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Abstract: The scaling of entanglement entropy, and more recently the full entanglement spectrum, have become useful tools for characterizing
certain universal features of quantum many-body systems.

Although entanglement entropy is difficult to measure experimentally, we show that for systems that can be mapped to non-interacting fermions
both the von Neumann entanglement entropy and generalized Renyi entropies can be related exactly to the cumulants of number fluctuations, which
are accessible experimentally. Such systems include free fermions in all dimensions, the integer quantum Hall states and topological insulators in
two dimensions, strongly repulsive bosons in one-dimensional optical lattices, and the spin-1/2 XX chain, both pure and strongly disordered.

The same formalism can be used for analyzing entanglement entropy generation in quantum point contacts with non-interacting electron reservoirs.
Beyond the non-interacting case, we show that the scaling of fluctuations in one-dimensional critical systems behaves quite similarly to the
entanglement entropy, and in analogy to the full counting statistics used in mesoscopic transport, give important information about the system. The
behavior of fluctuations, which are the essential feature of quantum systems, are explained in a general framework and analyzed in a variety of
specific situations.
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Quantum Entanglement

“Spukhafte Fernwirkung”

Entanglement, the “spooky” non-local correlations inherent to quantum
mechanics, has long been understood to be the fundamentally novel |
feature of quantum systems as compared to their classical counterparts.
Important first in ontological status of quantum mechanics, then in |

quantum information, now in many-body physics.

Example: Bell pair
1

Vﬁ§(|T>A:*"¢>B — | Da®| 1)B)

W)
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“Traditional” Many-Body Physics (e.g., Mahan)

Ground state and | Correlation Symmetry-breaking |
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Many-Body Physics and Entanglement

There are states of matter that are not fully characterized by the above
formalism, e.g., topological states of matter. So one reason for studying
the structure of entanglement is to see if entanglement can illuminate such

states of matter.
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Many-Body Physics from the Quantum Information
Perspective: Bipartite Entanglement (DMRG, MPS)

Figure: Divide the system into two parts A and A = B, focus on A. A can be
a single connected region (left) or multiple disconnected regions (right). Note
the formation of a boundary. In the context of black holes we are actually
interested in the “exterior” region B rather than the “interior” region A.
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The Quantum Information Perspective (Cont.)

Reduced density matrix

Given a pure state |V), the reduced density matrix for subsystem A is

pa = Trp[W)(V].

@ Approach 1: Quantify the amount of entanglement. Entanglement
entropy, bipartite fidelity, valence bond entanglement entropy, ...

@ Approach 2: Study the entanglement spectrum. Analyze the full set
of eigenvalues of the reduced density matrix pa, usually in terms of
the energy levels of the “entanglement Hamiltonian” H, defined by

“Low temperature,” or “low energy,” limit corresponds to dominant
eigenvalues of pa. This is only useful if Hy has an interesting
structure.
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Motivation: Topological Insulators

Chern insulator
As a simple example, consider

A 1 X :
FERA el Z . X el N z . V N
H= E E C>-1.(v((T e )Cx—kl.y e C)Iy((T = 10 )Cx.y-+-1 3 e
Xy
Xy

The Chern number for this system is

—1 forQ< m< 2
Gy — ¢ for =2 < m <0,

0 otherwise.

Consequence: edge modes.
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Motivation: Topological Insulators (Cont.)

System with edge, trivial phase m = —2.5 (Alexandradinata et al.)
}OW

e —— e g pspagenny

1.0 05 0.0 0.5 10 1.0 0.5 0.0 05

Spectrum of M(k,)

ky/nm ky/m
(a) Physical energy spectrum (b) Spectrum of M(k,)

pectrum

=
—
T

Entanglement S

P i
10 0.5 0.0 0.5

k,/n

(c) Entanglement energy levels

Pirsa: 11120053 Page 12/88



Pirsa: 11120053

Motivation: Topological Insulators (Cont.)

System with edge, topological phase m = —1.5
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Motivation: Topological Insulators (Cont.)

