Title: R-Symmetry and Non-Perturbative QFT

Date: Dec 09, 2011 10:00 AM

URL: http://pirsa.org/11120066

Abstract: In this talk, I will discuss various aspects of UV-complete R-symmetric QFTs. In particular, I will focus on a small set of operators that are well-defined in many such theories, and I will argue that one can use these operators to get a (partial) non-perturbative handle on the deep IR physics, including, possibly, a handle on certain aspects of the emergent symmetries. Throughout, I will highlight applications to particle physics.

Pirsa: 11120066 Page 1/47

Overview

- RG generalities.
- Operator mappings: from conserved currents and the chiral ring to long multiplets.
- ullet R-symmetry, the R-current multiplet, the U multiplet, and the RG flow.
- Examples: SQCD, the Kutasov theory, and aSQCD.
- Correlation functions of the U multiplet and IR phase theories.
- IR interacting versus IR free.

Pirsa: 11120066 Page 3/47

RG Generalities

- Under rather general assumptions, UV-complete QFTs can be understood as interpolations between UV and IR scale-invariant limits (may also be gapped and hence empty in IR).
- Given well-defined operators and correlation functions of the UV theory, can we say something about the corresponding objects in the IR?
- What are the emergent symmetries of the IR fixed points?
- In general, new internal and space-time symmetries. What are they? How do we get a handle on them?

3

Pirsa: 11120066 Page 4/47

Mapping Operators

- Question: Given \mathcal{O}^{UV} , what is \mathcal{O}^{IR} ?
- Easy operators to map: short multiplets, like members of the chiral ring, conserved currents.
- Harder operators to map: long multiplets.
- Sometimes can embed these long multiplets inside short multiplets of higher spin and use these larger multiplets to gain traction.

5

Pirsa: 11120066 Page 5/47

Mapping Operators

- Question: Given \mathcal{O}^{UV} , what is \mathcal{O}^{IR} ?
- Easy operators to map: short multiplets, like members of the chiral ring, conserved currents.
- Harder operators to map: long multiplets.
- Sometimes can embed these long multiplets inside short multiplets of higher spin and use these larger multiplets to gain traction.

5

Pirsa: 11120066 Page 6/47

Mapping Operators (cont...)

• Quantities of interest, real UV bilinears (and their generalizations):

$$c_j^i \Phi_i^\dagger \Phi^j + \tilde{c}_j^i \tilde{\Phi}_i^\dagger \tilde{\Phi}^j , \qquad (1)$$

Appropriate factors of e^V , etc.

• For generic c, \tilde{c} this defines a long multiplet, i.e.,

$$\bar{D}^2 \left(c_j^i \Phi_i^{\dagger} \Phi^j + \tilde{c}_j^i \tilde{\Phi}_i^{\dagger} \tilde{\Phi}^j \right) = c \text{Tr} W_{\alpha}^2 + \dots$$
 (2)

- Can we map such an operator to the IR?
- ullet To do that, we need a short multiplet in which to embed it. Natural candidates: symmetry currents of various kinds. R-symmetry current a good option (if present).

The Role of the *R*-symmetry Current

• Since $[R,Q] \sim Q$, $\{Q,\bar{Q}\} \sim P$, the R-current transforms in a multiplet with $S_{\mu\alpha}$ and $T_{\mu\nu}$.

$$\bar{D}^{\dot{\alpha}}\mathcal{R}_{\dot{\alpha}\alpha} = \chi_{\alpha} , \quad D^{\alpha}\chi_{\alpha} - \bar{D}_{\dot{\alpha}}\bar{\chi}^{\dot{\alpha}} = \bar{D}_{\dot{\alpha}}\chi_{\alpha} = 0 .$$
 (3)

When $\chi_{\alpha} = 0$, this is the superconformal R-symmetry.

• There is an ambiguity in the above equation under $\mathcal{R}_{\alpha\dot{\alpha}} \to \mathcal{R}_{\alpha\dot{\alpha}} + [D_{\alpha}, \bar{D}_{\dot{\alpha}}] J$ and $\chi_{\alpha} \to \chi_{\alpha} + \frac{3}{2}\bar{D}^2D_{\alpha}J$ for conserved J, i.e., $\bar{D}^2J = 0$. This affects the supercurrent and stress tensor through improvements.

The Role of the *R*-symmetry Current (cont...)

• For the theories we will consider, can write

$$\chi_{\alpha} = \bar{D}^2 D_{\alpha} U , \qquad (4)$$

for a well-defined U.

