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Abstract: We study the constraints imposed by the existence of a single higher spin conserved current on a three dimensional conformal field theory.
A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the
stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of $N$ free bosons or free
fermions. Thisis an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S matrix. We aso briefly discuss the
case where the higher spin symmetries are " dlightly" broken.
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The Coleman-Mandula theorem (mod subtleties)

Assumptions:

e the S matrix exists: a theory has a mass gap (theory is IR
free);

e the S matrix is nontrivial: everything scatters into
something;

e the Poincare group is part of the symmetry group;
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Loopholes

There are many ways to evade the Coleman-Mandula
theorem
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Loopholes

There are many ways to evade the Coleman-Mandula

theorem
o d>2
o d=2
e superalgebra (HLS
e SUSY 1975)
e CFT » the S matrix does not
e AdS exist

« Vasiliev theory

Is there a Coleman-Mandula theorem for AdS physics?
Or, in other words...
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Known symmetries of nontrivial CFTs

Before trying to prove that something is impossible let's
summarize what we know is possible:

symmetry can be infinite dimensionalind =2 — d > 2;
e SUSY — generators or currents of half-integer spin;
internal symmetries are definitely allowed,;

no examples of non-trivial CFTs with conserved currents of
spin higher than two.
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Known symmetries of nontrivial CFTs

Before trying to prove that something is impossible let's
summarize what we know is possible:

e symmetry can be infinite dimensional ind =2 — d > 2;
e SUSY — generators or currents of half-integer spin;
e internal symmetries are definitely allowed;

e no examples of non-trivial CFTs with conserved currents of
spin higher than two.

Could we have more symmetries while having non-trivial
correlation functions?
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The answer

We arrive at the conclusion that the answer to this question is

No

Let’s proceed to the assumptions and conclusions...
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Assumptions

Let’s consider a set of QF Ts for which the following is true:

e CFT: H = P|[Oa 5|, OPE, /5, cluster decomposition;
e the theory is unitary;

e the theory contains conserved current js of spin higher
than two s > 2:

e the two-point function of stress tensors is finite.

Additional assumptions

e d =3 (for d > 3 the same set of ideas is applicable);

e the stress tensor (or conserved current of spin two) is
unique.
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Assumptions

Let’s consider a set of QF Ts for which the following is true:

e CFT: H = P[Oa s, OPE, /5, cluster decomposition;
e the theory is unitary;

e the theory contains conserved current js of spin higher
than two s > 2:

e the two-point function of stress tensors is finite.

Additional assumptions

e d =3 (for d > 3 the same set of ideas is applicable);

e the stress tensor (or conserved current of spin two) is
unique.
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Conclusion

The theory contains an infinite number of currents js that
appears in the OPE of j5.
Their correlation functions

Usy (X1)--Js,(Xn))

are fixed to be the free boson or the free fermion ones up to a
free integer number.

This number is the coefficient in the two-point function of stress
tensors.
Start with N bosons or fermions. Compute the correlat
functions of O(N) singlet bilinear currents.
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Outline

General idea

Exploring the twist gap

Conserved currents sector

Bilocal operators

Theories with higher spin symmetries broken at the % level
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General idea

We consider CFT on the plane.
We start from the extra conserved current js, build the extra
symmetry charges

¢ _ ¢
Qs = / */s
. zd—'l

Jupr.ops—1

Q5.0(x)] = /S JE(x + )O(X)

.o g "

where ( is the conformal Killing tensor. We study charge

conservation identities which one gets by acting with these
extra charges on the conserved currents [Q¢, Js].
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General idea

We consider CFT on the plane.
We start from the extra conserved current js, build the extra
symmetry charges

¢ _ ¢
Qs = / */s
. zd—'l

Jupr s

Q5.0(x)] = /S JE(x + )OX)

L. g "

where ( is the conformal Killing tensor. We study charge

conservation identities which one gets by acting with these
extra charges on the conserved currents [Q¢, Js].
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General ic

We consider CFT on the plz
We start from the e

where ( is the cc

CoOnserve

Js]
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Twist gap

The unitary constrains the possible
. dimensions of operators as follows

A

® ® ®
conserved currents A

> s+1/2, §=0,1/2
> S

+1, s§>1

Thus, if we introduce the twist 7 = A — 8
I, 2 free ficlds then the operators with the twist

1/2 | 3/2 o ’ 1/2 S T < 1

Fi . Spect f ,
thlguurr?itaryp?:CFrTuirE °" could have only 0 or 1/2 spin.

d=3
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Twist gap |l

Let’s imagine that we have some CFT such that there is a
scalar operator ¢5 with the twist lying inside the twist gap
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Twist gap Il

Thus, from the higher spin Wl we conclude that

(@ (X1)Pa(X2)0a(X3)Pa(Xs)) = (Pa(X1)0a(X2)) (Pa(X3)da(Xa))+...