System without edge, topological phase m = —1.5
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Motivation: Topological Insulators

Virtual “edge”

The topological nature of the insulating phase is a property of the bulk
wave function, present whether there is an edge or not (cf. computation of
the Chern number). The entanglement Hamiltonian contains information
about the edge state, even though there is no physical edge!

Proofs of bulk-boundary correspondence—in lofty terms: holographic
principle.
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Entanglement Entropy
The entanglement entropy is the von Neumann entropy
Sa = —=Tr(palnpa).

More generally, the Rényi entanglement entropy of order « is defined as

X 1 m A . Y
st = In[Tr(5%)], _|.m15§1 ) = Sa.

i O

Relation to Schmidt decomposition

W) =2 VAilialile,

Can always write

SO

T(p3) =) Af.

i

Symmetry between A and B is evident.
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Entanglement Entropy (Cont.)

Important properties of the entanglement entropy at zero temperature |
@ Zero if and only if (V) is a product state

V) = [Va) ® |Vg).
Q@ Symmetry between subsystems
() (@) _ o(a
S =8y =8,

This suggests the importance of the boundary.

© Subadditivity

Sa+ Sg 2 Saug = 0.
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Entanglement Entropy (Cont.)

Some famous results

@ At a conformally invariant critical point in 1D,

c L m
D=l =i
S(0) 3In L_asm L]'

where c is the central charge of the underlying conformal field theory
(CFT), 2 is the length of the subsystem, L is the length of the total
system, and a is a non-universal short-distance cutoff; for finite
temperature replace L with i3 (Holzhey '04, Calabrese & Cardy '04). |

@ Area law for harmonic lattices (Bombelli, Srednicki, Plenio, ...),
ground states of realistic Hamiltonians are rather unusual—Hilbert
space is ‘gratuitously” large.
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Entanglement Entropy (Cont.)

Some famous results, cont.

@ For free fermions in d dimensions,
S(L) ~ L9"YIn L + sub-leading terms.

This is the prototypical violation of the area law, with multiplicative
logarithmic correction (Wolf '06, Gioev & Klich '06, Swingle '10).
Fermions have a smaller Hilbert space but more entanglement due to
non-local nature!

@ Topological entanglement entropy (Levin & Wen '06, Kitaev &
Preskill '06)

@ Entanglement spectrum of fractional quantum Hall states,
“entanglement gap” (Li & Haldane '08)

@ DMRG can be understood as a variational algorithm over Matrix
Product States, which explicitly incorporate an area-law scaling for
the entanglement entropy. Generalizations to PEPS, MERA, and
classical simulation of quantum systems (Vidal).
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Can We Measure Entanglement Entropy?

One possible way to measure Rényi entropies (Cardy '11)

Observe that when there are n copies of the Hilbert space |

H=Q);_1(Ha; ®Hp,;) and n copies of the ground state [0) = ®;_, |0);
Tr(pa) = (Mn)
where I, cyclically permutes the A part of Hilbert space
Nn: Haj = Ha(j+1)mod n-

Already used to measure entanglement entropy in quantum Monte Carlo

(QMC) [Hastings et al. '10].

Same idea used to derive famous CFT result.
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Can We Measure Entanglement Entropy? (Cont.)

Our claim

“Easier” way, for systems of non-interacting fermions: measure
particle-number fluctuations

S AN
Cn = (—i9)" In x(\)|r=0, x(A) = (eMN4),
\(A) is the cumulant generating, or characteristic, function.

Applications: Free fermions in any dimension, spin-1/2 XX chain =
hard-core bosons in an optical lattice, integer quantum Hall effect,
topological insulators (note eigenvalues of M associated with zeros of the
generating function), . ..

Further claim

Number fluctuations are interesting to study in their own right, e.g., Full
Counting Statistics (FCS) in Quantum Point Contacts (QPC) and
applications to detecting quantum phase transitions.
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Number Fluctuations

Important properties of F = G, = (N2) — (N4)? with total number
conservation
@ Zero if |V) is a product state

V) = |V4) ® |Vp).

But converse not true (Furukawa '09).

Q@ Symmetry between subsystems
Fa=Fg=F.

