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Abstract: | briefly introduce the recently introduced idea of relativity of locality, whichisa
consequence of anon-flat geometry of momentum space. Momentum space

can acquire nontrivial geometrical properties due to quantum gravity effects.

| study the relation of this framework with noncommutative geometry, and the
Quantum Group approach to noncommutative spaces. In particular I'm interested

in kappa-PoincarA©, which is a Quantum Group that, as shown by Freidel and Livine,
in the 1+1D case emerges as the symmetry of effective field theory coupled with
guantum gravity, once that the gravitational degrees of freedom are integrated

out. I'm interested in particular in the Lorentz covariance of this model which
ispresent, but isrealized in anontrivial way. If | still have time, I'll then speak

about an under-course general study of the Lorentz covariance of Relative Locality
models.
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h— 0 LIMIT OF QUANTUM GRAVITY

It can be taken in two complementary ways, depending on & and M, = "Of’
General Relativity Relative Locality
G =const, M, —0 G—0, Mp,=const
Particle Phase Space = I'*(.#) Particle Phase Space = I'*(.2?)
(A curved, 2 = T*(#) linear) (M =T*(2) linear, 2 curved)

( Born’s reciprocity principle recovered )

Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin (AFKS)
[arXiv:1101.0931]
1
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RELATIVISTIC DYNAMICS

Free particle

Sfree= [ ds [x* pa =N (@(p,0) ~m)

N is a Lagrange multiplier
Poisson brackets: {x%, py} = &)
Equations of motion

2
. _ n94°(p,0)

Pa Xa Pa (p,0) =m

InSR d?(p,0) =n%®pap, = Xa=2Npa

10

Page 4/59



Pirsa: 11110138

INTERACTIONS

The composition law @ enters into the conservation law. For example, for a three-
particle process:

pOg=k = Ha=((p1®p2)Op3)a=0

we can enforce this with a Lagrange multiplier

St = / ds 8(s — 50) 2% Hals) = 22 Ha(s0)

we choose an arbitrary s to label the interaction (we have reparametrization in-
variance). Then in the free action we have to distinguish between incoming and

outgoing particles, and introduce a boundary at s(:

. ; 2 2 ; 2 2
Spree = [ ds [¥4 pa—21(@X(p1,0) ~m}) + x5 da— 22 (¢X(p2,0) ~m)

+/; ds [xgica -23 (dz(p;;,o) —m%)
0

11
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RELATIVISTIC DYNAMICS

Free particle

Sfree= [ ds [x* pa—N (@(p,0) ~m)

N is a Lagrange multiplier
Poisson brackets: {x%, p,} = &)
Equations of motion

2
. _ N 94 (p,0)

pa=0  za=NoL (p,0) =m

InSR d?(p,0) =n%®papp, = Xa=2Npa
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EQUATIONS OF MOTION

S0 .
f dsx? Spl )
—00 . 0 .
. = ixf(-'oﬁﬁé’:@o%]l dsx%8py
dsx‘} Spl boundary term
50
a L .a J (,5.1/(; J
OSint = 02" Ha(so)+x(s0)0palso) +2°—— (s0)0pj,
Spé
Ny
-’J?(-\() = £2° jz(b())
(Spb

In SR same interaction point for all particles (absolute locality):

(P1®P)OP3=p1+P2—p3 =  Hlso) =2 Vj

12
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EQUATIONS OF MOTION

S0 .
f dsx? Spl S
—00 i 0 ,
. = £x(s0) 8 pa(so) - f_ ds i 8 p;
dsx‘} Spl boundary term
50
a L .4 J a9Xa J
OSint = 02" Ha(s)+x(s0)0palso) +2"——(s0)0p),
Spl
b
0K
¢ ¢
xj(s0) = £ jz(b‘o)
op;,

In SR same interaction point for all particles (absolute locality):

(P1®P)OP3=p1+P2—p3 =  Hlso) =2 Vj
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.\'r(.‘-‘u)

Z1 e _Xi(s0)

13
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zZ=xi(s0)=x2(50)=x3(80)=0

13
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RELATIVITY OF LOCALITY

Closeby events are always local Far events appear nonlocal
P
.\‘l(.‘in)
N L]
¥4 =.\':(.‘-‘u)=.‘l".'(.\'u) =.'I.‘_';(.S'u)=ﬂ '\.3(""”)

/2(.\':1)\

but this nonlocality depends on coordinate system in momentum space

,\-;'(sf,) a
\ Pa— Py X%(s) =x(s) 2P

/
xz'(s0) i \ apa

x3'(so0) ar=\ _ lara\
= x(5) =0—-x%3) =0

...wordlines are not diffeo-invariant. The fact that they cross the origin is.

