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Abstract: The class of Local Operations with Classical Communication (LOCC) is a fundamental object in quantum communication and
entanglement theory. However, despite its importance, LOCC still lacks a clear understanding from both a physics and math perspective. For
instance, it is unknown the extent to which more rounds of measurement and communication can enhance the ability to perform certain tasks.
&nbsp; In this talk, we will consider the problem of random-pair EPR distillation in which three qubit entanglement is converted into bipartite
maximal entanglement with the target pair a priori unspecified.&nbsp; | will show that for certain random-pair distillations, there exists tight lower
bounds on the number of LOCC rounds needed to achieve a given overall success probability.&nbsp; Furthermore, | will describe certain
entanglement transformations that are possible if and only if the protocol uses an infinite (unbounded) number of rounds. Interestingly, the number
of rounds required to distil bipartite entanglement from particular multipartite states can depend discontinuously on the amount of entanglement
distilled.
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The Problem of Investigation:

For a multi-party system of fixed dimensions, how does
the power of LOCC increase as more rounds of
measurement are performed?
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Outline

e Introduce the class of LOCC operations
e Review previous work on round dependence
e Review Fortescue-Lo random distillation of W-class states

e Present new lower bound on LOCC round number for the task
of random distillation

e Show random distillations that require an infinite number of
rounds
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General Quantum Operation

e Measurements are represented by a set of operators { M, }o=1. .k
such that S°F_ MiM, =1.
e The act of “measuring” a system involves a stochastic transformation:
Pre-measurement Post-measurement

with probability

P .M;,.pﬂ[,:r_ /P pr = tr(M] My.p)

e [gnorance of result corresponds to averaging the possibilites:

Full information Partial information

MipM} /p,, L
MapMJ /ps — 5 Y0 MpM! = &(p)

M3pA [;; /p3 [
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Local Quantum Operations

e In a multi-party system Hq, @ Ha, @ ... ® Ha,. when only party K
performs a quantum operation given by £X, the transformation is:
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Local Quantum Operations

e In a multi-party system Hq, @ Ha, @ ... ® Ha, . when only party K
performs a quantum operation given by £X, the transformation is:

Pre-measurement Post-measurement

p:l 1 A2... AN IF X 6’1\' ([)“1 1A42...AN )

K is the identity map applied by all other
parties besides K.

e Here, we've assumed £X is a trace-preserving quantum operation.
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Local Operations and Classical
Communication (LOCC)

(%
TP

':— k\

c Alice and Bob share the Pl

Alice bipartite state |¢) 4. Bob
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Local Operations and Classical
Communication (LOCC)

(1

Alice and Bob share the ué %

A, ® 135‘”|u> A&

Alice bipartite state |¢) 4. Bob
{Ag, A1) (BY”, B{”} or {BS", B{"}
Ao ® I|Y) or Ay ® 1) Ay ® B((,“)|z.-} A ® B,(,”|e.'}

Bi" | )
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Local Operations and Classical
Communication (LOCC)

(,
A

b E f' )
Alice and Bob share the “é %

A, ® Bg[”|a.') A&

Alice bipartite state |¢) 4. Bob
{Ao, Ay} (BY”, B{"} or {B{", B{"}
Ao ® I|Y) or Ay ® 1) Ay ® B((,“)|z_-) A ® B((,”|e.'}

Bi" | )
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Local Operations and Classical
Communication (LOCC)

(00) 4 (00) (01) 4(01)

{"lu A b iAo s A b
(10) ,(10) o 4(11) 4(11)

{Ay 7, Ay Thor {4y T A

b, 0010) , (00 - b,, 001 0 Tp— \
(_-1‘, ... ALP010) 4 ),-1(,)..(13}, )_.B, BV B! ))|c'):.-1"”'.-.]3”“’\:_';
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LOCC and Separable Operations

e Every LOCC operation consists of a set of product operators:

{A) ® By}r=1...1 Si_1AlA,®BIB, =1L
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LOCC and Separable Operations

e Every LOCC operation consists of a set of product operators:

{A) ® By}r=1...1 Si_1AlA,®BIB, =1L

The set of all maps having Kraus operators of this form is known as
separable operations (SEP).
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LOCC and Separable Operations

e Every LOCC operation consists of a set of product operators:

{A) ® By}r=1...1 Si_1AlA,®BIB, =1L

The set of all maps having Kraus operators of this form is known as
separable operations (SEP).