This suggests the importance of the boundary.

© Subadditivity
Fa+ Fp 2 Faus =0.
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Number Fluctuations (Cont.)

More generally, the even cumulants C3,, also satisfy properties (1) and (2). |

There is already an incredibly active field in this direction: FCS (Levitov &
Lesovik '93) in mesoscopic transport.

QPC closed

QPC open

Ina QPC, x(\, t) =3, Pa(t)e'* where P,(t) is the probability that n
charges were transferred during the span [0, t|, say from L (“source”) to R

(“drain™).
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Number Fluctuations in Numerics

Simple observation

In the Density Matrix Renormalization Group (DMRG) the reduced density
matrix is already block-diagonal in U(1) numbers like particle number N
and spin 5. Therefore cumulants are trivial to compute.

Also simple to compute in QMC.
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Entanglement Entropy and Fluctuations

Entanglement entropy of free fermions

K+1

S= lim Z“H(K)Cn-

K—oc
=

where

an(K) = QZk o4 if;: L for n even,
n
0 for n odd.

Here S;(n, m) are unsigned Stirling numbers of the first kind.
Practically, K is the number of available cumulants and should be taken to |
be even. Increasingly better lower bound.

Order of limit is important

K+1
K|i_r3’n§C [Zn,, ,,] #Z { lim rl,,(K]

=3 n=1

The RHS is usually not convergent.
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Brief Interlude: Stirling Numbers

Combinatoric interpretation

The Stirling numbers of the first kind S;(n, m) are the number of ways n
objects can be arranged into m cycles. They satisfy the recursion relation

S51(n+1,m) = 51(n, m — 1) 4+ nS:(n, m).
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Properties of the Series

Only even cumulants contribute

The formula works for pure states, and only even cumulants are symmetric |
between A and B.

What happens when we bring the limit inside?
For even n (Klich & Levitov '09),

(27)"| By

aqloal— 2 — py

where ((n) is the Riemann zeta function and B, are Bernoulli numbers.

So
an(K)C, ~ 2C, for large n.

but

limi | @, —o0a
n— o0

Not convergent! More on this later.
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Entanglement Entropy and Fluctuations
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Properties of the Series

Only even cumulants contribute

The formula works for pure states, and only even cumulants are symmetric |
between A and B.

What happens when we bring the limit inside?
For even n (Klich & Levitov '09),

(27)"| B,

aploa) — 2dim)i— o

where ((n) is the Riemann zeta function and B, are Bernoulli numbers.

So
an(K)Cp ~ 2C, for large n,

but

i | G, =00
n— oo

Not convergent! More on this later.
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Derivation

Important formulas

S=—TrMInM+(1—M)In(1 — M)].
5 = - i“ Tr{In[M® + (1 — M)*]}.

X(A\) = det{[1 + (e"* — 1)M]e~"29}.

o My = (.ﬁjéj) is essentially the Green's function.
@ g is an irrelevant phase factor related to the background charge.

@ These formulas can be derived easily using the reduced density matrix |
obtained by Peschel '03.

Pirsa: 11120053 Page 32/88



The Clever, but (Partially) Wrong, Derivation

Here “wrong” means “unless the generating function is gaussian an
infinite number of cumulants plus a divergent resummation is required to |
get the entanglement entropy.” (Generalizes Klich & Levitov '09.)

The spectral density function

Define the spectral density function

u(z) = Te[s(M — 2)] = %m[nz Iny(AM(z — i0M))],

AMz)=—-7m—iln (é_l)'

Then the Rényi entanglement entropy is

where

Se- 2
l—a,

1
/o dz p(z)In[z® 4+ (1 — 2)°].
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The Clever, but (Partially) Wrong, Derivation

Here “wrong” means “unless the generating function is gaussian an
infinite number of cumulants plus a divergent resummation is required to |
get the entanglement entropy.” (Generalizes Klich & Levitov '09.)