• Solving the above equations in the UV, we find

$$\mathcal{R}_{\alpha\dot{\alpha}}^{UV} = \sum_{i} \left(2D_{\alpha} \Phi_{i} \bar{D}_{\dot{\alpha}} \bar{\Phi}^{i} - r_{i} [D_{\alpha}, \bar{D}_{\dot{\alpha}}] \Phi_{i} \bar{\Phi}^{i} \right),$$

$$U^{UV} = -\frac{3}{2} \sum_{i} \left(r_{i} - \frac{2}{3} \right) \bar{\Phi}^{i} \Phi_{i} .$$
(5)

More generally: $U_{\mu}^{UV}=\frac{3}{2}\left(R_{\mu}^{UV}-\tilde{R}_{\mu}^{UV}\right)$.

 \bullet U fixed up to $U \to U + Y + \bar{Y}.$ Will see later that such terms may appear in the IR.

8

The R-symmetry Current and the RG Flow

- Idea: Use the \mathcal{R} -multiplet to follow U along the flow.
- Assumption: The UV and IR fixed points are SCFTs (this can be made rigorous in SQCD-like theories [1102.2294])
- ullet At the IR fixed point, we know what should happen to $\mathcal{R}_{\alpha\dot{\alpha}}$. Indeed, either this multiplet flows to the superconformal R-multiplet or to an object that can be improved to the superconformal R-multiplet:

$$\tilde{\mathcal{R}}_{\alpha\dot{\alpha}} = \mathcal{R}_{\alpha\dot{\alpha}}^{IR} - [D_{\alpha}, \bar{D}_{\dot{\alpha}}]J , \quad \tilde{U} = U^{IR} - \frac{3}{2}J = 0 .$$
 (6)

Determine $\tilde{\mathcal{R}}_{\alpha\dot{\alpha}}$ from duality or a-maximization.

• **Upshot:** Therefore, $U \to \frac{3}{2}J$, where $U_{\mu}^{IR} = \frac{3}{2}\left(R_{\mu}^{IR} - \tilde{R}_{\mu}^{IR}\right)$.

9

The R-symmetry Current and the RG Flow (cont...)

- ullet J may be a conserved current of the full theory or an accidental symmetry of the IR. We will see an extreme version of this for SQCD in the free magnetic range.
- In the case that $U^{IR}=0$, we can say a bit more using conformal perturbation theory. If approach is via a marginally irrelevant operator, we have $U\sim \gamma J$. Otherwise, we have $U\sim \Lambda^{2-d}\mathcal{O}$ for d>2 (using unitarity).
- In the case of a free magnetic phase, we have

$$U^{IR} = -\frac{3}{2} \sum_{i} \left(r_i - \frac{2}{3} \right) \bar{\phi}^i \phi_i , \qquad (7)$$

for the "emergent" d.o.f's.

10

Pirsa: 11120066 Page 11/47

Example I: SQCD in the Free Magnetic Range

- Consider $SU(N_c)$ with $N_c+1 < N_f \leq 3N_c/2$: this is a flow between Gaussian fixed points
- The UV (electric) theory:

$$SU(N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)_B$

$$Q$$
 $\mathbf{N_c}$ $\mathbf{N_f} \times \mathbf{1}$ $1 - \frac{N_c}{N_f}$ 1 \tilde{Q} $\bar{\mathbf{N}_c}$ $1 \times \bar{\mathbf{N}_f}$ $1 - \frac{N_c}{N_f}$ -1

• Some bilinears that we can write are $c_i^jQ^iQ_j^\dagger+\tilde{c}_i^j\tilde{Q}^i\tilde{Q}_j^\dagger$. What are they in the IR?

Example I: SQCD in the Free Magnetic Range (cont...)

ullet But what about $J_A=QQ^\dagger+ ilde{Q} ilde{Q}^\dagger$? It is not conserved:

$$\bar{D}^2 J_A = \text{Tr} W_\alpha^2 \ . \tag{10}$$

ullet Claim: We can follow this operator using the ${\mathcal R}$ multiplet. Indeed, using the R-charge assignments in the electric table, we find

$$U^{UV} = \left(-\frac{1}{2} + \frac{3N_c}{2N_f}\right) \left(QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}\right) \tag{11}$$

• Using the R-charge assignments in the IR, we find

$$U^{IR} = \left(1 - \frac{3N_c}{2N_f}\right) \left(qq^{\dagger} + \tilde{q}\tilde{q}^{\dagger}\right) - \left(2 - \frac{3N_c}{N_f}\right) MM^{\dagger} \tag{12}$$

13

Example I: SQCD in the Free Magnetic Range (cont...)