LOCC cC SEP
but
LOCC # SEP!

How to characterize LOCC?
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LOCC Terminology

e One round of LOCC consists of a local measurement and broadcast of
result.
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LOCC Terminology

e One round of LOCC consists of a local measurement and broadcast of

result.

e Any local unitary (LU) operation does not consume one round of action.

e An LOCC protocol is a set of instructions which:

(1) identifies a single party as the acting agent in each round,
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LOCC Terminology

e One round of LOCC consists of a local measurement and broadcast of
result.

e Any local unitary (LU) operation does not consume one round of action.

e An LOCC protocol is a set of instructions which:
(1) identifies a single party as the acting agent in each round,
(2) specifies the local measurement given all previous outcomes,

(3) describes any subsequent LU operation of other parties, and

(4) issues a special halt command whenever certain sequences of
measurement outcomes are obtained.
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LOCC Terminology

e An LOCC protocol is a set of instructions which:
(1) identifies a single party as the acting agent in each round,
(2) specifies the local measurement given all previous outcomes,

(3) describes any subsequent LU operation of other parties, and

(4) issues a special halt command whenever certain sequences of
measurement outcomes are obtained.

e A finite round LOCC protocol is one that necessarily halts after n
rounds for some n € Z,

e An infinite round protocol is one that does not.
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Previous Results on LOCC Round
Dependence

e For distillation of bipartite mixed states, multiple rounds is stronger than
. )
just one~:

Dy(Ws/8) = 0 < Da2(Ws/g).

We /s ‘—:".[J +2(\]}' + &t 4+ P7)
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Previous Results on LOCC Round
Dependence

e For distillation of bipartite mixed states, multiple rounds is stronger than

. )
just one~:

D1(W5/8) = 0 < Da(W5/3).

Ws/s =

‘-:".[J +§(lll' + &t 4+ P7)

e “Recurrence Method” uses an indefinite number of rounds to improve the

fidelity of Werner states®:
"2 1 " 2
F24+5(1-F)

F' =
- B . -,
F24+%F(1-F)+g(1-F)?
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Previous Results on LOCC Round
Dependence

e For distillation of bipartite mixed states, multiple rounds is stronger than

. 2
just one~:

D1(Ws/8) = 0 < Da(W5/3).

We /s = i‘\[; +2(\]}' + Ot 4 P)

e “Recurrence Method” uses an indefinite number of rounds to improve the
fidelity of Werner states®:

2, 1 "2

F24+5(1-F)?

F' =

7 2o D
F24+ % F(1-F)+3(1-F)?

e Any bipartite pure state transformation can be completed in just one

round of LOCC#4.

e Two-way communication strengthens state distinguishability. Xin and

. ) P’ ¢ . .
Duan construct an example of n* — 2n 4+ 3 product states in an n ® n
system needing 2n — 2 rounds to distinguish®.
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Random Distillation®
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Random Distillation®

e Alice, Bob and Charlie share one copy of the W-state:
W) = 1/1/3 (|100) + |010) + |001}).

For € > 0, define measurement with operators:

My = V1 —€|0)(0] + |1)(1] M, = 1/€]|0){(0.

e Alice, Bob, and Charlie each perform the measurement {M,, M, }.