The spectral density function

Define the spectral density function

,4@:1ﬂqM—zn:%mmgmuMz—mﬂn

A@):—:_fm(§—1)

Then the Rényi entanglement entropy is

where

1
Sy
l1—a,

1
/0 dz p(z)In[z® 4+ (1 — 2)°].
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The Clever, but (Partially) Wrong, Derivation (Cont.)

Rényi entanglement entropy

5@ = 1/’ Psll s AR

ﬂ' o a—1

Expand the generating function x(\) = Y_re;[(iA)*/k!]Ck to get

S(“) = Z .7’1((“)(.‘;(.
k—1

3l = (i‘(_Q—“:“))Lm{ [_1 du [tanh(amu) — tanh(7u)] (u - %) k}.

Evaluate for integer n and analytically continue to non-integer o to get

e
@ 2 L {2m : a+1
o — — — K, :
k n—lk!(rl ) L( : .

where ((s, a) is the Hurwitz zeta function.
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The Clever, but (Partially) Wrong, Derivation (Cont.)

Important limit

_ . 2((k) for k even, |
[im J’f( = |
0 for k odd. }

1

a—1

Beautiful, but divergent. Generating functions have poles! (Poles are
important: Kambly et al. '11)
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0 for k odd.

a—1
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The Clever, but (Partially) Wrong, Derivation (Cont.)

Example
Suppose M = 1/2, e.g., a single fermion at a QPC.

A
/\ — =
V() = cos )
and ; l
6 =3 el o

Each term in the series is therefore factorially divergent.

This is very typical (Flindt et al. '09): Any non-gaussian generating
function x(A) will have an infinite number of cumulants, and these
cumulants will in general diverge factorially due to singularities in the
complex plane of the generating function. /f the generating function is
gaussian, however, note
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The Still Clever, but Correct, Derivation

Here “correct” means “convergent, plus the approximation is an
increasingly sharper lower bound to the exact entanglement entropy.”

Basic idea
Expand logarithms to get

P i Tr{M(1 - M)" + M"(1 — M)]

n

=il

and notice that the factorial cumulants Fp, = 97 In x(—iIn A)[x=1 are given |
by |
Fi= (1) (k=) (M*) —ql, k21
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The Still Clever, but Correct, Derivation (Cont.)

To rewrite S in terms of cumulants, introduce cutoff K and switch the
order of sums. After some algebra we get (HFS et al. '11) |

K+1

S = lim Z an(K)C,

K ~O
bt =i

with cutoff-dependent coefficients

el ‘L{L Y for n even,
an(K) =
0 for n odd.

Similar (but more complicated) expressions exists for the Rényi
entanglement entropies, but appear to be unnecessary: the simpler series
converges for a >= 2.
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K+1
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Tl =il
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Entanglement Spectrum from Rényi Entropies

Recall the Rényi entanglement entropies

1 m (8
Sn e T |n[]l(/) )]

Define
Rﬂ = TI'(/)G) & e(l—n)S(,.

Note that R; = 1 for a properly normalized density matrix.
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Entanglement Spectrum from Rényi Entropies (Cont.)

Define the D x D matrix

( 1 1 @ \

R> 1 2 0

E = : 2 i e 0
Rp-1 Rpo --- 1 D-1

RD RD—I oieian . [y 1

i.e., a quasi-lower triangular matrix with R; = 1 on the main diagonal, R;
on the sub-diagonal, R, on the (n — 1)-th sub-diagonal, 1,2,3,....D —1
on the super-diagonal, and zero everywhere else.
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Entanglement Spectrum from Rényi Entropies (Cont.)

Newton-Girard formulas
The zeros of the polynomial

L (et E, P,

n!

[¥]o

El =

n=u

with the understanding that det £y = 1, are the entanglement spectrum.
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Entanglement Spectrum from Rényi Entropies (Cont.)

Define the D x D matrix

( 1 1 g - \

R> 1 2 0

E = : . o o 0
Koo Rpo - 1 D-—1

RD RD—I o Ry 1
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Entanglement Spectrum from Rényi Entropies (Cont.)

Newton-Girard formulas
The zeros of the polynomial

L et E, P,

n!

[¥le

I oa —

n=0

with the understanding that det Ey = 1, are the entanglement spectrum.
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Entanglement Spectrum from Rényi Entropies (Cont.)

