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Abstract: A little warped space is atruncated slice of AdS5 with awarped metric as per Randall-Sundrum, and energy scales much less than the 4D
Planck mass.
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Overview

Little warped spaces and the radion
[DG & Kristian McDonald PRD 84 064007 (2011)]:
Little warped space and its uses,
4D gravity,
spin-2 and spin-0,
stabilisation and radion mass,

mini seesaw and light neutrino
masses.

Model building with Lie-point symmetries.

symmetries

uQ)
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Little warped spaces

Warped metric:
hierarchy of radiatively stable energy scales.
[Randall, Sundrum (1999)]

RS:
Planck mass down to electroweak scale.

Little warped space:
UV and bulk scales < Planck scale.

Why a little warped space?

m Little RS, solves little hierarchy
problem.

m Generate other hierarchies, such

as neutrino mass scale, or up to
GUT scale.
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Little warped space and 4D gravity
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As an effective low energy theory,
how is 4D Einstein gravity included?

— brane localised curvature terms.

S= / d°zvV -G {2M}R — A} +4M; ?5 vV—gK
JOM
3 M3
-I—Z d T/ — ..;—R—w,.MA

Work using manifold with boundaries [Carena, Lykken, Park (2005)].

K is Gibbons-Hawking boundary term [Gibbons, Hawking (1977)].
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The effective 4D Planck scale

Effective 4D Planck mass induced by:

m bulk curvature R,

m brane localised curvatures
“UU\/R, ’U|RR.

Uv=M,

M3
2k

Large vyy — correct scale for Mp,, even with low M.,.

Mp, =

{1 — e 2kl vuv + ’U|R(f_2k['} .

Additional motivation:

m parametrically large UV curvature terms arise naturally in string
theory (String realisations of RS) [Brummer, Hebecker, Trincherini (2006)].

How do these boundary terms affect the KK degrees of freedom?
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Equations of motion

Varying the action gives bulk equations of motion

A

~GuN.
ap3 MY

1
RunN — §GMNR = —

Boundary conditions come from:
m variation of 4D brane action,
m variation of Gibbons-Hawking term,
m surface terms from variation of bulk action.

V4 1 1 e b
|:_’ (Ruu o _f];LJ/R) -+ §.U;Lf//‘i:’f’5)i + 6; G'M(guu‘iﬁ — Guv Yap,5 9 Yﬁ) =0

k 2

Y=Yy
(Wlth Ouy = —ORr = —l)

“Straight gauge”: G 5 = 0.

Metric perturbations: Gy = GY, v + hun.
[Carena, Lykken, Park, (2005)]
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Massive modes

Straight gauge, can use gauge freedom to write hs5(z,y) = F(y)i(x).
Massive 4D modes: tensor h,, can be written as

h’,U'J/ — ])II _I_ d’u‘/;/ -I_ df/‘/ﬂ -I_ e ZA? d‘udyS[ -I_ G’UVSZ .
Bulk equations of motion, boundary conditions and gauge choice fix

W=V,=8=8=0.

KK expand physical fluctuations:

1
hyw (2,y) = = B P (@)

Bulk equation of motion:
(d;f | (32""5"71'sz) Tuly) =

Boundary conditions:

05 + 2k — ‘”‘“mz - ‘ fn(y) =
Y=Yi
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Massive KK spectrum

Solve equations of motion and boundary conditions.
= In RS: UV and IR BGCs for f,,(y) are Neumann.
m In LWS with large vyy: UV becomes (approx) Dirichlet.

VT /Ty

CA.[J/2 ’(/’UV

fnly =0) =~
Physically:

m Light modes m,, < k are localised towards IR so not altered
significantly by large UV term.
Their mass spectrum is similar to RS, J;(m,e*" /k) = 0.

m Heavier modes would have more overlap with UV brane, but large
vyy repels them into the bulk, changing their spectrum.