A | B | C | Final State | Probability
repeat 10 |0 [0 W) (1 —¢)? —
[0 [0 [1 ] [EPR)as | Z(1—e)e |[EPR) =
halt <[ 0 [1 [0 EPR) ac 2(1—e)e \@(I(D +(01))
11 ][]0 [0 | |[EPR)Bc £(1 — €)e
0|1/1 Failure O(€?)
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Analysis of Protocol

e For 3n rounds, the total probability of EPR yield is:

n—1

Piot := paB +Pac +PBc = 2(1 — €)e Z(l — €)™,

1=0

e When e =1/4 and n = 3, P,y = .7T.
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Analysis of Protocol

e For 3n rounds, the total probability of EPR yield is:

n—1

Piot :=paB +pac +ppc = 2(1 — €)e Z(l )

=0

e When e =1/4 and n = 3, P,y = .7T.

e Outperforms distillation to a specified party:

P,m,.,.(m " |EPH>.-U;) 2,
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Analysis of Protocol

e For 3n rounds, the total probability of EPR yield is:

n—1
Piot :=paB +Ppac +pBc = 2(1 — €)e Z(l — €)*".

t=0

e When e =1/4 and n = 3, P,y = .7T.
e Outperforms distillation to a specified party:

mu; (“‘ ) — |]£1)1?>U$’) - :;

e In infinite rounds,.

o0
Fiot = £ l—((Zl—(

1=0
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Is there a general relationship between success probability and
round number?
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Strategy

e Reduce a general LOCC protocol to a recursive-style
transformation like the Fortescue-L.o Protocol.
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Strategy

e Reduce a general LOCC protocol to a recursive-style
transformation like the Fortescue-L.o Protocol.
Notation':

General W-class state

VZ0|000) + /Z1|100) + /Z2|010) + \/Z3|001)
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Strategy

e Reduce a general LOCC protocol to a recursive-style
transformation like the Fortescue-L.o Protocol.
Notation':
General W-class state

VZ0/|000) + +/Z1|100) + /Z2]|010) + +/Z3|001)

I

(z1,x2,73)

o = 1 — r1y —Io — I3
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Step 1:

e Components of state vector evolve continuously:

ﬁ(\mn) + (010 + [001)) — /Z1]|100) + +/Z2|010) + \/Z3]001),

Pirsa: 11120072 Page 31/84



Step 1:

e Components of state vector evolve continuously:

ﬂ(\mn) +|010) + [001)) — /Z1]100) + +/Z2|010) + \/Z3|001),

e Divide a general protocol into blocks.
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Step 1:

e Components of state vector evolve continuously:
\/g(\l()(]) + |010) + |001)) — /21|100) + /z2|010) + /z3|001),
e Divide a general protocol into blocks.

Block 1 i._L ) Block 2 Block 3

W)

e FEach “block state” has
one of the forms:
(a,a,b)

(a,b,a)
(b,a,a).

(a>0b)
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Step 2:

e Modify a general protocol such that every block state is |W).

W)

(W)
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Step 2:

e Modify a general protocol such that every block state is |W).

W) W)

W)
Original Protocol: Modified Protocol:
(a,a,b) "
(a,a,b) “} / <
i 1i1(-‘”3)‘>
Block M-1 | Block M Block M-1 Block M

Page 35/84



Step 3:

e Reduce the protocol to binary outcome measurements only and
a single success branch:

‘W)

(W)
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Step 3:

e Reduce the protocol to binary outcome measurements only and
a single success branch:

W)

W)
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Reduced Problem

W) W)

e The first measurement in each block:
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Reduced Problem

W) W)

e The first measurement in each block:

_(V1=a 0 va 0
Mo ( 0 1) My = ( 0 0/
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Reduced Problem

e The first measurement in each block: ‘11—) . W)
“*;*\\_f,---"""//\_‘__g_f
My = (\f"lu a (ll) M, = (\;')ﬂ E:)
Probability of obtaining |W) Probability of obtaining EPR pairs
per block: per block:
Pw = (1-a)? Pepr = 5(2-a) - 3(1-a)?

e After n blocks, the total probability of obtaining an EPR pair:

Pt = = — 201 — 2(1—a1)? + (1 — a1)( — 2az — 2(1—a2)) +
ot = = == =]y = — (1 — m— e s LRy, - — — A9 see
g 5 3 : A3 37 3 “

Pirsa: 11120072 Page 40/84



Optimal n-block Probability

e The optimal probability is given by measurements satisfying

T ()
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Optimal n-block Probability

e The optimal probability is given by measurements satisfying

- 1
ar = H—(L'—I:‘ = I)hif S 1 o L

3n’
e In each successive block, a slightly stronger measurement is performed
than the last.
e Except for final block, each block consists of at least 3 rounds.