Simple examples

For apurestate R, =R3=---=Rp=1so
(1 1 0 0 o
' 2 06
E—l1L 1 1 3 0F, PL)=x""e—1
[ [0 s [
e 1 1)

For the fully mixed state where p has 1/D on the diagonal and zero
everywhere else

D
R,= DI"" — P(x) = (x i i) .
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Application: Spin-1/2 XX Chain

Hamiltonian |

Fxx = Z (575 + 51 51)-

Becomes a model of non-interacting fermions through the Jordan-Wigner
transformation.

@ The pure case J; = J is the standard spin-1/2 XX chain.

@ Can also describe hard-core bosons in an optical lattice;
experimentally relevant (Bakr '09).

@ The random singlet phase for J; random.
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Application: Spin-1/2 XX Chain (Cont.)

2

o~

Figure: Entanglement entropy of the spin-1/2 XX chain,
L = 100, as a function of subsystem size ¢, with periodic
boundary conditions (PBCs) and open boundary conditions

(OBCs).
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Application: Spin-1/2 XX Chain (Cont.)

-~

o~

Figure: Entanglement entropy of the spin-1/2 XX chain,
L = 100, as a function of subsystem size ¢, with periodic

boundary conditions (PBCs) and open boundary conditions
(OBGs).
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Application: Spin-1/2 XX Chain (Cont.)

Analytical formula for entanglement entropy

For PBCs the problem can be formulated in terms of Toeplitz matrices (Jin
& Korepin '04). For OBCs form only conjectured (Calabrese et al. '10):

1
Spac(() = 3 logz € + s1,

_1)¢
Sosc(f) = %’SPBC({) H: 31% - az((2}§ .

Here s; >~ 1.047. Let ¢ — (L/m)sin(wl/L) for finite size L.
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Application: Spin-1/2 XX Chain (Cont.)

Analytical formula for entanglement entropy

For PBCs the problem can be formulated in terms of Toeplitz matrices (Jin
& Korepin '04). For OBCs form only conjectured (Calabrese et al. '10):

1
Spac(l) = 3 log € + 51,

1)
Sosc(f) = %SPB(:(/) + 31ﬁ i 32((2}; :

Here s; >~ 1.047. Let ¢ — (L/m)sin(wl/L) for finite size L.

Pirsa: 11120053 Page 52/88



Pirsa: 11120053

Application: Spin-1/2 XX Chain (Cont.)
Analytical formulas for the fluctuations F = G, (HFS et al. '10)

For PBCs the problem can be formulated in terms of Toeplitz matrices.
For OBCs (and PBCs) the problem turns into the summation over the
spin-spin correlation function:

The result is

TI'Q.FOBC(I) = %szfPBC(W) -+ %%
— [In(2€) + v + In 2]((_23( - ((;1))2( In(2¢) + O(¢2).

Here f =1+~ +1In2>~2270. Let { — (L/m)sin(7l/L) for finite size L.
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Application: Spin-1/2 XX Chain (Cont.)

S(¢, L), 4F(¢, L)

0.5

0 20 40 60 80 100

Figure: Entanglement entropy (squares) and fluctuations F = (;
(circles) of the spin-1/2 XX chain, L = 100, as a function of
subsystem size /, with periodic boundary conditions (PBCs) and
open boundary conditions (OBCs).
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Application: Random Singlet Phase (RSP)

The spin-1/2 XX chain with J; drawn from almost any probability
distritution flows to the infinite randomness fixed point where the ground
state is a pure valence bond state called the random singlet phase. The
entanglement entropy was computed to be (Refael & Moore '04)

1
SRSP(()ZI_?MQ. ﬁw§|nf.
Here 7 is the number of singlets that cross the boundary, averaged over

realizations of the disorder.
The corresponding cumulant generating function is

A
Inx(A) = nlncos =,

2

leading to the same result through cumulants. The relation between S
and the C, is linear, so it can be averaged over disorder.
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AppliCatiOn: QPC
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Application: QPC (Cont.)
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Figure: Entanglement entropy in a QPC with imperfect transmission
D at zero bias voltage (left) and bias voltage V (right), scaled to the
maximum value at D =1 and D = 0.5, respectively.
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Application: Free Fermions in 2D