• Therefore, we find

$$QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger} \longrightarrow \frac{2N_f - 3N_c}{3N_c - N_f} \left(qq^{\dagger} + \tilde{q}\tilde{q}^{\dagger} - 2MM^{\dagger} \right)$$
 (13)

ullet Acting with $ar{D}^2$ on both sides of the above equation, we find

$$W_{\alpha,\text{el}}^2 \longrightarrow \frac{2N_f - 3N_c}{3N_c - N_f} W_{\alpha,\text{mag}}^2$$
 (14)

ullet Can also deform UV Lagrangian $\delta \mathcal{L} \sim m^2 U^{UV} | + m W_{\alpha,el}^2 |$ and follow soft terms (in probe approximation); make contact with results of [Arkani-Hamed and Rattazzi], [Luty and Rattazzi], ...

14

Example II: The Deformed Moduli Space (cont...)

Consider first the following vacuum

$$M = 0 , \qquad B = \tilde{B} = \Lambda^{N_c} . \tag{16}$$

• In this vacuum the symmetry is broken as follows

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \times U(1)_R \hookrightarrow SU(N_f)_L \times SU(N_f)_R \times U(1)_R$$
(17)

ullet We can use our previous techniques to fix U as follows:

$$U = \delta M \delta M^{\dagger} + \delta b \delta b^{\dagger} , \qquad (18)$$

where δb is the Goldstone superfield for the $U(\mathbf{1})_B$ breaking.

16

Example II: The Deformed Moduli Space (cont...)

ullet Demanding invariance under the (non-linearly realized) $U(\mathbf{1})_B$ symmetry requires

$$QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger} \longrightarrow \text{Tr}\left(\delta M \delta M^{\dagger}\right) + \frac{1}{2}(\delta b + \delta b^{\dagger})^{2}$$
 (19)

• Note that this fixes the holomorphic + anti-holomorphic ambiguity.

17

Example III: The Kutasov Theory

 \bullet We consider the following electric theory with $\frac{N_c}{k} < N_f < \frac{2N_c}{2k-1}$

$$SU(N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)_B$

and the following superpotential

$$W = s_0 \operatorname{Tr}(X^{k+1}) . (21)$$

Example III: The Kutasov Theory

ullet We consider the following electric theory with $rac{N_c}{k} < N_f < rac{2N_c}{2k-1}$

$$SU(N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)_B$

and the following superpotential

$$W = s_0 \operatorname{Tr}(X^{k+1}) . (21)$$

Example III: The Kutasov Theory (cont...)

• And the following magnetic theory [Kutasov], [Kutasov and Schwimmer], [Kutasov, Schwimmer, and Seiberg]

$$SU(kN_f - N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$

$$egin{array}{lll} q & \mathbf{k} \mathbf{N_f} - \mathbf{N_c} & ar{\mathbf{N_f}} imes \mathbf{1} & 1 - rac{2}{k+1} rac{kN_f - N_c}{N_f} \ ar{q} & \overline{kN_f - N_c} & 1 imes \mathbf{N_f} & 1 - rac{2}{k+1} rac{kN_f - N_c}{N_f} \ Y & (\mathbf{k} \mathbf{N_f} - \mathbf{N_c})^2 - \mathbf{1} & 1 imes \mathbf{1} & rac{2}{k+1} \ M_j & 1 & N_f imes ar{\mathbf{N_f}} & 2 - rac{4}{k+1} rac{N_c}{N_f} + rac{2}{k+1} (j-1) \ & & & & & & & & & & & & & & \end{array}$$

and the following superpotential

$$W_{\text{mag}} = -\frac{s_0}{k+1} \text{Tr } Y^{k+1} + \frac{s_0}{\mu^2} \sum_{j=1}^k M_j \tilde{q} Y^{k-j} q . \qquad (23)$$

Example III: The Kutasov Theory (cont...)

 The UV superpotential breaks the symmetry associated with the current

$$J_X = \frac{N_c}{N_f} \left(Q Q^{\dagger} + \tilde{Q} \tilde{Q}^{\dagger} \right) - X X^{\dagger} . \tag{24}$$

- ullet Using baryon matching we can fix the coefficient of YY^\dagger in the IR.
- This operator cannot be followed using the R-multiplet
- But, using our previous tricks, there is another interesting long multiplet that we can follow

$$U^{UV} = \left(-\frac{1}{2} + \frac{3}{k+1} \frac{N_c}{N_f}\right) \left(QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}\right) + \left(1 - \frac{3}{k+1}\right) XX^{\dagger}. \tag{25}$$

20

Example IV: Adjoint SQCD

• We have focused mostly on theories with a free IR description. Here we will discuss adjoint SQCD. It is believed to flow to an interacting IR SCFT.

$$SU(N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)'$ $U(1)_B$

• Don't know much about the IR, but we can infer valid $M^i=QX^i\tilde{Q}$ become free—e.g. for $N_f/N_c<0$ $M_0=Q\tilde{Q}$ becomes free.

