Title: Very Light Axigluons and the Top Asymmetry

Date: Dec 12, 2011 03:00 PM

URL: http://pirsa.org/11120063

Abstract: Both Tevatron experiments have recently reported an anomalous forward-backward asymmetry in top-antitop production. Their inclusive results are roughly 3 standard deviations larger than the standard model prediction and may be evidence of new physics that couples to the top quark. In this talk, I will present a weakly-coupled light axigluon model (< Mtop) with flavor universal couplings as a possible explanation. Surprisingly, a particle with these properties can generate a large ttbar asymmetry with model-parameters safe from dijet resonance searches, flavor changing neutral currents, and constraints from the Z pole.

Pirsa: 11120063 Page 1/37



Pirsa: 11120063 Page 2/37

# Very Light Axigluons & the Top Asymmetry



Gordan Krnjaic (Johns Hopkins, Fermilab)



arXiv:1109.0648



Perimeter Institute December 12, 2011



Monday, December 12, 2011

Pirsa: 11120063 Page 3/37

### Overvíew



- Motivation: "the top is special" Everybody
- What is the forward-backward asymmetry?
- The CDF & D0 anomalies
- What kind of new physics is needed?
- Why are very light axigluons interesting?
- "Aren't they ruled out?" You, right now

Monday, December 12, 2011

Pirsa: 11120063 Page 4/37

### The Top Quark





- Heaviest known particle = feels EWSB most strongly
- Relatively unknown compared to other SM particles
- Possible portal for physics beyond the SM
- Obvious target for present/future precision measurements!

Monday, December 12, 2011

Pirsa: 11120063 Page 5/37

### The Top Quark





$$\Gamma_t \simeq 2 \, \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}} \sim 200 \, \mathrm{MeV}$$
 $\rightarrow t_{\mathrm{decay}} \ll t_{\mathrm{hadronize}}$ 

Decays before hadronizing, preserves parton spin info



Branching ratio to (Wb)  $\sim$  99%, so pair production yields (6j), (2l+2v+2j), (l+v+4j) final states

Monday, December 12, 2011

Pirsa: 11120063

### FB Asymmetry



In 2-2 scattering we define the forward-backward asymmetry as



$$A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} \, d\cos\theta$$

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} \, d\cos\theta \qquad \qquad \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} \, d\cos\theta$$

- Can be sensitive to new intermediate states that interfere with SM
- Only nonzero for *odd* functions of the scattering angle
- Needs non-identical initial state to definite "forward" direction
- Used to observe first hints of Z boson in e+e- to  $\mu$ +  $\mu$  collisions

### $A_{FB}(tar{t})$ in the SM



Top production is a QCD process and FB symmetric at tree level.

Interference at NLO gives small asymmetry (~ 5%) from interference (Kuhn & Rodrigo arXiv:9807420)



Leading contribution from  $p \bar{p} \to t \bar{t}$ 



Also from  $p \bar{p} 
ightarrow t \bar{t} \, q$  and others

Monday, December 12, 2011

Pirsa: 11120063

### CDF Lepton/Jets



Studied lepton and jets final state with 5.4 fb^-1 of data Jan. 2011 measurement arXiv:1101.0034



$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = y_t - y_{\bar{t}}$$

- They observe raw data: leptons, jets, neutrinos ("missing energy")
- They report partonic information about top kinematics
- This requires deconvolution of detector, jet, and showering algorithms (a.k.a "unfolding") to reconstruct top four-vectors

Monday, December 12, 2011

Pirsa: 11120063

# CDF Lepton/Jets

The total ("inclusive") partonic asymmetry: somewhat high

$$A_{FB} (CDF)_{\ell j} = (15.8 \pm 7.4)\%$$



However there is a 3.4 sigma excess for invariant masses > 450 GeV

$$A_{FB}(M_{t\bar{t}} < 450 \,\text{GeV}) = (-11.6 \pm 14.6)\%$$
  
 $A_{FB}(M_{t\bar{t}} > 450 \,\text{GeV}) = (47.5 \pm 11.4)\%$ 

Suggestive of new physics

# CDF Lepton/Jets



 $\sigma_{t\bar{t}}$  (obs.)  $\approx 7.5 \,\mathrm{pb}$ 

The same data agrees with SM ttbar production.

Difficult for "generic" new physics to increase Afb without significantly distorting this plot

Page 11/37

Monday, December 12, 2011

Pirsa: 11120063

### CDF Dilepton



Preliminary measurement 5.1/fb with a 2 lepton final state (CDF Public Note 10436)



Inclusive asymmetry even larger

$$A_{FB}(CDF)_{\ell\ell} = (42 \pm 15)\%$$

- Results also presented in terms of "unfolded" partonic data
- Consistent with the lepton + jets search at 2 sigma
- Mass dependent asymmetry is much flatter than in the lepton/jets analysis

# DO Lepton/Jets

Complementary measurement in lepton + jets channel with 5.4/fb (arXiv:1107.4995)



D0 inclusive asymmetry

$$A_{FB} (D0)_{\ell j} = (19.6 \pm 6.5)\%$$

Consistent with both CDF measurements and > 2 sigma above the SM prediction

Disagrees with the large mass-dependence in CDF's lepton/jets measurement.