14
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EQUATIONS OF MOTION

S0 .
f dsx? Spl S
—00 " 0 .
. = £x(s0)8palso) - f_ dsx%8py
dsx‘} Spl boundary term
50
| . S .
8Sint = 827 Ha(s0)£x(s0) S palso) +2° ;-I(Su)fspf,
o p;,
O
! (
xj(s0) = £ jz(b‘o)
(Spb

In SR same interaction point for all particles (absolute locality):

(P1®P)OP3=p1+p2—p3 =  H(so) =2 Vj

12

Page 13/59



RELATIVITY OF LOCALITY

Closeby events are always local Far events appear nonlocal
P
.\‘l(.‘in)
= L]
¥4 =.\':(.‘-‘u)=.‘l".'(.\'u) =.‘l‘_';(.‘o'u)=() ".3(""”)

/2(.\'::)\

but this nonlocality depends on coordinate system in momentum space

,\-;'(s”) a
\ Pa— Py X%(s) =x(s) 2P

/
xz'(s0) s \ apa

x3'(so0) ar=\ _ lara\
=x(§) =0 X435 =0

...wordlines are not diffeo-invariant. The fact that they cross the origin is.
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RELATIVE LOCALITY: THE PRESENT STATUS

PHENOMENOLOGY THEORETICAL ISSUES
e GRBs e Soccer-Ball Problem
[AFKS] [Freidel-Smolin] [AFKS]
e Dual Gravitational Lensing e Translations
[Freidel-Smolin] [AFKS] [Kowalski+Rome group]
e Atom Interferometry e BH Information Paradox
[AFKS] [Smolin]

[FM+Rome group, PRL 103] e Lorentz Invariance

[FM+Gubitosi] [Amelino-Camelia]
[FM+Carmona+Cortes|

15
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RELATIVE LOCALITY IN K-POINCARE

[arXiv:1106.5710]

with Giulia Gubitosi (UC Berkeley)
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QUANTUM GROUPS (HOPF ALGEBRAS)
Generalizations of Lie groups to describe symmetries of noncommutative spaces

If G is a Lie group and ('(G) is the algebra of complex-valued functions over G

(f-8)(g1) = f(g1)g(g1) = (g-f)(g1)

A:1(G) > C(G)®1U(G) ~ '(GX G) coproduct  A(f)(g1,82) = f(81-82)

§:((G) = C'(G) antipode S(f)(g) = f(g})

e:0(G)—» 1" counit e(f)=f(lg)

('(G) can be generalized to a noncommutative algebra &
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K-POINCARE QUANTUM GROUP
Coalgebraic structures are the same as the Poincaré group:
A(A‘u'v):Aup®Apv, A(ﬂﬂ):AHv®av+a‘l®_ y
S(A”V)=(A“l)pva S(ap)=_(A“I)pvavv

E(A‘uv)=6u'v, E(a“)=0.

algebra ('(G) deformed into a noncommutative algebra ('¢(G):

[(lj.(l()] — igaj [aj,ak] =0, [APWAPG] =0

[a", APG) =t [(Apo 6P0) Ao + (AUG 500) np“}

Zakrzewski [J. Phys. A27 (1994)]
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K-MINKOWSKI NONCOMMUTATIVE SPACETIME

Quotienting the x-Poincaré group by its Lorentz Hopf-subalgebra

("(G)/1'(SO(3,1)) = &

we obtain the noncommutative k-Minkowski algebra,

, . ih i

which is usually interpreted as the algebra of functions over a quantum spacetime
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K-MINKOWSKI NONCOMMUTATIVE SPACETIME

Quotienting the x-Poincaré group by its Lorentz Hopf-subalgebra

'x(G)/((S0(3,1)) = o

we obtain the noncommutative k-Minkowski algebra,

, . ih o
xpxol = Xy My =xu@L+1@x,  Shy)=-xu,  EGu)=0

which is usually interpreted as the algebra of functions over a quantum spacetime

Page 20/59



K-POINCARE QUANTUM GROUP
Coalgebraic structures are the same as the Poincaré group:
A(A‘uv):Aup®Apv, A(ﬂ#):Apv®av+a‘l®_ y
S(A”V)=(A“l)pva S(““)=_(A“I)pvavv