(28)

Example IV: Adjoint SQCD

• We have focused mostly on theories with a free IR description. Here we will discuss adjoint SQCD. It is believed to flow to an interacting IR SCFT.

$$SU(N_c)$$
 $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)'$ $U(1)_B$

• Don't know much about the IR, but we can infer valid $M^i = QX^i\tilde{Q}$ become free—e.g. for $N_f/N_c < 3$ $M_0 = Q\tilde{Q}$ becomes free.

(28)

- ullet We have seen that the R-current multiplet gives us a handle on a particular long (spin zero) multiplet, U.
- Question: Does it also contain some global information? Encodes the phase of the IR theory? Is the deep IR an interacting or a free SCFT (perhaps below some confining scale, Λ)?
- Claim: There is strong evidence that suggests the answer is yes!

Pirsa: 11120066 Page 23/47

- To support this claim, we will study $\langle U(x)U(0)\rangle$.
- ullet It turns out that we will be able to make more explicit statements, with less information, about (strongly) interacting theories than we could when studying the mapping of the full U operator along the RG flow.
- But which U (and R_{μ})? This is ambiguous.
- We will study the one defined (up to some exceptions) by a-maximization in the deformed UV theory, $(\mathcal{R}_{\mu,\mathrm{vis}}^{UV},U_{\mathrm{vis}}^{UV})$.

25

Pirsa: 11120066 Page 24/47

• We will study τ_U :

$$\langle U_{\mu,\text{vis}}^{UV,IR}(x)U_{\nu,\text{vis}}^{UV,IR}(0)\rangle = \frac{\tau_U^{UV,IR}}{(2\pi)^4} \left(\partial^2 \eta_{\mu\nu} - \partial_{\mu}\partial_{\nu}\right) \frac{1}{x^4} . \tag{30}$$

- Note that in theories without accidental symmetries, $\tau_U^{UV} >$ 0 = $\tau_U^{IR}.$
- Conjecture: $\tau_U^{UV} > \tau_U^{IR}$ more generally (new information not contained in $a_{UV} > a_{IR}$).

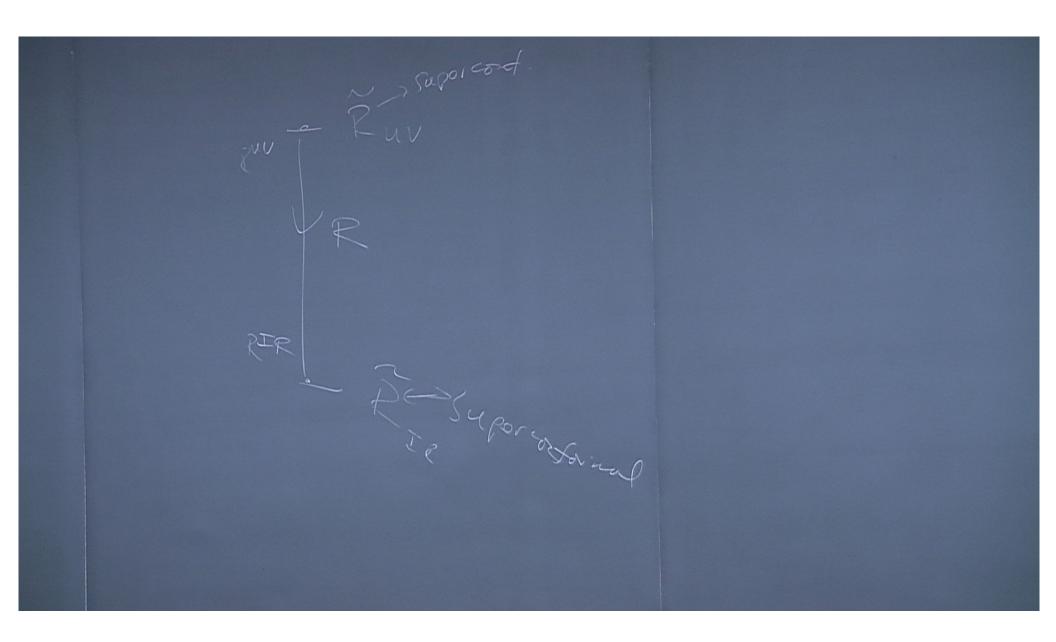
26

• We will study τ_U :

$$\langle U_{\mu,\text{vis}}^{UV,IR}(x)U_{\nu,\text{vis}}^{UV,IR}(0)\rangle = \frac{\tau_U^{UV,IR}}{(2\pi)^4} \left(\partial^2 \eta_{\mu\nu} - \partial_{\mu}\partial_{\nu}\right) \frac{1}{x^4} . \tag{30}$$

- Note that in theories without accidental symmetries, $\tau_U^{UV} >$ 0 = $\tau_U^{IR}.$
- Conjecture: $\tau_U^{UV} > \tau_U^{IR}$ more generally (new information not contained in $a_{UV} > a_{IR}$).