Due to the fact that all operators couple to stress tensor

(opaodaT) # 0 and the fact that (TT) is finite, the stress tensor
should be present in the OPE. El-Showk, Papadodimas

Figure: Stress tensor should be present in the OPE
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Free fields

Let's consider the free scalar field ¢(x) and let's consider the
charge built using constant CKT (. Then the action of this
charge on the free field is

[Q§. P(X)] = (K1 Hs=19,,,...0,,_, H(X)

Consider now the charge conservation identity that we get by
acting on the correlation function

([QS. 6(X1)d(X2)...(Xn)]) = O

in momentum space it takes the form

(D k) (k)b (ka)...t(Kn)) = O
i=1

so that the correlation functions factorize!
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Conserved currents: basic properties

To attack the sector of conserved currents let's recall the basic
properties of three point functions of conserved currents

(Giombi-Prakash-Yin‘ Costa-Penedones-Poland-Rychkov).

(Js1JsoJsy) = (boson) + (fermion) + (odd)
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Conserved currents: basic properties

To attack the sector of conserved currents let's recall the basic
properties of three point functions of conserved currents

(Giombi-Prakash-Yin‘ Costa-Penedones-Poland-Rychkov).

(JsiJsyJs3) = (boson) + (fermion) + (odd)
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To attack the sector of conserved currents let's recall the basic
properties of three point functions of conserved currents
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Conserved currents: basic properties

To attack the sector of conserved currents let's recall the basic
properties of three point functions of conserved currents

(Giombi-Prakash-Yin‘ Costa-Penedones-Poland-Rychkov).
(Js1JsyJsy) = (boson) + (fermion) + (odd)
where
Foven = €2(Q17Q+@)gP1+P2(h 6osh Py + f sinh P3)

and the odd piece is given by

<js1 ()?1 . /\1 )152(}?2 /\2)}53()?3 /\3)>odd ~ ] dtd320t5-|—52—53—1

(A1X10X0pA2) 1927 3) (M40 03 ha) 1 +93=92) (Ag ¥y K g Aa) (293 1)
(x$0)23-| : I(x§0)232+ I(xgo )2031 1
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Conserved currents: basic properties

Other useful properties to remember are
(OOT) #0

and also
U5fsf5’> =0
when &’ is odd.
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Conserved currents: basic properties

Other useful properties to remember are
(OOT) #0
and also
Uslsls') = 0
when s’ is odd.

We will be again interested in all-minus charges Qs = Q. .
So let’s introduce the following notations

Usi—...— (X1 )fsy—...—(X2)Js3—...—(X3)) = (S152S3)

Rule of thumb: whenever you think that there should be a
tensor index — it is the minus index.
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Conserved currents: action of the higher spin charges

As the next step consider the action of minus-charge on the
all-minus component of conserved currents. Again, unitarity
fixes it up to several constants

)
[Qs.dk] = Y 60 jy.

[=—§
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Conserved currents: action of the higher spin charges

As the next step consider the action of minus-charge on the
all-minus component of conserved currents. Again, unitarity
fixes it up to several constants

)
[Qs.dk] = Y 60 Djy.

[=—§

We can do a little bit better

[Qs-jZ] et f)js—1-

This term must be there! And this opens the flow...
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Conserved currents: action of the higher spin charges

As the next step consider the action of minus-charge on the
all-minus component of conserved currents. Again, unitarity
fixes it up to several constants

)
[Qs.dk] = Y 60 jy.

[=—§

We can do a little bit better
[Qs, /2] ~ Ifs—1.
This term must be there! And this opens the flow...
[Qs. X] ~ Y

[Qs, Y] ~ X
from ([Q. XY]) = 0.
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Conserved currents: example

Consider the theory that contains spin four current j4. From it
we build minus charge Q4. When acting on the stress tensor

[Q4,2] ~ 04

Let’s consider the ([Q4.224]) = 0 CCI.
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Conserved currents: example

Consider the theory that contains spin four current j4. From it
we build minus charge Q4. When acting on the stress tensor

[Q4,2] ~ 04

Let’s consider the ([Q4.224]) = 0 CCI.
On general grounds there will be

Oy (4(X1)2(X2)4(X3)) # 0
thus, we get an algebraic equation

Ca220x, (4(X1)2(X2)4(X3)) + C22203, (2(X1)2(X2)4(X3))
+  Cozz0y, (0(X1)2(X2)4(X3)) + ... = 0

on the coefficients...
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Conserved currents: results

From this simple exercise we can learn that

e there are three families of solutions (boson, fermion, odd);
Is there interacting HS CFT with odd parts?

e if 4 is present, 6 is necessary present;
e for boson and odd the scalar 0 is necessary present.