For vyy — o0
B ]Wp| — OO,
m fn(0) — 0, KK gravitons repelled from UV brane;

m normalisation remains finite, KK modes remain in spectrum.
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Massless modes

In addition to massive spin-2 modes, there exists
m massless spin-2 mode, the graviton;
m massless spin-0 mode, the radion.

Spin-2 mode

2k

» (N . —2ky
f — fﬂ ‘ - :
f()(J) - 6—2&)[; + E ?_’zU?:(g_Zkyi

For large UV term

foly) >~ e~ kY

For Vyv — OO

larger v

H A';fp| — Ol

m fo(y) — 0, graviton removed from spectrum.
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The radion

Final degree of freedom is radion, the size of the extra dimension.
Radion is massless without stabilisation (e.g. Goldberger-Wise).

Instructive to look at massless/unstabilised case first.

The spin-0 perturbations can be written as

a’ v + VuVuP3 + 1 (2P — ad’ P3')] ; )

G = :
MN ( 0 1_|_2/)E 1 (azll:;!)l

a(y) is background, Pj(x,y) are perturbations.

Ansatz based on gauge invariant variables.
[Bridgman, Malik, Wands (2002)] [Deffayet (2002)]
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The radion

Final degree of freedom is radion, the size of the extra dimension.
Radion is massless without stabilisation (e.g. Goldberger-Wise).

Instructive to look at massless/unstabilised case first.

The spin-0 perturbations can be written as

a’ [’fhw + V V. P+ n, (2P — aa'P3')] 0 )

G = :
MN ( 0 1_|_2/)! il ((LEIJ:;!)I

a(y) is background, Pj(x,y) are perturbations.

Ansatz based on gauge invariant variables.
[Bridgman, Malik, Wands (2002)] [Deffayet (2002)]
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The radion

Spin-0 bulk equations of motion

a’
9, ((—'Pl —Pé) —a
1

Integration constants are zero,
P> found in terms of P,
y-dependence of P, solved for,
remaining bulk equation is [JP; = 0.

P is free in bulk, a gauge freedom.

Boundary conditions

—V;

Py(y;) =
3(4:) a(yi) [Oika(y:) + via’(y;)]

P1(y:) -
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Massless radion solution

Solution
P, = —2P, = N,.e** r(z).

Effective 4D action reduces to

3M3 1 e—2kL 1
Sp(r2y = 14, Nz g2kl £l ——n*8,rd,r | .
O(r+) / a T [ - N T 2!] ul" Oyl

Normalise by

k o—2kL (I —vr)(1 4+ vuv)

N2
: 3]\[5 (1 -+ ’UU\/) — (1 — fU|R)(5_2I"L'

Kinetic term is only well behaved for v < 1
— upper bound on size of IR localised brane kinetic term.

UV term has no such constraint
— may safely take vyy > 1.
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Radion coupling to matter

To linear in r, non-derivative coupling to matter is

1
So(T) = 3

where (vjgr = 0)

A_l i A 1 + vyv <
5 3]\"13 1+ wvyy — e—2kL

Coupling to IR is same as RS case, A, ~ e "M,
For UV localised fields, coupling to radion is highly suppressed by 1/vyy.

Radion couples conformally to matter.

Bulk fermion zero modes obtain mass from IR localised Higgs, so fermion
masses are produced on IR brane — coupling to radion occurs in IR.
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Stabilisation

So far: little warped space, large UV term for 4D Einstein gravity, spin-2
and spin-0 degrees of freedom.

Radion is massless, need to stabilise (fix size of extra dimension).
Follow Goldberger-Wise [Goldberger, Wise (1999)].

All goes as expected, as in RS: introduce a bulk scalar, radion gets a
mass and one gets a tower of KK scalars.