26



Pirsa: 11120066 Page 27/47

• We will study τ_U :

$$\langle U_{\mu,\text{vis}}^{UV,IR}(x)U_{\nu,\text{vis}}^{UV,IR}(0)\rangle = \frac{\tau_U^{UV,IR}}{(2\pi)^4} \left(\partial^2 \eta_{\mu\nu} - \partial_{\mu}\partial_{\nu}\right) \frac{1}{x^4} . \tag{30}$$

- Note that in theories without accidental symmetries, $\tau_U^{UV} >$ 0 = $\tau_U^{IR}.$
- Conjecture: $\tau_U^{UV} > \tau_U^{IR}$ more generally (new information not contained in $a_{UV} > a_{IR}$).

26

- We will provide strong evidence (although not a conclusive proof) in support of the above conjecture.
- •This conjecture implies a UV bound on accidental symmetries.
- If true, this conjecture will resolve a longstanding problem: the IR phase of the ISS theory.
- \bullet au_U^{UV} is a quantity in the UV SCFT, although it is not intrinsically defined in it (only defined once have in mind an R-symmetric relevant deformation and/or R-symmetry-preserving vev).

27

Pirsa: 11120066 Page 29/47

Defining au_U

- \bullet We start by using a-maximization to find the UV superconformal R-current; consider $\mathcal{R}_{\mu,UV}^{t*}=\mathcal{R}_{\mu,UV}^{(0)*}+\sum_i t^i J_{\mu,i}^{UV*}$, where $J_{\mu,i}^{UV*}$ are the full set of non-R symmetries of the UV SCFT.
- $\begin{array}{l} \bullet \ \ \text{Taking} \ \ \tilde{a}^t_{UV} = \ 3\text{Tr} \ \left(\mathcal{R}^{t*}_{UV}\right)^3 \text{Tr} \ \mathcal{R}^{t*}_{UV}, \ \ \text{solve} \ \partial_{t^i}\tilde{a}^t_{UV}|_{t^i=t^i_*} = \\ 0, \quad \partial^2_{t^it^j}\tilde{a}^t_{UV}|_{t^{i,j}=t^{i,j}_*} < 0. \ \ \text{This defines} \ \ \tilde{R}^{UV}_{\mu}. \end{array}$
- ullet Deform the theory by turning on an R-symmetry-preserving relevant deformation and/or an R-symmetry-preserving vev. Now only $\left\{\widehat{J}_{\mu,a}^{UV*}\right\} \subset \left\{J_{\mu,i}^{UV*}\right\}$ are still conserved currents that respect the vacuum.
- Maximizing \tilde{a} over this subset yields $\mathcal{R}_{\mu}^{UV}=\mathcal{R}_{\mu}^{(0),UV}+\sum_{a}\hat{t}_{*}^{a}\hat{J}_{\mu,a}^{UV}$. This operator and U^{UV} partner descend from a corresponding pair in the undeformed UV SCFT, $(\mathcal{R}_{\mu,\mathrm{vis}}^{UV},U_{\mathrm{vis}}^{UV})$.

28

Pirsa: 11120066 Page 30/47

Defining τ_U (cont...)

- \bullet Sometimes this procedure is not sufficient to fix some of the $\widehat{t}_*^A.$ This may happen in the presence of massive particles or more generally.
- \bullet In such a case, we can then fix the corresponding mixing with $\left\{\tilde{J}^{UV}_{\mu,A}\right\}\subset\left\{\hat{J}^{UV}_{\mu,a}\right\}$ by demanding

$$\langle U_{\mu, \text{ViS}}^{UV}(x) \tilde{J}_{\nu, A}^{UV*}(0) \rangle = 0 .$$
 (31)

• For free UV (IR) theories, we find

$$\tau_U^{UV,IR} = \text{Tr } \left(U_{\text{vis}}^{UV,IR} \right)^2 . \tag{32}$$

29

Page 31/47

Defining τ_U (cont...)

More generally, can sometimes use

$$\tau_U^{UV,IR} = -3 \text{Tr} \tilde{\mathcal{R}}_p^{UV,IR} U_{\text{vis,p}}^{UV,IR} U_{\text{vis,p}}^{UV,IR} , \qquad (33)$$

and 't Hooft anomaly matching to obtain explicit expressions.

- In the IR (and also in the UV), sometimes one needs more complicated generalizations (for example, when the IR is an interacting SCFT with some decoupled fields and accidental symmetries).
- Won't discuss these cases in the talk (see [1109.3279] for further discussion).