D0 observes a large, flat asymmetry (and a huge lepton asymm.)

### Overall Verdict?



- Most aberrant single measurement (CDF mass-dependent Afb) is controversial: D0 doesn't see sharp mass dependence
- Individually, all three measurements see consistent, positive > 2 sigma deviations from the inclusive SM prediction ~ 5%
- Combined, all three inclusive partonic measurements give

$$A_{FB}(CDF_{\ell i} + CDF_{\ell \ell} + D0_{\ell i}) = (20.2 \pm 4.6)\%$$

Roughly ~ 3 sigma above the SM. May be evidence of new physics

Monday, December 12, 2011

Pirsa: 11120063 Page 14/37

### Overall Verdict?



- Most aberrant single measurement (CDF mass-dependent Afb) is controversial: D0 doesn't see sharp mass dependence
- Individually, all three measurements see consistent, positive > 2 sigma deviations from the inclusive SM prediction ~ 5%
- Combined, all three inclusive partonic measurements give

$$A_{FB}(CDF_{\ell j} + CDF_{\ell \ell} + D0_{\ell j}) = (20.2 \pm 4.6)\%$$

- Roughly ~ 3 sigma above the SM. May be evidence of new physics
- All measurements based on ~ 5/fb of data -- only 1/2 of total, so more information is on the way

Monday, December 12, 2011

Pirsa: 11120063 Page 15/37

### Disclaimer



#### FDA Warning: This could all be crap.

- The experiments themselves have not combined results, this is just an interpretation
- Some controversy over unfolding procedure. CDF and D0 don't agree on all the details -- especially the invariant-mass dependence
- Both experiments have similar detectors, so it could be a subtle systematic problem
- Higher order QCD calculations may give a much bigger SM asymmetry

Monday, December 12, 2011

Pirsa: 11120063 Page 16/37

### Disclaimer



#### FDA Warning: This could all be crap.

- The experiments themselves have not combined results, this is just an interpretation
- Some controversy over unfolding procedure. CDF and D0 don't agree on all the details -- especially the invariant-mass dependence
- Both experiments have similar detectors, so it could be a subtle systematic problem
- Higher order QCD calculations may give a much bigger SM asymmetry

**Working Strategy:** Interpret the combined, *inclusive* result as new physics and wait for more data/calculations to resolve disputes

Monday, December 12, 2011

Pirsa: 11120063 Page 17/37

### What's Needed?



- Any new process must preserve the total production cross section
  - Difficult because new s-channel diagrams induce resonances in the the Mtt distribution. One possibility: neutral t-channel exchange?
- Also needs to interfere with SM gluon-exchange diagrams
  - Without interference, the rate needed to explain Afb is too large
- To interfere, new particle needs to be a color octet (if s-channel) or color-singlet (if t-channel)
  - Natural candidates: massive "gluon" or Z' boson (plus exotics ... )

Monday, December 12, 2011

Pirsa: 11120063 Page 18/37

## Case Study 1: Z'



Consider a flavor violating Z prime (Cao et. al. 1003.3461)

$$\mathcal{L} = e\bar{u}\gamma^{\mu}(f_L P_L + f_R P_R)tZ'_{\mu}$$



t-channel kinematics can generate an asymmetry through interference



# Case Study 1: Z'

Consider a flavor violating Z prime (Cao et. al. 1003.3461)

$$\mathcal{L} = e\bar{u}\gamma^{\mu}(f_L P_L + f_R P_R)tZ'_{\mu}$$



t-channel kinematics can generate an asymmetry through interference

Must be leptophobic to avoid lepton collider bounds

Predicts lots of single-top events at the LHC - tight constraints

Monday, December 12, 2011

Pirsa: 11120063

# Case Study 1: Z'

Consider a flavor violating Z prime (Cao et. al. 1003.3461)

$$\mathcal{L} = e\bar{u}\gamma^{\mu}(f_L P_L + f_R P_R)tZ'_{\mu}$$



t-channel kinematics can generate an asymmetry through interference

Must be leptophobic to avoid lepton collider bounds

Predicts lots of single-top events at the LHC - tight constraints

Strong bounds from FCNCs  $f_L < 3.5 \times 10^{-4} \left( \frac{M_{Z'}}{100 \text{ GeV}} \right)$ 

### Case Study 2: G'



Heavy (~TeV), spin-1 color-octet with flavor violating couplings (Cao et. al.)