E(A‘uv)=6u'v, 8(a“)=0.

algebra ('(G) deformed into a noncommutative algebra ('¢(G):

[a‘,-.a()] — isaj [aj,ak] =0, [APV’APG] =0
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K-MINKOWSKI NONCOMMUTATIVE SPACETIME

Quotienting the x-Poincaré group by its Lorentz Hopf-subalgebra

C'x(G)/((S0(3,1)) = &

we obtain the noncommutative k-Minkowski algebra,

, . ih e
xpxol = xjy My =xu@L+1@x,  Shy)=-xu,  E(Gu)=0

which is usually interpreted as the algebra of functions over a quantum spacetime
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QUANTUM GROUPS (HOPF ALGEBRAS)

Hopf algebras are self-dual structures: the dual of a Quantum Group, a Quantum
Algebra, is still an Hopf algebra.

In the case of a Lie group G written as an Hopf algebra 1'(G), its dual is the
Universal Enveloping Algebra U(G*) of the Lie algebra G*:

(f-8)(g1) = f(g1)e(g1) = (g-f)(g1) & Al)=4®1+11¢

A(f)(81,82) = f(81-82) titj) = fii* t
S(f)g)=r(gh)
e(f) = f(lg)
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K-POINCARE ALGEBRA (1+1D)

Taking the dual of x-Poincaré group, we obtain its Quantum Algebra:

A _K —2E/k) 1 N —
PE| =0, WJﬂ_z(l{, ) P, INE]=P,

AE=E®|+1®E, AP=P®l+e E/X@P,

AN=N®1+e E/K@N,

Lukierski [Phys. Lett. B264 (1991)]
20
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K-POINCARE AND 241D QUANTUM GRAVITY

Freidel and Livine [PRL 96 (2006)] showed that quantum gravity amplitudes for
particles coupled to 2+1D gravity

7 - j Dg / D¢ ¢/5(8:9)¢iSGr(9)

integrating out the gravitational degrees of freedom

7 = /D¢ eSerf(9)

are related to the amplitudes of a noncommutative field theory

sin?

| A
Seff:i/(a“¢*a“¢+ K;nK¢*¢) +§/¢*¢*¢

where ¢ € &7 = ('¢(G)/'(SO(3,1)) and « is a realization of the product of 4.
This field theory is invariant under the x-Poincaré algebra.
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k-POINCARE ALGEBRA (1+1D)

E and P close a commutative Hopf-subalgebra:

[PsE] =0,

AE=EQL+1QE, AP=P@l+e E/*@P,

S(E)=—-E, S(P)=—eE/xpP,

e(E)=¢(P)=0.

we interpret it as the algebra of functions over a momentum space &
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K-POINCARE ALGEBRA (1+1D)

E and P are “coordinate functions”: PH(p) = p-th coordinates of point p.

Diffeos P* — f*(P) correspond to change of basis in the enveloping algebra

The coproduct & antipode define a composition law A(PH)(p,q) = PH(p®q)
and its inverse  S(PH)(p) = PH(Op)

The counit give the coordinates of the origin €(P*) = P*(0). In the “bi-
crossproduct” basis these coordinates are {0,0}.

The “coassociativity” axiom of Hopf algebras (A®id) oA = (id®A) oA im-
ply associativity of composition rule (= flat connection) (want curved con-
nections? try with Hopf algebroids)
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K-POINCARE ALGEBRA (1+1D)

e E and P are “coordinate functions”: PH(p) = p-th coordinates of point p.
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The coproduct & antipode define a composition law A(PH)(p,q) = PH(p®q)
and its inverse  S(PH)(p) = PH(Op)

The counit give the coordinates of the origin £(P*) = P*(0). In the “bi-
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k-POINCARE ALGEBRA (1+1D)

E and P close a commutative Hopf-subalgebra:

[PsE] =0,

AE=EQL+1QE, AP=P@l+e E/*@P,

S(E)=—-E, S(P)=—eE/*pP,

we interpret it as the algebra of functions over a momentum space &
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LET’S FIND THE METRIC...

V,P) = 0 = X1 e 28/%)

1 . dE
i —P*, [NEl=5=

2K d&

these can be integrated wrt . The solution is

E'=E+x log [(cosh§/2+ smhéj/2) —e 2E/Kginh2& /2

, (ch§/2+ Psh&/2) (sh&/2+ Pchg/z) e 2E/Xch& /2 sh& )2
- (ch& /24 Bsh& /2)* — e~ 2E/Ksinh? £ /2

[Rossano-Bruno, Amelino-Camelia, Kowalski-Glikman, PLB 522 (2001)]

24
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LET’S FIND THE METRIC...