Repeating a similar exercise for the scalar (022) one can show
that uniqueness of the stress tensor restricts

(222) = (boson) + (odd)
(222) = (fermion)

This is one of the many examples when boson and fermion
solutions are separated.
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Energy one point function

Knowing something about three point functions of stress
tensors allows one to compute the so-called one point energy
correlator .

(O[] IE(A)|O[W])

N

E(A) = limy_ooI? / | dtn' T2(t, riv)

(Hofman-MaIdacena)

Some intuition about this object:

e measure the energy flow at infinity;
e small coupling - jets and showering;
e strong coupling - uniform flow.
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Energy one point function: no showering, no odd piece

Consider the case when three point function of stress tensors is
boson+odd. Then one can show that

0
(T11 — T2lE(N)|T11 — T22) = q—(‘l + cos 40 + dyqq Sin 40)

27
expanding near ¢ = 7 we find that forany d # 0
(£(6)) <0

our theory is secretly non-unitary. So (222) is either a purely
free boson or free fermion. So that
q°
(E(0)) = 2—4_(1 + cos 40)
Notice that for some angles the energy flow is zero.
This does not happen in the theory where the showering
OCCurs.
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N: NO shc Ing, no odd piece

Pl

Energy one point functior
Consider the case when three point function of stress tensors is

boson+odd. Then one can show that

' 1~ p— - L
T11 = T22|E(R)|T11 = Tas ,f (1 + cosdd + d,qsin40)

&l

axpanding near f wforanyd £ 0

our theory is secretly non-unitary , elther a purely

free boson or free fermion. S

~ )
) el

wering

Page 34/68

Pirsa: 11120025




Pirsa: 11120025

Four point functions

One can also consider the four point functions of four scalars 0.

After showing that
[Q4.0] = 9°0 + 92
we get the differential equation
9°(0000) + 9(2000) + ... = 0.

This time we need to solve genuine differential equations for
the functions of cross ratios...
The result is that the solution is fixed up to one constant

. 1
(0000) = (disconnected) + E(connectecl)
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Four point functions: conclusion

e using only one additional charge we can fix two correlation
functions (0000) and (2000);

e (2000),4q Must be set to zero to obey CCI, by the OPE it
sets to zero odd piece of three point functions;

e the free fermion story is very similar.

We got this using only one additional charge in a very explicit
way...

But we have an infinite number of them. So there should be a
shorter way to the answer that uses all the symmetries!
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Four point functions: conclusion

e using only one additional charge we can fix two correlation
functions (0000) and (2000);

e (2000),4¢ Must be set to zero to obey CCI, by the OPE it
sets to zero odd piece of three point functions;

e the free fermion story is very similar.

We got this using only one additional charge in a very explicit
way...

But we have an infinite number of them. So there should be a
shorter way to the answer that uses all the symmetries!
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Taking the light cone limit

Let’s consider the light cone limit of two conserved currents
Js(X)js:(0). There are three types of limits that project to three
different parts of three point functions (boson, fermion, odd).
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Taking the light cone limit

Let’s consider the light cone limit of two conserved currents
Js(X)js:(0). There are three types of limits that project to three
different parts of three point functions (boson, fermion, odd).
For simplicity we present here the bosonic limit

fs(x)fsf(O)ﬁ( im 4+ lim )w im Js (X s (x2)
Y12—0*  y1p0—0- X5 —+0

where we implicitly eliminated all operators of twist less than
one.
ds® = dxTdx™ + dy?
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

O&bjs”()@)) - ‘.)\13“)2’("”(}(1 )‘r"’*(x2)js”(x3)>free

where

Vi3
13

and all indices are minuses as usual.
This allows us to analyze infinitely many CCls in a very simple
manner.
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

sJs' Js (Xa)) = D508 (6(%1)" (Xa Vs (X)) ree

where

2
P=X7, Ro=xy, Ra=x5 -2

and all indices are minuses as usual.
This allows us to analyze infinitely many CCls in a very simple
manner.
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

O&bjs”()@)) - ‘.)\13“)2’("”(}(1 )‘="’*(X2)js”(x3)>free

where

yis
13

and all indices are minuses as usual.
This allows us to analyze infinitely many CCls in a very simple
manner.
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