$$G'q\bar{q}:ig_st^A\gamma^\mu\left(f_LP_L+f_RP_R\right)$$

$$G't\bar{t}:ig_st^A\gamma^\mu\left(g_LP_L+g_RP_R\right)$$



Partonic cross section 
$$\frac{d\hat{\sigma}(G')}{d\cos\theta} = \mathcal{A}_{SM} + \mathcal{A}_{INT}^{G'} + \mathcal{A}_{NPS}^{G'}$$

$$\mathcal{A}_{INT}^{G'} = \frac{\pi \beta \alpha_s^2}{18\hat{s}} \frac{\hat{s} (\hat{s} - m_{G'}^2)}{(\hat{s} - m_{G'}^2)^2 + m_{G'}^2 \Gamma_{G'}^2} (f_L + f_R) (g_L + g_R) \times \left\{ \left( 2 - \beta^2 \right) + 2 \frac{(f_L - f_R) (g_L - g_R)}{(f_L + f_R) (g_L + g_R)} \beta \cos \theta + (\beta \cos \theta)^2 \right\}$$

Needs opposite-sign couplings to 1st/3rd generations for correct Afb

$$(f_L + f_R)(g_L + g_R) < 0$$

Problems with dijet bounds and ttbar cross section

Consider a similar idea with a twist

Enlarge the strong sector in the UV and break it down to SM QCD

$$G \supset SU(3)_c$$

The IR Lagrangian contains the flavor diagonal operator

$$\mathcal{L} \supset g' G_{\mu}^{\prime a} \bar{Q} T^a \gamma^{\mu} \gamma^5 Q \qquad g' \equiv \lambda g_s \; , \; \lambda < 1$$

And an octet of massive, axially coupled "axigluons" with masses we choose to be light

$$m_{G'} \ll 2m_t$$

What does this accomplish?

$$rac{d\hat{\sigma}(G')}{d\cos heta} = \mathcal{A}_{SM} + \mathcal{A}_{int}^{G'} + \mathcal{A}_{axi}^{G'}$$

SM/axigluon interference term is odd in cosine, generates asymmetry

$$\mathcal{A}_{int}^{G'} = \frac{4\pi\alpha_s^2\lambda^2}{9} \frac{(\hat{s} - m_{G'}^2)\beta^2\cos\theta}{(\hat{s} - m_{G'}^2)^2 + m_{G'}^2\Gamma_{G'}^2} \qquad \hat{s} \gg m_{G'}$$

For small masses, the asymmetry is positive without flavor violation



$$rac{d\hat{\sigma}(G')}{d\cos{ heta}} = \mathcal{A}_{SM} + \mathcal{A}_{int}^{G'} + \mathcal{A}_{axi}^{G'}$$

SM/axigluon interference term is odd in cosine, generates asymmetry

$$\mathcal{A}_{int}^{G'} = \frac{4\pi\alpha_s^2\lambda^2}{9} \frac{(\hat{s} - m_{G'}^2)\beta^2\cos\theta}{(\hat{s} - m_{G'}^2)^2 + m_{G'}^2\Gamma_{G'}^2} \qquad \hat{s} \gg m_{G'}$$

For small masses, the asymmetry is positive without flavor violation

Odd function of cosine does not add to the total cross section

$$\mathcal{A}_{axi}^{G'} = \frac{\pi \alpha_s^2 \lambda^4}{9} \frac{\hat{s} \beta^3 (1 + \cos^2 \theta)}{(\hat{s} - m_{G'}^2)^2 + m_{G'}^2 \Gamma_{G'}^2}$$

New-physics squared term is  $\mathcal{O}(\lambda^4)$  so the correction to  $\sigma_{t\bar{t}}$  is tiny



top anti-top Invariant mass distribution (FeynRules, Madgraph, Pythia, PGS)

- Pink (lower histograms) SM background taken from CDF lepton/jets paper
- Purple (upper histograms) BG + ttbar (SM) + ttbar (axigluon)
- Axigluon mass is below top threshold, so no bumps in the distribution -- just like with SM gluons

Monday, December 12, 2011

Pirsa: 11120063 Page 26/37

### Dijet Searches



- Axigluons decay only to jet pairs
- Tevatron and LHC searches sensitive to Mjj ~ 200 GeV or greater
- UA2 W/Z peak is the strongest constraint
- ... and it looks bad: only W and Z resonances appear here
- Extracted W/Z signal almost 2 x SM

$$\sigma \cdot Br(W, Z \to jj)_{\rm obs} = 9.6 \pm 2.3 \, {\rm nb}$$

$$\sigma \cdot Br(W, Z \to jj)_{\rm SM-NLO} \simeq 5.8 \, \rm nb$$

Normalization also deceptive S/B < 1%</li>



**UA2** Collaboration

Z. Phys. C - Particles and Fields 49, 17-28 (1991)

### Dijet Searches



- Same data before rescaling
- Unless you know that W and Z are there you cant see them
- Need a dedicated new physics search to spot an axigluon with reduced couplings
- To be conservative: use constraint from the statistical uncertainty of gaussian for best fit W/Z signal