Cumulants can reproduce the S ~ L9=1In L scaling of the entanglement
entropy in d-dimensions, but this is already well-documented (see below,
however). How about a system that obeys a strict area law?
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Figure: Entanglement entropy for free
fermions in two dimensions.
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Application: Integer Quantum Hall Effect (IQHE)
Setup (Rodriguez & Sierra '09)

Cylinder of size Ly x Ly, periodic in y-direction, with vector potential
A = B(0,x). For unit filling » = 1 the ground state correlation matrix is
(assume Ly, Ly, > 1, set magnetic length (g = 1)

M = 5 o0 | = 3(x = XP = 3y =yF = 5+ )y = )|
Define region A as
- / >
_%x T {?X | ( ':I
0<y<lL, g ]
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Application: IQHE (Cont.)
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Figure: Von Neumann entanglement entropy of the IQHE in
the cylinder geometry at filling factor v = 1.
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Application: IQHE (Cont.)

Recall the close relation between the IQHE to topological insulators.

In principle, anything the entanglement entropy/spectrum can do,
the cumulants can also do!

Pirsa: 11120053 Page 61/88



Beyond Free Fermions

For a single fermion the real-space entanglement entropy is just the
probability of finding the particle in region A.

This is no longer true for interacting systems, but some interesting
parallels exist between the entanglement entropy and particle number
fluctuations in one-dimensional systems. We will focus on

A

Fa= G = (N3) — (Na)2.
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Luttinger liquids (LLs)

LLs describe the low-energy physics of many one-dimensional systems:
interacting fermions and bosons, the spin-1/2 XXZ chain, the edge theory
of the v = 1/(2p + 1) fractional quantum Hall effect, ...

The LL Hamiltonian is a Gaussian model:

Hy =

2\;_/dx [K(e}xr))2+ %(z)xof _
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Luttinger Liquids (Cont.)

Fluctuations
The long-wavelength density fluctuations are given by

1
p(x) = po + —OxP(x),

so for a block of length ¢ extending from x =0 to x = (

Ria — (Rla) = 2[6(6) — 9(0)].

—

/"

Standard LL calculation (e.g., in Giamarchi '04) gives
§
e £ > a
a

where a is a short-distance cutoff.
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Luttinger Liquids (Cont.)

Oscillating correction

We can also account for oscillating corrections. For the gapless phsae of

the spin-1/2 XXZ chain

Hxxz = Z(sti—l + 5, 5500 BSESE ).

I

Focuson 0 < A < 1.

/

59 o (_1) —"

Tl -FXXZ({) - Klnt¢ % fg = Ai_) 2K —f—O(f )
from 1/r? term  from all terms e

from (—1)"/r?K term

The long-distance behavior of the correlation function is dominated by the
oscillating term (1/2 < K < 1), but the logarithmic divergence originates
from the 1/r? term—importance of short-distance correlations.
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Luttinger Liquids (Cont.)

This is a useful way (quick and doesn't require computing the correlation
function) to extract K in DMRG.
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Figure: Luttinger parameter K as a function of anisotropy

A, extending into the ferromagnetic regime. Solid line is the
Bethe Ansatz curve K = (1/2)[1 — (cos™ ! A) /=]~ 1.
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Luttinger Liquids (Cont.)

Oscillating correction

We can also account for oscillating corrections. For the gapless phsae of
the spin-1/2 XXZ chain

Hxxz = Z(sti—l 5.5+ ASESE ).

I

Focuson 0 < A < 1.

p

L9 it : (_1) -2

ml -FXXZ(() — Klni¢ = fg o A2 2K —f—O(f )
from 1/r? term  from all terms .

from (—=1)"/r?K term

The long-distance behavior of the correlation function is dominated by the |
oscillating term (1/2 < K < 1), but the logarithmic divergence originates |
from the 1/r? term—importance of short-distance correlations.