Minimum Number of Rounds

Minimum number of rounds of
]

> — =2,
1 - an! »

k) 3 /

/

_.————‘—""//
0 74 ‘: .'r . £ PC
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Comparison with Fortescue-Lo
Protocol

e As a function of the number of blocks n in the protocol:

Fortescue-Lo Protocol: Optimal Protocol:
2 e I ) _ l
Ifuf — n+1 < [f“f =1- In
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Comparison with Fortescue-Lo
Protocol

e As a function of the number of blocks n in the protocol:

Fortescue-Lo Protocol: Optimal Protocol:
>} . n 5 . 1
Ifuf — n+l1 < 1;,,; =1- 3n
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Comparison with Fortescue-Lo
Protocol

e As a function of the number of blocks n in the protocol:

Fortescue-Lo Protocol: Optimal Protocol:
. . n 5 - 1
[.fuf — n+1 < [f“f — I_E
Optimal Protocol
Number of Rounds /
e The optimal protocol makes i
. . .y 08F F-L Protocol

use of post-selection within :
each block Sl
(each party performs a [
different measurement). 0.6F
sk

L
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Summary

e For transformation:

EPR)ap with probability pag.
W) = ¢ |EPR) ac with probability pac,
EPR)pc with probability ppc
.. . ]
Minimum number of rounds > — 2.

1 — (paB +PaC + PBC)
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Summary

e For transformation:

FEPR)ap with probability pag.
W) = ¢ |EPR) ac with probability pac,
EPR)pc with probability pgpe
.. . ]
Minimum number of rounds > — 2.

1 — (paB +Pac + PBC)

e Therefore, in no finite round LOCC protocol can

PAB + Pac +pec = 1.
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Summary

e For transformation:

FEPR)ap with probability papg.
(W) = ¢ |EPR) ac with probability pac,
EPR)pc with probability ppc
.. . ]
Minimum number of rounds > — 2.

| — (paB +PAC + PBC)

e Therefore, in no finite round LOCC protocol can
PAB +Pac +pBc = 1.

e What about with infinite round LOCC?
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Summary

e For transformation:

EPR)Ap with probability pag.
W) = ¢ |EPR) ac with probability pac,
EPR)pc with probability ppce
.. : ]
Minimum number of rounds > — 2.

l — (paB + pac + pBC)

e Therefore, in no finite round LOCC protocol can
PAB +Pac +PBc = 1.
e What about with infinite round LOCC?

No.
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Can we relax the problem and obtain a transformation with

paB +pac +pc =17
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Reduce the Distilled Entanglement

e Concurrence measure of entanglement for two qubit [¢) 4 5:
C(¢)) = 2[det pa]'/? where pa = trp(|V){(¥|as).

C(|v)) = 1iff 7)) is an EPR state.

e (Generalize the transformation:

\EPR)AB with probability pag.
(W) = ¢ |EPR) ac with probability pac.
V) BC with probability ppc

PAB +Ppac +pBc =1

where 0 < C(?¢) < 1.
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Nice Properties of Concurrence®1°

e For an n®2® 2 state |¢), define the “Concurrence of Assistance” (COA):

v A 1
(,(, ]((.‘)) = max ) _. p;C(¢;).
‘ Z‘p. ;) (U tral|o)o])
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Nice Properties of Concurrence®1°

e For an n®2® 2 state |¢), define the “Concurrence of Assistance” (COA):

v A 1
(,(, ]((.‘)) = max )_. p;C(¢;).
" Z"‘J LF U tr 1@ (D))
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Nice Properties of Concurrence® 19

e For an n®2® 2 state |¢), define the “Concurrence of Assistance” (COA):