Complete action is

8 / {2}\[ K- Z(vﬂlN()M(I)f)N(I)_ V((I))}
M3 L :

+ 4M3 94 vV—9K.
JOM

Pirsa: 11120052 Page 17/35



Pirsa: 11120052

Stabilisation

Vary the action — equations of motion.
Bulk Einstein equations

1

1388
(RMN — g(JJ\INR) —DE

boundary Einstein equations

2

V; 1 1 — i
{_’ (RW = _-(JWR) s 59,,,,,&11).,; + 6; VG (.(JIU/,S — Guv 9aB,59 m)

1
 4M3

Y=Yi

bulk equation of motion for ®
O (\/—GG“’NUN@) _V—CVs=0,
and boundary equation for ®

[t-;:t?u(\/—g ¢*v8,®) — =g Mip — 20,/ -G G*N Oy d)] =0.

Y=

((')M(I)(')N(l) —_ %GMN(;P(")(')[’(D(')Q(I) —_ (I'MNV> =

1
(7L d}fq)df/(]:) f e (}”ﬁ()”(I)()ﬁ(I) i .(];w/\i> } =0,
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Stabilisation

Steps:
Solve for background; generic, depends on V.

Solve for 1%t-order spin-0 perturbations around background;
Schrodinger-like equation, eigenvalues give spectrum of scalar KK
excitations.

Expand original action to 2"9-order in perturbations; obtain
normalisation.

Can then compute radion mass.

Step 1: background
Warped metric ansatz: ds* = a*(y)ndztda” + dy*.
Scalar background: ® = ¢(y).

Straightforward. Answer given implicitly in terms of functions a(y), ¢(y)
and differential equations.
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Spin-0 perturbation equation

Step 2: perturbations
Metric ansatz as per non-stabilised case, P, %, Ps3; along with

b(z,y) = ¢(y) + Pa(z,y) .

The (p,v) and (u,5) bulk Einstein — eliminate P, Pj.
Remaining bulk equations reduce to a single equation for P;:

1 ;
P{’+( 2—+2(Z—,>P{+( )Pl—_zljpl-

P3; — completely free in the bulk.

In addition to BCs from non-stabilised case, have two BCs from the
Euler-Lagrange boundary equations:

2(1:2 i ‘ 2(},, P +a [)’ via 12 P
[Dl)l T ( (’bf + (LJA-,'_‘(])(I) ((b) = f,D) ( ‘l 1 _+_ ‘ s (1 gb 1 ! ) ‘|
0; ¢ 20;a 24M3P (ka + 0;v;a’) Wk

Solutions: Py (z,y) = p1(y)y (), with i = m?1). Schrodinger equation
with BCs. Solve for m? and p;(y) to obtain physical spectrum.
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Spin-0 action

Step 3: effective 4D action
Take original 5D action, substitute in background and perturbation
solution. Treat order-by-order in perturbation:

S= / L9+ 0 +£(3))

m L) terms cancel (must, since we have 4D Minkowski ansatz).
m L) terms proportlonal to [Jy or [JP3 — vanish under 4D integral.

m £?): integration by parts brings terms into canonical form to
combine or cancel; L% = N (=30 0,10 01p — 3m2?).

Normalisation:
L

N =6M3 /

)
J (a‘z'pl + 24!\[5(/) )pl + 2/1!1[ (b )plpl +()A[’d) )pl ) dy

+3M2 via(y:)*p1 (i)
ka(y;) + 0;via’ (y;)

i Z”‘f- [12 M30; 2a’ (yi)p1 (yi) + a(yi)p} (i) I 'v,:a(:u-,:)%’(:uf:)pn('y-f,)]2
8 ¢ (yi) ka(y:) + 6ivia’ (yi)
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Little radion mass

Radion mass is eigenvalue of lightest KK mode. For weak backreaction:

2
(I(’l — —ky l_l —2uy
] j) e X E(* ’

d(y) = 2v2M2Ple™ |

L = u tlog(pyy/dR) with {u, pyv, PR} parameters in V(D).
Work to order 12, | = ¢yy /2M2/*.

pi(y) =™ [1+12f(y)],

m

30 41% (2k + u)u? ( 1 & ) ((32(A:+'u.)h i e—-zm,)l .