Lp

P _ K, 2E/xy_
N,P) = S(1—e )= 5=

dg

these can be integrated wrt . The solution is

E'=E+x log [(cosh§/2+ smhij/2) —e 2E/Kginh2& /2

, (ch§/2 +2sh&/2) (shE/2+ Pchéj/z) e 2E/Xch& /2 sh& )2
N (ch& /24 Bsh& /2)* — e~ 2E/Ksinh? E /2

[Rossano-Bruno, Amelino-Camelia, Kowalski-Glikman, PLB 522 (2001)]

24
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DE SITTER METRIC IN COMOVING COORDINATES

dS2 — dE2 —€2E/de2

this metric is invariant under the Lorentz transformations shown above:

dSIZ =dE,2 —BZE,/deQ —_ dSE

consider this coordinate transformation:

No = ksinh(E/k) + E/XP2 2k

ny = /%P

the algebra in this basis turn into Poincaré algebra

(Mo,m|=0,  [N,mo]=m1, IN,m]=mo
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DE SITTER METRIC IN COMOVING COORDINATES

ds2 — dE2 —€2E/de2

this metric is invariant under the Lorentz transformations shown above:

dSIZ =dE,2 _eZE’/K'dpfz —_ dSE

consider this coordinate transformation:

No = Kksinh(E/k) + eE/XP2 2k

ny = /%P

the algebra in this basis turn into Poincaré algebra

(Mo,m|=0,  [N,mo]=m1, IN,m|=mo
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DE SITTER METRIC IN EMBEDDING COORDINATES

the coordinate transformation is not invertible:

Mo /K% +ng — 13
E+ = «klog 2 1 , Py = £

. Mot \/k2+nd —

then the coalgebra in these coordinates won’t close

A =mee/ X+ 19m

|
Ang=no®eE/ X +e EIX@ny+ e Elkmen

but extending the algebra with another generator
n4 = xcosh(E /x) — E/¥P? )2k

the change of basis results invertible:

E = klog Mo+ N4 p—_KM
K ’ Mo+ M4
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GEODESICS AND DISPERSION CURVES

de Sitter geodesics passing through the origin o are given by the intersections with

the plans through the 14 axis
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GEODESICS AND DISPERSION CURVES

curves at fixed metric distance from the origin (dispersion curves) are given by the

intersections with plans orthogonal to 74
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DISPERSION RELATION

The equation relating the distance from o to the value 14 for these planes is:

N4 = Kcosh(d/x)

this gives us the dispersion relation in embedding coordinates:

d(p,0) = K arccosh (14/K) = K arccosh (cosh(E/K‘) —e 'E/"Pz/Zx‘z) =m

and therefore the dispersion relation in comoving coordinates:

cosh(E/x) — e E/XP2 /2K = cosh(m/k)

=> we got that the mass is the rest energy (E(P = 0) = m)
30
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CONNECTION

In comoving coordinates the composition law is

(p®g)o = po+ 90, (p®q)1 = p1 +e P/¥g

“translating” the relation Fg V(o) = - 5:3;1 32\; ( p(Dq)| we can calculate the

p :q:o
connection CVCI')IWhCI'CI

O P I CELLICER) —

In x-Poincaré l"gv(k) = ,LS“OSVlS]p
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CONNECTION

The x-Poincaré connection possess:
e Torsion: T;V = %6[“06"]151;)

o Nonmetricity: VPgHY =L (28K ,8Y 18P+ 818" 8P + 8H18Y(8P ) e?E/X

e Zero curvature: Rﬁpo =0 (the composition law is associative)
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RELATIVITY PRINCIPLE

The deformed Lorentz transformations shown above:

2
E'=E +x log [(cosh§/2+ isinhé/Z) — e 2E/Kginh2 ¢ /2

- K(ch§/2+£sh§/2) (sh&/2+ Lch&/2) — e 2E/KchE /2 shE /2
ro (ch&/2+ Bsh&/2)* — e 2E/Ksinh? & /2

leave the dispersion relation invariant (they map dispersion curves into them-
selves):

cosh(E'/x) —e E'/kp2 /oy — cosh(E/k) — e E/¥p2 /2K = cosh(m/x)

but what about the composition law p® g = {pg+ qo, p1 + € P(),‘-’”qu }?
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RELATIVITY PRINCIPLE