¥ A 1
C. ]((.‘)) = max ) _.p;C(¢;).
Y pilvi il = tra(lé)ol)

o Ci"(¢) = Flppc,hpc) = Z}lzl VA —

eigenvalues of pp
PBC = 0y @ oy(p*)oy ® 0y

e COA is an entanglement monotone.
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Nice Properties of Concurrence®19

e For an n®2® 2 state

¢), define the “Concurrence of Assistance” (COA):
1(1] / \
Ca '(¢) = max ). p;C(¢).

r(‘l] J . ~ 4
® Ca"(¢) = FpBc: pBC) = 2izi VA e iornling of pp

PBC = 0y @ oy(p*)oy @ 0y

e COA is an entanglement monotone.
e Deterministic LOCC transformation |¢) spc — |¢) ¢ is possible iff

cM(¢) > C(¥).
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Nice Properties of Concurrence®19

e COA is an entanglement monotone.
e Deterministic LOCC transformation |¢) spc — |¢) B is possible iff

sV (¢) > C().

e Any state obtainable for |[W) has COA < 1.
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Consequences

LOCC LOCC

|P)aBc — |EPR)aB |¢)aBc — |EPR)ac
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Consequences

C

|#) aBC EPR)ap |#)aBc ¢ |EPR)ac

Not possible

e Therefore, in an n-round protocol, there must be some final round m < n
in which |EPR) ap (or |EPR) s¢) is a post-measurement state.
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Consequences

).us \C’) ABC . |]‘:1)”>.4('

Not possible

e Therefore, in an n-round protocol, there must be some final round m < n
in which |EPR) ap (or |[EPR) z¢) is a post-measurement state.

V5 |1()() +]()1(1 + 1/s/001)

/ round m
‘141 [?) ARB l\

(W'Y = /To|000) + /Z7 (|]100) + |010)) + +/Z2]|001)
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Consequences

> |EPR) ac

Not possible

e Therefore, in an n-round protocol, there must be some final round m < n
in which |EPR) ap (or |[EPR) s¢) is a post-measurement state.

V5 |1()() +Jm(1 + 1/5|001)

/ round m
‘1—-1 [?) ARB l\\

W) = \/T0|000) + \/Z1 (]100) + |010)) + \/Z2]|001)

This state must be converted into |¢) ge.
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Consequences

W) = \/T0|000) + /271 (]100) + |010)) + \/Z2|001)

l

‘(-'>H('
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Consequences

W) = \/T0|000) + /271 (]100) + |010)) + \/Z2|001)

l

“-')H('

iff O\ (W) > C ().

(‘f(_,"“](”") < 2\/(1_3 ‘+-.l'(]).l'1 — 2\/(1 — 2.I'|).I'1 < \/g
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Transformation with c@) = /%

e Protocol:

My(z) = v/1 — 2|0){0| + |1)(1] M (z) = /z|0)(0|
a= 242 g = 23v2
SENE W)

I. Charlie:

{.‘!”((\ ) \[] ((l)}’
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Transformation with c@) = /%

W)

I. Charlie:
{My(a), My(ax)}

I]; Alice: \\\\\\\3
{My(a), My(«)}

EPR) g

III. B

{My(8), My (B)}
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Transformation with c@) = /%

I. Charlie:
{My(a), My(a)} EPR)ap

{My(a), My(«)}

II' Alice: ‘

(0, =2, 22¥2)
(223 23 204 AN -
6 ( . \ 2
Bob: \\\\\\\3
I11. { Mo(B), My (B)) ‘ |[EPR) Ac
4,11

IV. Alice: l % (.'11_\. \T)

(0, 32, 243
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Transformation with c@) = /%

W)