3 k 1 —vR B VUV
Generalises result of Csaki, Graesser, Kribs (2001) (now v; # 0).

Not sensitive to vyy — large UV brane term for 4D Einstein gravity does
not change much the radion mass — stabilisation via GW works well.

To first order, coupling of radion to matter is same as non-stabilised case.
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Comments on radion mass

Generally uL = log(¢yv/oir) = O(1), kL > 1 so u/k < 1.

Radion mass

1 e kL
m ~ |

kL v1—vR j

Mass is IR scale e *“k suppressed by small [ and small 1/kL.

Adjusting the mass:

m For v close to 1, m can be made larger.

m For fixed IR scale, LWS radion is heavier than RS radion:

mrws . (kL)Rs
Mmps (kL)rLws

Sl
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AdS/CFT

RS models dual to strongly coupled 4D theories which are (approx)
conformal between UV and IR scales.

Broken explicitly in UV by cutoff, spontaneously in IR.
UV=fundamental (e.g. massless graviton), IR = composite (e.g. radion).

Without UV brane term (vyy = 0), Planck mass is induced entirely by
dynamics of cutoff of the CFT.

No reason that can't also have a bare contribution to Planck mass.
(fundamental input, integrating out heavy fields)
(symmetries, effective field theory point of view)

This is why it works, and Planck mass is sum of induced and bare.

Including UV term dual to modifying fundamental sector. Affects
massless graviton (since it's dual to fundamental dof), but not those dual
to composite fields, massive spin-2 and radion.
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Mini seesaw using LWS

TeV to GeV warping, SM on UV brane.
Singlet fermion Npg in bulk — zero modes are right-chiral neutrinos.

e - A = .
S= / d’zv -G {(kinetic) + ckNrNg + TN (N;gNh’ + hC) o(y — :UIR)

Light Majorana due to warping, Dirac mass suppressed by small
wavefunction overlap.

Low-scale seesaw between lightest KK mode and SM neutrino.

Cut-off at ~TeV with neutrino seesaw at ~GeV — sub-eV.

MEG: BR(p — ey) < 2.4 x 10712
Plot: m, = 0.1eV,

M. —2k— 3ieV,

dashed (dotted) Ay = 0.5(0.1).

BR(pg—e+y)

S

(] 1.2 14

Bulk Mass Paramelter (¢)

[Duerr, DG, McDonald, JHEP 1107:103 (2011)]
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Lie-point symmetries
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Lie-point symmetries
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Model building using Lie-point symmetries

Usual model building:
symmetries specify symmetries, write down terms.

u(n) Possible to instead:
write down terms and derive symmetries.

The Lie point symmetry method consists of finding the determining
equations, whose solutions describe infinitesimal symmetries, and then

solving these equations.

The LPS method is general and powerful:
m an exhaustive search of continuous symmetries;
m finds symmetry, even if spontaneously broken;
m yields all interesting relationships between parameters;

m finding the rank is guaranteed to terminate in finite time,
determined by the number of coordinates and number of fields;

m applicable to any set of differential equations
(coordinates=independent-variables, fields=dependent-variables).
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Variation of the action

Infinitesimal Lie point symmetries:

xt — ¥ + nt(x, @)
¢i — ¢i + Xi(z, @)

S — 5+ 05 should be unchanged.

Solve for the fields — Euler-Lagrange equations: ;‘% —~

Form a divergence — Noether’s theorem: 9, [Cn“+ g (x,;—ur;"(‘),,¢.,;)] =0.

(')(()',,_qﬁ,‘ )

Solve for the infinitesimals — master determining equation:

L B =
det oo de#* adx¥dzt

dp* 9L oL oL ((l\; Op; (lr/“) i

a(d,u(bf)

[ (G 0¢i 0
dzt = OzH " dxt O¢;*

Total derivative:
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Example: two scalars

Only field symmetries, ¢; — ¢; + xi(;).
Master determining equation:

()ﬁ f)ﬁ U(bj 0\,-
Apply to Lagrangian

I e
L= §d‘ $10,01 + 5()‘ P20, P2 — mlél mz¢z :

= 0.