Monday, December 12, 2011

Pirsa: 11120063 Page 28/37

### Dijet Searches



- Axigluons decay only to jet pairs
- Tevatron and LHC searches sensitive to Mjj ~ 200 GeV or greater
- UA2 W/Z peak is the strongest constraint
- ... and it looks bad: only W and Z resonances appear here
- Extracted W/Z signal almost 2 x SM

$$\sigma \cdot Br(W, Z \to jj)_{\rm obs} = 9.6 \pm 2.3 \, {\rm nb}$$

$$\sigma \cdot Br(W, Z \to jj)_{\rm SM-NLO} \simeq 5.8 \, \rm nb$$

Normalization also deceptive S/B < 1%</li>



**UA2** Collaboration

Z. Phys. C - Particles and Fields 49, 17-28 (1991)

### LEP Bounds: Z-pole



Axigluons can increase hadronic Z width at LEP



Adds factor proportional to

At 95 % confidence, fractional correction satisfies

 $\Gamma(Z \to {\rm hadrons})_{\rm obs.} = 1.744 \pm 0.002 \, {\rm GeV}$ Agrees with SM -- 0.1% error bars (PDG)

$$1+rac{lpha_s(m_Z)}{\pi}f(m_z/m_{G'})+\mathcal{O}(lpha_s^2)$$

$$\frac{\delta\Gamma}{\Gamma} \le 2.3 \times 10^{-3}$$



Monday, December 12, 2011

Pirsa: 11120063 Page 30/37

### LEP Bounds: Z-pole



Axigluons can increase hadronic Z width at LEP



Adds factor proportional to

At 95 % confidence, fractional correction satisfies

 $\Gamma(Z \to {\rm hadrons})_{\rm obs.} = 1.744 \pm 0.002 \, {\rm GeV}$ Agrees with SM -- 0.1% error bars (PDG)

$$1+rac{lpha_s(m_Z)}{\pi}f(m_z/m_{G'})+\mathcal{O}(lpha_s^2)$$

$$\frac{\delta\Gamma}{\Gamma} \le 2.3 \times 10^{-3}$$

Axigluons also decrease value of alpha strong at Z-pole RG running, by few %

$$\alpha_s(m_Z)_{SM} = 0.1184 \pm 0.0007$$

Decreases SM width prediction, opens up more room for new physics

### Other Bounds



- Tevatron 3b-jet search
  - Designed for MSSM higgs, looks for dijet resonances in 3b events
  - Search starts at axigluons with M > 100 GeV
  - Safe for smaller dijet masses



Monday, December 12, 2011

Pirsa: 11120063 Page 32/37

### Other Bounds



#### Tevatron 3b-jet search

- Designed for MSSM higgs, looks for dijet resonances in 3b events
- Search starts at axigluons with M > 100 GeV
- Safe for smaller dijet masses
- LEP event shapes (Kaplan, Schwartz 0804.2477)
  - Analyzed jet observables to constrain strongly-interacting states
  - Found lower-bound of ~ 50 GeV for Gluino-like particles (no quark couplings)
  - Model dependent. Quark couplings can affect limits. They may become more constraining if they are included.

Monday, December 12, 2011

Pirsa: 11120063 Page 33/37



Blue and purple bands: 1 and 2 sigma favored regions for Afb (CDF+D0)

 $M_{G'}$  [GeV]

90

- Region below all lines completely allowed
- Light axigluon generically decreases  $lpha_s(m_Z)$
- Bound very sensitive to new physics extraction

Monday, December 12, 2011

Pirsa: 11120063 Page 34/37



Pirsa: 11120063 Page 35/37

### Conclusion



- Forward backward asymmetry may be evidence of new physics
- Most models require > few TeV masses and flavor violating couplings
- Flavor-universal (50 90 GeV) axigluons with reduced quark-couplings can yield a large asymmetry
- Contributions to top cross section suppressed
- Parameter space for Afb not that large, but very sensitive to  $\alpha_s(m_Z)$

Monday, December 12, 2011

Pirsa: 11120063 Page 36/37

#### Conclusion



- Forward backward asymmetry may be evidence of new physics
- Most models require > few TeV masses and flavor violating couplings
- Flavor-universal (50 90 GeV) axigluons with reduced quark-couplings can yield a large asymmetry
- Contributions to top cross section suppressed
- Parameter space for Afb not that large, but very sensitive to  $lpha_s(m_Z)$
- May be possible to revisit low Mjj region with dedicated search

Monday, December 12, 2011

Pirsa: 11120063 Page 37/37