I. Charlie:
{-‘!H(” ) ‘l[] (H)}

EPR) g

(6=V3' 6-v' 6-v3/
II- Alice: \\\\\\&
{My(a), My ()} A
(0, 342, i)
{ﬁ,\'-_) {_! \'-__2 ‘-),\"_)) %(' pan—
v A" \-

Bob: S )
111. {My(B), My (B)} ‘ |EPR) Ac

IV. e | Nav-
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Summary

e For transformation:

EPR)ap with probability pag.
W) = ¢ |EPR) ac with probability pac.
V) BC with probability ppc

success probability pap + pac + pec =1

using finite round LOCC requires C'(v) < \/g
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What about infinite round protocols?
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LOCC,,

e Consider any C(v) < 1.
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LOCC,,

e Consider any C(v) < 1. Mo(z) = v'1 — z|0){0] + |1)(1]
M (z) = /x|0){0]

()‘ 2v'1 (‘_
14+v1-C*

I. Charlie:

{Mo(8), My (6))
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LOCC,,

e Consider any C(v) < 1. My(z) = v'1 —z|0){0] + |1)(1]
M (z) = /z|0){0|

§= 2T
1+vI1-C7 ‘”'}
I. ('luu'li-v: PAB
{.\I‘J('()}..\]l(fi]} JJ \
—Lo(1-6,1-4,1) |[EPR) B

II.  Alice: 4
{\[“((’) \]] (())}

==(1,1-4,1)

III. Bob: w
{‘IH["’) ‘1’] ((")}

W)

1-v/1-C* 14v1-C*
R e

|EPR) ac

Pirsa: 11120072
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Protocol Analysis

2 2. 1.,
PAB = ?" PBC = —;(5 = 50"

2 . N
PAC = §()(l —90) Pw = (1 — (5)'2

2 . 2 (2. 2 (2.
pap(total) = g(‘) + (1 -9)° (go +(1-9)° (?) + ...

u) O . ‘) 1
= —§ o2k _ |4
B :;”Z(l )™ =3 (2_0_)
k=0
2/1-90
h_-](-(f()f(!,) %+ — (.) (‘)
il pac(total) + pac(total) + pap(total) = 1
1
ppc(total) 2
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Summary of Results

|EPR) AB with probability pag.
\W) = ¢ |EPR) Ac with probability pac,
V) B with probability ppc
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Summary of Results

\EPR)AB with probability pag.
\W) = ¢ |EPR) Ac with probability pac.
V) B with probability ppc
A) If C(v) = 1, then the number of rounds > I—}T - 2.
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Summary of Results

EPR)ap with probability pag.
\W) = ¢ |EPR) Ac with probability pac:.
V) BC with probability ppe
A) If C(v) = 1, then the number of rounds > I—}T - 2.

B) If % < C(¢v) <1 and P,y = 1, then the transformation

requires infinite rounds.
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Minimum Number of LOCC Rounds (n)
Versus Concurrence of ¢B¢)

7
o0 R N
1
| @ .
2 ®

0 ' | 1'

0 , \/I 1
C(p(BO)) 5
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Summary of Results

|EPR) AB with probability pag.
IW) = ¢ |EPR) sc with probability pac,
V) BC with probability ppe

A) If C(v) = 1, then the number of rounds > I—}T - 2.

B) If /1 < C(¥) < 1 and P,y = 1, then the transformation

2

requires infinite rounds.

C)If C(y) < \/I and P,,; = 1. then the transformation can be

2

accomplished in four rounds.
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Additional Questions

e Lower bounds on the number of rounds for bipartite tasks
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Additional Questions

e Lower bounds on the number of rounds for bipartite tasks
e Perhaps mixed state transformations

e Determine class of multi-partite pure state transformations
feasible with one-way communication

e Perform an information-theoretic analysis of infinite round trans-
formations along the lines of Ref. [1]

e Consider a possible connection between multi-round LOCC and
the undecidability of measurement occurence shown in Ref. [11]
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