Xi ¥ B(8ud7) Oz* B

Determining equation is

— mip1x1 — mipaxa + O ¢1d,u¢l

dx1
ol
Equate independent terms to zero:

Y1 Ox1 = Oxo
T 0 ’ ‘ _I_ ‘
0Py dpo — Oy

dx1

dPy
dx2

0o

dx2

+ 0" ¢10,02=— 369

+ 0" 20,01 7 + O 20, P2 =

—m“fd)l X1 — 7‘!‘1,§(b2\-_:» — (]} =4
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Example: two scalars

Determining equations:

0 0 dx2
‘\]:(), ‘\I-l-,\_=
olol] dpa Iy
General solution to last three equations:

X1(¢2) = a1 + B2, x2(¢1) = g — o1 .

0,

9 9 .
—mig1x1 — mapax2 =0,

Symmetries:
m «q: shift of ¢.
m (g shift of ¢o.
m (3: rotation between ¢; and ¢s.

Final determining equation is
armidr + aamsdo + B(mi —m3)di1¢2 = 0.

— the model parameters dictate the symmetries.
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Example: two scalars

Determining equations:

0 0 dx9
‘\]:(), ‘\I-l-,\_=
0Py dpa Iy
General solution to last three equations:

X1(¢2) = a1 + B2, x2(¢1) = g — o1 .

0,

_ 9 9 b
—mig1x1 — mapax2 =0,

Symmetries:
m «1: shift of ¢.
m (g shift of ¢o.
m (: rotation between ¢; and ¢s.

Final determining equation is
armidr + aamsdo + B(mi —m3)d1¢a = 0.

— the model parameters dictate the symmetries.
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Spin-1 plus N scalars

1 1 .
L = —55)“('),'(')“('),' — Z[*WU[‘},J, -+ J,,;A”(');,f,d‘; + K',,;j/l”r_)‘;()“f,').l‘ — V(f,'), AZ)

General solution for infinitesimals:
n(z) = a" + ' 2" + ca2” + 2d,2"z* — d'z"x,

Xi(z,¢) = a +>,, )¢ + (2 — D) (3¢ + dya”) s
EH(z, A) = d“' )+ (W, + 2d,2" — 2d"z,) A + (2 — D)(3c + dya¥) AH

Plus equations constraining .J;, K;;, V, and symmetry parameters.

E.g. massive U(1): when solving rest of determining equations, demand:
m gauge symmetry: A(x) is arbitrary,
m massive vector: % = fm,"ZA” +...

— derive allowed form of £ and relations between parameters.

1 field: Stuckelberg (J = m), 2 fields: Higgs.
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Spontaneously broken symmetries / Applications

V = A(¢7 + ¢35 — v*)? has U(1).
Define ¢9 = v + .
V = X% + ¢* + 2vp)? has shift-U(1)-shift.

LPS method will find symmetry, no matter how broken/hidden it may be.

Applications of the LPS method:
m Find any hidden/accidental symmetries in a model.
m Look for new symmetries (e.g. Galilean).
m Find approximate symmetries.
m Extend to discrete symmetries, look for family symmetries.
= Add new degrees of freedom looking for new symmetries (e.g. GUT).

= Given measurements of new particles/interactions, can they form
part of a new symmetry?
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Conclusions

Little warped spaces:
m Large UV curvature terms can give correct Planck scale.
m KK spectrum is modified.
m Radion can me made relatively heavier.

m Mini-seesaw for light neutrino masses.

Lie-point symmetries:
m Counterpart to the Euler-Lagrange equations.
m Finds all possible symmetries.

m Finds all interesting relationships between parameters.
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