30

Pirsa: 11120066 Page 32/47

Two Simple Examples

- As a simple sanity check (and important result), consider a free chiral multiplet, Φ and the deformation $W = m\Phi^2$.
- There is a unique R-symmetry; therefore, $\mathcal{R}^{UV}_{\text{vis}}(\Phi)=1$ and $U^{UV}(\Phi)=1/2$. As a result, $\tau^{UV}_U=1/4$. The theory is trivial in the IR and so

$$\tau_U^{UV} = 1/4 > 0 = \tau_U^{IR} \ . \tag{34}$$

• Slight complication with two free chiral superfields, $\Phi_{1,2}$ and $W=m\Phi_1\Phi_2$. This preserves a non-R symmetry, J, under which the Φ_i transform with opposite charges. Need to impose $\langle U^{UV}_{\mu,\mathrm{vis}}(x)J^{UV*}_{\nu}(0)\rangle=0$. Find $\tau^{UV}_U=1/2>0=\tau^{IR}_U$.

31

Pirsa: 11120066 Page 33/47

SQCD

• Our procedure fixes $\mathcal{R}^{UV}_{\mathrm{vis}}(Q) = \mathcal{R}^{UV}_{\mathrm{vis}}(\tilde{Q}) = 1 - \frac{N_c}{N_f}$ and $U^{UV}_{\mathrm{vis}}(Q) = U^{UV}_{\mathrm{vis}}(\tilde{Q}) = \frac{1}{2} - \frac{3N_c}{2N_f}$.

ullet Consider $N_f < 3N_c$, and start from the free UV theory.

ullet Begin with $N_f=N_c$ and work our way up. All the subtleties we have discussed in this talk are present in this class of theories (accidental symmetries, Goldstone bosons, interacting fixed points etc.).

Pirsa: 11120066 Page 34/47

• $N_f = N_c$; $\tau_U^{UV} = 2N_c^2$; in the IR have a deformed moduli space $\det M + B\tilde{B} = \Lambda^{2N_c}$ with $< N_c^2 + 2$ mesons, M, and baryons, B, \tilde{B} .

• Since $\mathcal{R}^{IR}_{\mathrm{vis}}(M) = \mathcal{R}^{IR}_{\mathrm{vis}}(B) = \mathcal{R}^{IR}_{\mathrm{vis}}(\tilde{B}) = 0$ and $U^{IR}_{\mathrm{vis}}(M) = U^{IR}_{\mathrm{vis}}(B) = U^{IR}_{\mathrm{vis}}(\tilde{B}) = -1$, we have $\tau^{IR}_{U} < N_{c}^{2} + 2$.

$$\tau_U^{UV} = 2N_c^2 > N_c^2 + 2 > \tau_U^{IR}.$$
 (35)

• $N_f=N_c+1$; $\tau_U^{UV}=\frac{N_c(1-2N_c)^2}{2(1+N_c)}$; confinement without chiral symmetry breaking, $(N_c+1)^2$ mesons, M, and $2(N_c+1)$ baryons B and \tilde{B} .

33

Pirsa: 11120066 Page 35/47

• Have $\mathcal{R}_{\text{Vis}}(M) = \frac{1-2N_c}{1+N_c}$, $\mathcal{R}_{\text{Vis}}(B) = \mathcal{R}_{\text{Vis}}(\tilde{B}) = \frac{N_c}{2} \frac{1-2N_c}{1+N_c}$, $U(M) = -1 + \frac{3}{N_c+1}$, $U(B) = U(\tilde{B}) = \frac{N_c-2}{2(N_c+1)}$. Therefore, $\tau_U^{IR} = \frac{(N_c-2)^2(3+2N_c)}{2(1+N_c)}$ and

$$\tau_U^{UV} = \frac{N_c (1 - 2N_c)^2}{2(1 + N_c)} > \frac{(N_c - 2)^2 (3 + 2N_c)}{2(1 + N_c)} = \tau_U^{IR} . \tag{36}$$

• Can see that fully conserved current two-point functions have no definite behavior along the RG flow. Therefore, a-maximization picks out a current, U, that has nice properties.

- $N_f=N_c+2$, confining description breaks down; $\tau_U^{UV}=\frac{2N_c(N_c-1)^2}{N_c+2}$ while $\tau_U^{\text{conf}}=\frac{5N_c^3-10N_c^2-4N_c+36}{N_c+2}$, and so conjecture would be violated in a hypothetical confining phase.
- Luckily, correct description is free magnetic with $\mathcal{R}_{\mathrm{Vis}}^{IR}(M)=2\left(1-\frac{N_c}{N_f}\right), \mathcal{R}_{\mathrm{Vis}}^{IR}(q)=\mathcal{R}_{\mathrm{Vis}}^{IR}(\tilde{q})=\frac{N_c}{N_f} \text{ and } U_{\mathrm{Vis}}^{IR}(M)=2-\frac{3N_c}{N_f}, \ U_{\mathrm{Vis}}^{IR}(q)=U_{\mathrm{Vis}}^{IR}(\tilde{q})=-1+\frac{3N_c}{2N_f}.$ Therefore:

$$\tau_U^{UV} = \frac{N_c(N_f - 3N_c)^2}{2N_f} > \frac{(3N_f - N_c)(3N_c - 2N_f)^2}{2N_f} = \tau_U^{IR} . \quad (37)$$