O&bjs”()@)) - ‘.)\19“)2’("”(}(1 )‘f"’*(x2)js”(x3)>free

where

yis
13

and all indices are minuses as usual.
This allows us to analyze infinitely many CCls in a very simple
manner.
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

O&bjs”()@)) - ‘.)\13“)2’("”(}(1 )‘f"’*(x2)js”(x3)>free

where

2
P=xy, Ro=xy, Ra=x5 -8

and all indices are minuses as usual.
This allows us to analyze infinitely many CCls in a very simple
manner.
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Getting an infinite number of currents

Imagine we have a current of spin s. Then we know that
(Qs. 2] = s + -+
and from ([Qs. j2/s]) =0
[Qs.js] = P o + -+

Let's assume

J2fol2)|b # 0
We now consider the charge conservation identity
([Qs:J2)2,)s]) = 0 we get

0 = ([Qs./2l2fs) + (2[Qs, olfs) + (2/2[ Qs Js])
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Getting an infinite number of currents

Imagine we have a current of spin s. Then we know that
(Qs. /2] = s + -+
and from ([Qs., j2js]) =0
[Qs.js] = P o + -+

Let's assume

J2fol2)|b # O
We now consider the charge conservation identity
([Qs:J2)2,)s]) = 0 we get

0 = ([Qs./2l2fs) + (2[Qs, 2lfs) + (2/2[ Qs Js])
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Getting an infinite number of currents |l

This equation takes the form
0= {')12(')5/\
where A is given by

2s—1

7‘(f)$_1 + (_1)55)5_1)(f-‘""(f’*f's>ff'ee + Z ‘M‘k‘.)gsq_k<‘-‘"”-’(’*.jk>free
k=1

the only solution of this equation is such that &, # 0 for
k=24,..,25—-2
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Looking for the bilocal operator

To find the bilocal that consists of two free fields we take the
light-cone limit of two stress tensors

(X)j2(y), = 0F3B(X.y)

if (222), # 0 then B(x,y), at least, contains /> in it.
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Looking for the bilocal operator

To find the bilocal that consists of two free fields we take the
light-cone limit of two stress tensors

(X)j2(y), = 0F03B(X.y)

if (222), # 0 then B(x,y), at least, contains /> in it.

The fact that (B(X1. X2)/s(X3)) o (@(X1)9" (X2)/s(X3))free IMplies
that B transforms as two weight 1/2 fields under conformal
transformations.
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Looking for the bilocal operator |l

In general these would be quasi-bilocals...

However, as we would like to argue in the theories with higher
spin symmetries B(X, y) behaves as the true bilocal operator,
namely the normal ordered product of two free fields.

This will be done first by showing that

(Qs. B(x1.X2)] = (57" + 057 ")B(X1. X2)

where Qg is built from the current js that appears in the OPE of
JoJ2.

And then showing that this implies that correlators have the free
field form...
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Proof of the simple transformation law

We would like to compute [Qs, B(X1, X2)].
We can compute

(Qs.j2/2,] = [Q.2)l2, + /2[R, 2],

The action of Qs commutes with the limit and we can write
[Qs, /2] in terms of currents and derivatives (with indices and
derivatives all along the minus directions).

Thus, in the end we can write

[Qs, B(X1,X2)] = (37" + 957 NB(x1,%2) + (57 = 957 )B' (X1, X2)

where B contains all even spin currents and B’ all odd spin
ones.
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Proofthat B’ = 0

Let’'s assume that B’ contains some odd spin 8’ current. Then

e consider ([Qs, B’ j2]) = 0. This shows that there is j; such
that (B’ j1) # 0;
e consider ([Qs, B j1]) = 0. This shows that {jsjsj1) # O.

Thus, we reach a contradiction and B’ = 0.
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Proof of the simple transformation law

We would like to compute [Qg, B(X1, X2)].
We can compute

(@s.j2/2,] = [Q.2)l2, + /2[R, 1],

The action of Qs commutes with the limit and we can write
[Qs, /2] in terms of currents and derivatives (with indices and
derivatives all along the minus directions).

Thus, in the end we can write

[Qs, B(X1,X2)] = (371 + 957 NB(x1,%2) + (57 = 957 )B (X1, X2)

where B contains all even spin currents and B’ all odd spin
ones.
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Proofthat B’ = 0

Let’'s assume that B’ contains some odd spin 8’ current. Then

e consider ([Qg, B’ j2]) = 0. This shows that there is j; such
that (B’ j1) # 0;
e consider ([Qs, B j1]) = 0. This shows that (jsjsj1) # O.

Thus, we reach a contradiction and B’ = 0.

