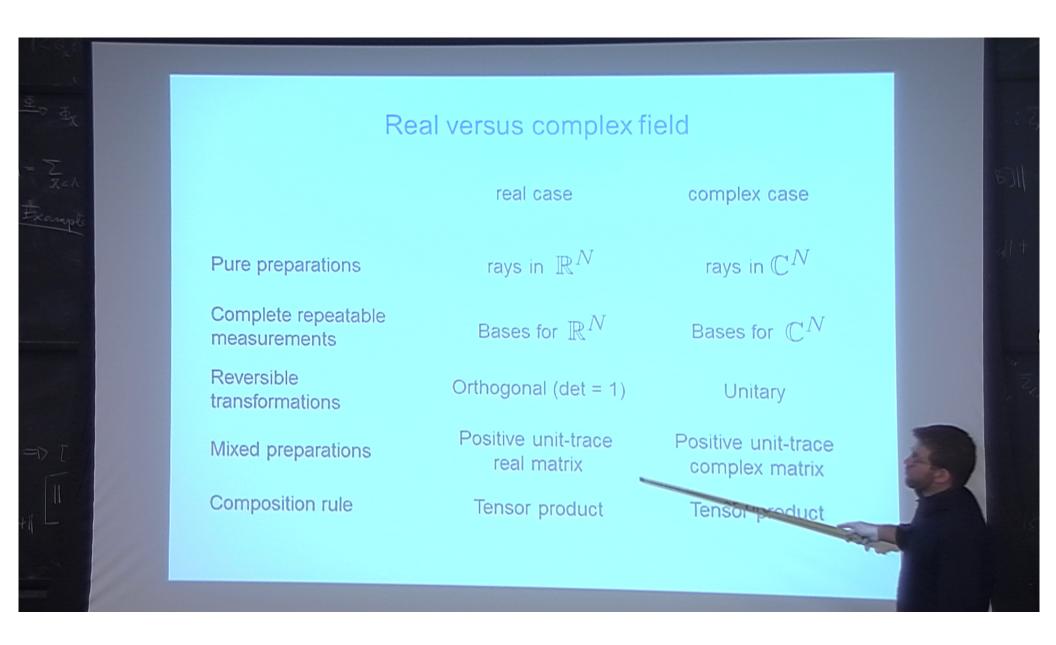
Suppose one assumes that every logically possible measurement is physically possible

Allow all
$$\{\mathbf{r}_k\}$$
 such that $\mathbf{r}_k \cdot \mathbf{s} \geq 0 \quad \forall \mathbf{s} \in S$
$$\sum_k \mathbf{r}_k \cdot \mathbf{s} = 1 \quad \forall \mathbf{s} \in S$$

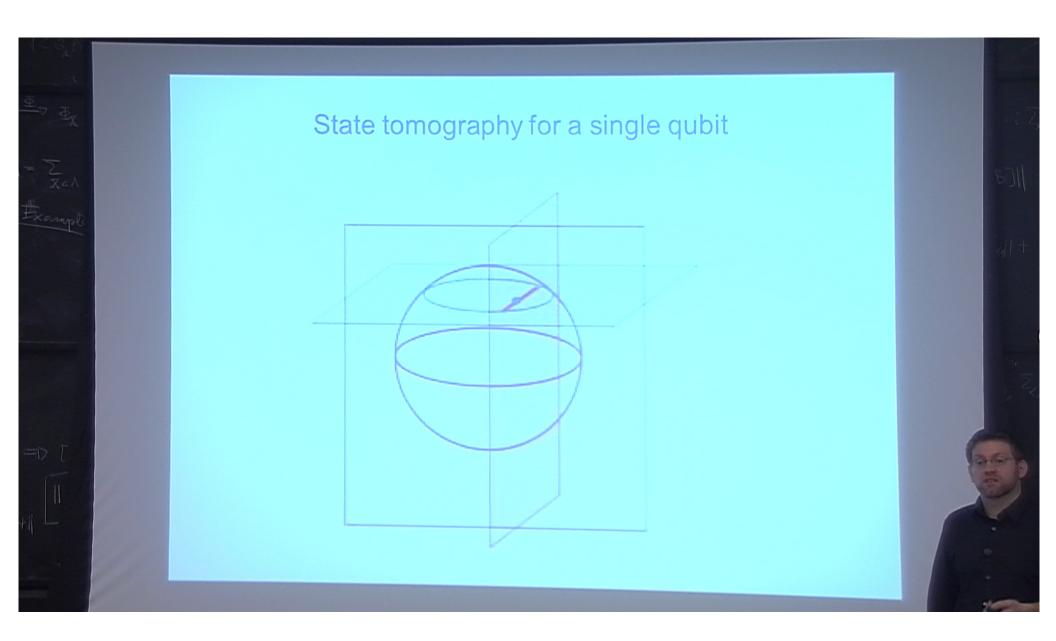
The real vector space is the space of Hermitian operators (these are closed under linear combination and scalar multiplication) The inner product is $(A,B)=\mathrm{Tr}(AB)$

Each ${\bf s}$ is a density operator ${\boldsymbol \rho}$ Each set $\{{\bf r}_k\}$ is a set of Hermitian operators $\{E_k\}$ ${\bf r}_k\cdot{\bf s}=(E_k,{\boldsymbol \rho})={\rm Tr}(E_k{\boldsymbol \rho})$ \leftarrow the form of the Born rule

Allow all $\{E_k\}$ such that $\operatorname{Tr}(E_k \rho) \geq 0 \quad \forall \rho \in \mathcal{S}(\mathcal{H})$ $\sum_k \operatorname{Tr}(E_k \rho) = 1 \quad \forall \rho \in \mathcal{S}(\mathcal{H})$



Pirsa: 12010042 Page 47/50



Pirsa: 12010042 Page 48/50