35

- $N_f=N_c+2$, confining description breaks down; $\tau_U^{UV}=\frac{2N_c(N_c-1)^2}{N_c+2}$ while $\tau_U^{\rm conf}=\frac{5N_c^3-10N_c^2-4N_c+36}{N_c+2}$, and so conjecture would be violated in a hypothetical confining phase.
- Luckily, correct description is free magnetic with $\mathcal{R}_{\mathrm{Vis}}^{IR}(M)=2\left(1-\frac{N_c}{N_f}\right), \mathcal{R}_{\mathrm{Vis}}^{IR}(q)=\mathcal{R}_{\mathrm{Vis}}^{IR}(\tilde{q})=\frac{N_c}{N_f} \text{ and } U_{\mathrm{Vis}}^{IR}(M)=2-\frac{3N_c}{N_f}, \ U_{\mathrm{Vis}}^{IR}(q)=U_{\mathrm{Vis}}^{IR}(\tilde{q})=-1+\frac{3N_c}{2N_f}.$ Therefore:

$$\tau_U^{UV} = \frac{N_c(N_f - 3N_c)^2}{2N_f} > \frac{(3N_f - N_c)(3N_c - 2N_f)^2}{2N_f} = \tau_U^{IR} . \quad (37)$$

35

- ullet The above expressions are valid for $N_c+1 < N_f \leq 3N_c/2$. The inequality holds up to $N_f \sim 1.79N_c$ (where the theory flows to an interacting conformal fixed point, and the above expressions don't apply). Comes close to predicting onset of conformal window.
- \bullet In conformal window, $3N_c/2 < N_f < 3N_c$, trivially have (from assumed lack of accidental symmetries)

$$\tau_U^{UV} > 0 = \tau_U^{IR} . \tag{38}$$

• Can do some more complicated tests of conformal window.

36

Pirsa: 11120066 Page 39/47

- Start from the interacting fixed point and turn on $W=\lambda Q_a \tilde{Q}^a$, $a=1,\cdots,k$. Need to use $\langle U^{UV}_{\mu,\mathrm{vis}}(x)\tilde{J}^{UV*}_{\nu,A}(0)\rangle=0$ for conserved currents that act non-trivially on the Q_a,\tilde{Q}^a .
- If $k < N_f \frac{3}{2}N_c$, the theory flows to another theory in the conformal window. Trivially satisfy $\tau_U^{UV} > 0 = \tau_U^{IR}$. Same for $k = N_f \frac{3}{2}N_c$.
- For $N_f-N_c-1>k>N_f-\frac{3}{2}N_c$, the IR phase is free magnetic. We find

$$\tau_U^{UV} = \frac{27kN_c^4}{2(N_f - k)N_f^2} > \frac{(3(N_f - k) - N_c)(3N_c - 2(N_f - k))^2}{2(N_f - k)} = \tau_U^{IR}.$$
(39)

ullet Can also verify the inequality for $k=N_f-N_c-1,N_f-N_c.$

37

- Can also consider RG flows with Higgsing. Take $\langle Q_a^a \rangle = \langle \tilde{Q}_a^a \rangle = v_a$, for $a=1,\cdots k$. Suppose all v_a distinct. Find $SU(N_c-k)$ SQCD with N_f-k flavors, \mathcal{Q}_A^i , $\tilde{\mathcal{Q}}_i^A$, k^2 singlets, S_I , k gauge singlets Φ_a and k gauge gauge singlets, $\tilde{\Phi}^a$, transforming under N_f-k and $\overline{N_f-k}$ of $SU(N_f-k)_{L,R}$ respectively.
- We find $\mathcal{R}_{\text{vis}}(\mathcal{Q}) = \mathcal{R}_{\text{vis}}(\tilde{\mathcal{Q}}) = \mathcal{R}_{\text{vis}}(\Phi) = \mathcal{R}_{\text{vis}}(\tilde{\Phi}) = 1 \frac{N_c k}{N_f k}$, $\mathcal{R}_{\text{vis}}(S) = 0$ (note that for the case $k = N_c$ we use $\langle U_{\mu, \text{vis}}^{UV}(x) \tilde{J}_{\nu, A}^{UV*}(0) \rangle = 0$).
- \bullet Trivially true that $\tau_U^{UV}>\tau_U^{IR}$ for flows starting from the free UV fixed point. Consider now flows starting from an interacting fixed point.