Page 58/68



Pirsa: 11120025

Proof that B = B

e Consider ([Qs.B j»]) = 0. One sees then that (B j,) # 0;

e consider B — B where we normalize B in such a way that
the difference does not contain j;

e imagine that B — B contains some current jto show that
all the other currents will be also absent consider

([Qs.(B—B) j2]) =0

Again the chain nature of charge conservation identities and
the structure of correlation functions are extremely restrictive.
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Solving for correlation functions of B’s

Now, once we argued that

[Qs. B(X1.X2)] = (977" + 057 1)B(x1, X2)

is true, then we can consider any n point function of bilinears
(B(X1,X2) -+ B(X2n—1.X2n)). We have an infinite number of
constraints from all the conserved charges. These constraints
take the form

2n
> 77N (B(x1.X2) -+ B(X2n—1,X2n)) = 0 . S—=24.6. ...
i=1
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Solving for correlation functions of B’s

One can show that this implies factorization in X~ and then
using conformal, rotational and permutation symmetry we get
that all correlation functions are fixed in terms of one constant
which appears in two point function of stress tensors

» 1 1
B(X1.X>)B(Xa,X4)) = N T
(B(X1.X2)B(X3,X4)) (d13d24 d14d23)

Thus, to get n-point correlation function we can use

2

and then analytically continue in N — N.
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Solving for correlation functions of B’s

One can show that this implies factorization in x~ and then
using conformal, rotational and permutation symmetry we get
that all correlation functions are fixed in terms of one constant
which appears in two point function of stress tensors

y 1 1
B(X1.X>)B(Xa,X4)) = N T
(B(X1.X2)B(X3, X)) (d13d24 d14d23)

Thus, to get n-point correlation function we can use

2

and then analytically continue in N — N.
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Quantization of N
However, we would like to argue now that unitarity restricts N to
be integer.

The basic idea for showing that N is quantized uses the fact
that the spectrum of the theory depends on N.
Consider the following operator in the theory of N bosons

e
Oq = 0 .

I

The two point function of this operator takes the form

(0qOq) xx N(N = 1)(N = 2)--- (N - (q — 1))

| J’q]] (P1OP2% 3 .. Q91 pla ) (P OP2? 3 - .. 991 )
o

Now, imagine that N was not integer. Then we could consider
this operator for g = [N] + 2, where [N] is an integer part of N.
Then we find that two point function becomes

(Ot 20 1+2) = (positive)(N — [N] — 1)
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Higher spin symmetries broken at % order

It is not complicated to generalize our consideration to the
cases when the higher spin symmetries are broken at the ﬁ
order in large N limit.

In this case the dimensions of conserved currents will

1
s=s+1+0(5)

and the divergence of the currents will take the form

| 1
it = — 30,
ud N ’

where we assumed vector-like large N expansion and also the
fact that we know the spectrum of operators at N = oc.

The operators in the RHS should have the right quantum
numbers.

In a completely analogous way to the exact symmetries we can
analyze all possible structures in the RHS.

Now what will happen with the CCls?
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Shadow Charge Conservation ldentities
In the case of fermions we would get

OJ'——— = —=[a10-joj—— + @2 JjoO-j--].

VN

If we consider (J2jo/2) CCl we would get terms like

‘/\;(f')Uz(X)h))Go(x)fzfﬁ

using the fact that all indices are minus this can be rewritten as

o [ L o(x Vi)

v X — Xi|

Now notice that the integral has the all properties of {(joj2/2).
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Conclusions

e we analyzed the problem of possible symmetries of CFTs
ind > 2;

e in d = 3 using unitarity, conformal symmetry and
uniqueness of stress tensor we showed that addition of

conserved currents of spin s > 2 makes the theory trivial
(a-la Coleman-Mandula);

e our analysis heavily relied on the structure of three point
functions of conserved currents in d = 3. The analysis for
d > 3 is completely analogous and should be easy
especially using the simplicity of the light-cone limit;

e using the same approach we can analyze the cases when
higher spin symmetries are broken at % order;
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Conclusions |l

e any higher spin symmetric theory in AdS that preserves
symmetry at the quantum level in the bulk with higher spin
preserving boundary condition is described by free fields at
the boundary;

e there is more freedom to have a theory which has higher
spin symmetry at the classical level only;

e we illustrated an example of bootstrap in higher
dimensional field theories by fixing correlation functions
without ever talking about the Lagrangian.
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Open problems

d > 3;

possible spectrum of operators away from conserved
currents ("minimal models");

multiple (more than two) stress tensors;

any weakly coupled theory (pure YM, N = 4...);

to find correlation functions of theories with higher spin
symmetry broken at % at leading order in N.
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