Pirsa: 11120053 Page 67/88



Luttinger Liquids (Cont.)

This is a useful way (quick and doesn't require computing the correlation
function) to extract K in DMRG.
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Figure: Luttinger parameter K as a function of anisotropy

A, extending into the ferromagnetic regime. Solid line is the
Bethe Ansatz curve K = (1/2)[1 — (cos™ ! A) /=]~ 1.
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Luttinger Liquids (Cont.)

This is a useful way (quick and doesn't require computing the correlation
function) to extract K in DMRG.
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Figure: Luttinger parameter K as a function of anisotropy

A, extending into the ferromagnetic regime. Solid line is the
Bethe Ansatz curve K = (1/2)[1 — (cos™ ! A) /7]~ 1.
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Luttinger Liquids (Cont.)

Oscillating correction

We can also account for oscillating corrections. For the gapless phsae of

the spin-1/2 XXZ chain

Hxxz = Z(sti—l + 57 5741 + ASFSTL).

I

Focuson 0 < A < 1.

/
) (_1) Loy
el gi— Kinf I f- - A +0(0~7).
xxz({) Klin/l > 2" 3K &)

from 1/r? term  from all terms e

from (—=1)"/r?K term

The long-distance behavior of the correlation function is dominated by the
oscillating term (1/2 < K < 1), but the logarithmic divergence originates
from the 1/r? term—importance of short-distance correlations.
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Haldane-Shastry (HS) Model

Actually, for K = 1 (isotropic Heisenberg point) the oscillating correction
acquires a multiplicative logarithmic correction: Study the HS chain (same |

universality class = SU(2); Wess-Zumino-Witten nonlinear o-model)
instead:

- S L T
HHszzﬁs,--sj. d(x) = = [sin 7% .

. . /" L
i<j

The exact spin-spin correlation function is

el A A 1 Si(7r : & sin t
(8550) = G 81 = 30222, s = [ T

nr . 0 t
SO ” ¢
. i l e 0 1)

T sy — 2|n( fHs T

g )
where fys/m? ~ 0.197.
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Haldane-Shastry (HS) Model

Actually, for K = 1 (isotropic Heisenberg point) the oscillating correction
acquires a multiplicative logarithmic correction: Study the HS chain (same

universality class = SU(2); Wess-Zumino-Witten nonlinear o-model)
instead:

HHS_Zd!_J -5 d(x):ﬁfsin”‘.

T
i<

The exact spin-spin correlation function is

Tr

(87,87 — (328 = 72T, i) = / ol

SO

1 w2 (—1)
=il e
> In fHs T

m° Fus(f) =

where fys/m? ~ 0.197.

+ O(£72),
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Haldane-Shastry Model (Cont.)
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Figure: Fluctuations of the HS model, L = 100, as a
function of subsystem size.
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Bose-Hubbard Model (Cont.)
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Figure: Using the Luttinger parameter K extracted from the
fluctuations to locate the phase transition at t/U ~ 0.298,
cf. previous estimate. Thanks to Stephan Rachel for the
nice figure.
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Bose-Hubbard Model (Cont.)
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Figure: Using the Luttinger parameter K extracted from the
fluctuations to locate the phase transition at t/U ~ 0.298,
cf. previous estimate. Thanks to Stephan Rachel for the
nice figure.
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CFT argument

A more general way to look at the LL result is to consider a conserved
U(1) charge in a CFT, which is generated by a free boson. The generating |
function is then known as a "vertex operator” and given by |

gin x| —&8¥/(27%)
Oy R

a

Therefore [

2 F(€) = m2(—idy)? Inx(N)|x=0 = gn =

What is g?
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LLs and CFT (Cont.)

CFT argument: Fixing the prefactor

g is fixed by the specific meaning of the U(1) charge, but there is a
simple, heuristic way to fix it. Thanks to CFT, at finite temperature 1/

] T
2 F(x,B) = gln ( sinh X)

ma o)

For x > 3 we have standard thermodynamic relation (replace
compressibility x with susceptibility y = dm/9B for spins)

KX an
.F(X. ';) ~ _-j K = J

Matching for x > /3. a gives (v now inserted for dimensional correctness)
8 — VK.