38

Pirsa: 11120066 Page 41/47

• If $k < \min \left((3N_c - N_f)/2, N_c - 1 \right)$, theory flows to a more weakly coupled interacting fixed point. Find that

$$\tau_{U}^{UV} = \frac{27kN_{c}^{2}(N_{c} - N_{f})^{2}}{2(N_{f} - k)N_{f}^{2}}
> \frac{k(2k^{2} + N_{f}^{2}(1 - 3N_{c}/N_{f})^{2} + 6kN_{f}(1 - 2N_{c}/N_{f}))}{2(N_{f} - k)}
= \tau_{U}^{IR}$$
(40)

ullet If $(3N_c-N_f)/2\leq k\leq N_c$, the IR endpoint is free. We find

$$\begin{split} \tau_U^{IR} &= -\frac{1}{2(N_f-k)} \cdot (2k^3 - N_f^3 (1-3N_c/N_f)^2 (N_c/N_f) \\ &+ 4kN_fN_c (3N_c/N_f-1) - 2k^2N_f (1+2N_c/N_f)) \;, \; \text{(41)} \end{split}$$
 which still satisfies $\tau_U^{UV} > \tau_U^{IR}$.

Pirsa: 11120066 Page 42/47

- ullet Easy to generalize the above discussion to $SO(N_c)$ and $Sp(N_c)$ gauge groups
- ullet Also other more exotic s-confining theories; SCFTs with accidental symmetries; $\mathcal{N}=2$ SYM; Kutasov and Brodie theories; See [1109.3279] for details.

40

Pirsa: 11120066 Page 43/47

The IR Phase of ISS

- Intriligator, Seiberg, and Shenker consider an SU(2) gauge theory with a single field, Q, in the isospin 3/2 representation.
- They conjectured that the IR theory at the origin is described by a confined $u=Q^4$ field (classically, the Kähler potential is singular at the origin); indeed, since $\mathcal{R}^{UV}_{\text{vis}}(Q)=3/5$ and $\mathcal{R}^{UV}_{\text{vis}}(u)=12/5$, the $U(1)_R$ and $U(1)_R^3$ anomalies match.
- If the confining description is correct, then, upon deforming the theory by $W=\lambda u$, we would find a simple model of (dynamical) SUSY breaking. In this vacuum, there would be a preserved R-symmetry that is a mixture of the accidental non-R symmetry under which u transforms and \mathcal{R}_{vis} .

41

Pirsa: 11120066 Page 44/47

The IR Phase of ISS (cont...)

- Subsequently, other techniques have pointed to the opposite conclusion—namely, that the IR is interacting conformal. [Intriligator], [Poppitz and Unsal], [Vartanov]
- Our criterion also suggests this is the case. Indeed, $U_{\rm vis}^{UV}(Q)=-\frac{1}{10},\ U_{\rm vis}^{IR}(u)=\frac{13}{5}$ and so

$$\tau_U^{UV} = \frac{1}{25}, \quad \tau_U^{IR, \text{confining}} = \frac{169}{25},$$
(42)

and so $au_U^{UV} < au_U^{IR, {\rm confining}}.$ This conflicts with our conjecture.

• Conjecture formalizes the intuition that the theory is too weak to produce confined d.o.f's (the 1-loop beta fn is b = 6 - 5 = 1).

42

The IR Phase of ISS (cont...)

- Subsequently, other techniques have pointed to the opposite conclusion—namely, that the IR is interacting conformal. [Intriligator], [Poppitz and Unsal], [Vartanov]
- Our criterion also suggests this is the case. Indeed, $U_{\rm vis}^{UV}(Q)=-\frac{1}{10},\ U_{\rm vis}^{IR}(u)=\frac{13}{5}$ and so

$$\tau_U^{UV} = \frac{1}{25}, \quad \tau_U^{IR, \text{confining}} = \frac{169}{25},$$
(42)

and so $au_U^{UV} < au_U^{IR, {\rm confining}}.$ This conflicts with our conjecture.

• Conjecture formalizes the intuition that the theory is too weak to produce confined d.o.f's (the 1-loop beta fn is b = 6 - 5 = 1).

42

Conclusions

- ullet We have seen that the (\mathcal{R}_{μ}, U) multiplets contain a great deal of physics.
- We can use this pair to learn things about operator mappings, accidental symmetries, and IR phases.
- Can we extend duality mapping to other non-conserved quantities (as in the case of a UV superpotential)?
- ullet Can we prove that $au_U^{UV} > au_U^{IR}$? Can define another au_U' using a minimization procedure. Does this quantity also decrease?

44

Pirsa: 11120066 Page 47/47