Compare to LL result K = mvk (Haldane '81).
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Elsand CFT (Cont:)

CFT argument: Fixing the prefactor

g is fixed by the specific meaning of the U(1) charge, but there is a
simple, heuristic way to fix it. Thanks to CFT, at finite temperature 1/

b} T
2 F(x,B) = gln ( sinh X)

ma o)

For x > 3 we have standard thermodynamic relation (replace
compressibility x with susceptibility y = dm/9B for spins)

KX an
.F(X.';)N—), H:W.

Matching for x > /3. a gives (v now inserted for dimensional correctness)
g — VK.

Compare to LL result K = mvk (Haldane '81).
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LLs and CFT (Cont.)

CFT argument

So,
S(0) ol o
F(0) T vk 3
which “generalizes” the non-interacting fermion result in the Gaussian
limit. But, not clear whether the fluctuations fully account for the
entanglement entropy.

X 2> an
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Disjoint Intervals

Entanglement entropy of a free boson

X, X;
For two intervals it was initially believed (Cardy
& Calabrese '04)
1 X12X33X14X
Sa(x1,X2,X3,X3) = = In e 14223.
S X13X24a
The corresponding result for fluctuations is
X;
X12X34X14X2
T2 F(x1, X2, X3, Xa) = K In 222002 -
X13X244 4
Nice, but the entanglement entropy is wrong! The relevant Riemann
surface is non-trivial and cannot be treated simply within CFT. The

correct answer is quite complicated (Calabrese et al. '09). |
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Higher Dimensions: The Spin-1/2 Heisenberg
Antiferromagnet on the Square Lattice

Hamiltonian
Harrm(h) ZJUS - hZ 1)M8F,

where Jj; is the symmetric matrix with J > 0 if sites /, j are nearest
neighbors, zero otherwise. (—1)!l =1 on one sublattice (A) and —1 on
the other sublattice (B); h is a staggered magnetic field needed to
regularize the zero mode, but we are ultimately interested in h — 0.

Goldstone boson = Area law for entanglement entropy
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Higher Dimensions: The Spin-1/2 Heisenberg
Antiferromagnet on the Square Lattice (Cont.)

The entanglement entropy and fluctuations can be computed within
modified spin-wave theory with staggered field.
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Figure: Rényi entropy &> from Figure: Rényi entropy &> from
QMC (Hastings et al. '10) spin-wave theory (HFS et al. '11)
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Higher Dimensions: The Spin-1/2 Heisenberg
Antiferromagnet on the Square Lattice (Cont.)

The fluctuations have a multiplicative logarithmic correction.
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Figure: Fluctuations F, with QMC result superimposed.
Dashed lines show calculation at fixed staggered field.
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Higher Dimensions: Coupled Ladders

Coupled Ladders

Consider the slightly generalized case where some of the couplings are
AJ, 0 < X <1 so that we effectively have a system of coupled ladders:
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Higher Dimensions: Coupled Ladders (Cont.)
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Figure: Comparison of the scaling of fluctuations in the
dimerized and Néel phases. Thanks to Nicolas Laflorencie
for the nice figure.
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Higher Dimensions: Coupled Ladders (Cont.)
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Figure: Using the scaling of fluctuations to locate the
Néel-dimerized transition in coupled ladders. Thanks to
Nicolas Laflorencie for these preliminary results.
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Gapped systems

Haven't really talked much about gapped systems, but the fluctuations are
generally expected to obey a strict area law due to exponentially decaying
correlations—it would be nice to prove this rigorously. The prototypical
system in 1D is the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) chain.
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Conclusions

@ Studying many-body physics from the quantum information
perspective has yielded many interesting results.

@ We can relate the new results to the more conventional idea of
fluctuations, especially for non-interacting fermions. This also
provides a way to measure entanglement entropy.

@ Fluctuations are interesting to study in their own right. FCS already
appears in a natural way, but fluctuations in the ground state of
many-body Hamiltonians yields useful information.
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