It turns out that it’s not invariant in a naive sense (it’s not a (O-homomorphism):

Poq #(poq)

this is due to the nontrivial coproduct of the boost generator:

AN=N®1l+e E/kgN,

E/x

which introduces a ‘“‘back-reaction” e of the momenta on the boosts

Majid [hep-th/0604130] exponentialized this back-reaction, turning it into an ac-
tion of momenta on Lorentz group elements, labelled by their rapidity &:

e"PO/"sinhg

& < p = 2arcsinh
& P1anné)? 2p0/K sinh2 &
(cosh2+ Ksmhz) —e “P0o/Rsinh* 3
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RELATIVITY PRINCIPLE

Then, writing the boosts as a one-parameter family of automorphisms of momen-
tum space: A : [} x & — P, parameterized by the rapidity £, we get:

A, p©q)=AE,p) DAL <p,q)

“q” satisfies some compatibility relations with the coalgebra:

o ((aq)ap=Ea(qgdp) (> is a right action)
= AG,p®qOk) =A(5,p) DA(S <p,q) DA(S<2(pDg),k)

e A(S<ap,S(p)) = S(A(G,p))

we can parametrize everything in terms of the rapidity of every single particle:

A(E'<S(p),pDq) =A&'<S(p),p) DA q)
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RELATIVITY PRINCIPLE

Then, writing the boosts as a one-parameter family of automorphisms of momen-
tum space: A : [} x & — P, parameterized by the rapidity £, we get:
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= A(G,pOqDk) =A(5,p) OA(E <P, q) DA(S <(p©q),k)

e A(S<ap,S(p)) = S(A(G,p))

we can parametrize everything in terms of the rapidity of every single particle:

A(E'<S(p),pDq) = A& <S(p),p) DA q)

Pirsa: 11110138 Page 43/59



RELATIVITY PRINCIPLE

Then, writing the boosts as a one-parameter family of automorphisms of momen-
tum space: A : [} x & — P, parameterized by the rapidity £, we get:

A&, p©q)=AE,p) DAL <p,q)

“q” satisfies some compatibility relations with the coalgebra:

o ((aq)ap=Ea(qDp) (> is a right action)
= AG,p®qDk) =A(5,p) DA(S <p,q) DA(S<(pDg),k)

e A(Sap,S(p)) = S(A(G,p))

we can parametrize everything in terms of the rapidity of every single particle:

A(E'<S(p),pDq) = A& <S(p),p) DA q)
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RELATIVITY PRINCIPLE

CAUTION: if the momentum p is outside of the upper light-cone d(p,0) > 0,
there exist a finite critical boost & which makes |py| —» . Conversely, for all &,
there exists a critical curve on momentum space for which & < |p¢| — o

This behavior is due to the comoving coordinate system (coordinate singularity):
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RELATIVITY PRINCIPLE, REPRISE

can we establish which momentum spaces preserve Lorentz invariance?

[to appear]

With J. Carmona & J. Cortes (Zaragoza)
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RELATIVITY PRINCIPLE, REPRISE

Amelino-Camelia recently studied in some generality the problem of the equiva-
lence between inertial observers in RL [arXiv:1110.5081]

He introduced two golden rules:

“no in-vacuo photon decays”

“no switch-off threshold for photoproduction”

.

that a momentum space has to satisfy in oder to preserve the relativity principle.
37
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RELATIVITY PRINCIPLE, REPRISE

Amelino-Camelia recently studied in some generality the problem of the equiva-
lence between inertial observers in RL [arXiv:1110.5081]

He introduced two golden rules:

“no in-vacuo photon decays” The process ¥ — e' e~ is never
allowed, no matter Ey

No matter how small the energy

“no switch-off threshold for photoproduction”
110 SWECHI-OL HIITSL040 J0r PIOICPIOCUCHOE™  of a photon Ey, there always is a

sufficiently hard photon Ey that

permits the process Y — e’ e

that a momentum space has to satisfy in oder to preserve the relativity principle.
37
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RELATIVITY PRINCIPLE, REPRISE

Working at first order in Ml;,'l, he introduces a (not fully general) ansatz for the
dispersion relation and the composition law:

22+1 2

Po— P M,

(al pop? + Oczp%) =m

|
(kD p)o= ko+P0+H; (B1k1p1+ Bakopo)

1
(k®p)1 =k +py A (Y1kop1 +12k1po)
p

He founds that both “no in-vacuo photon decays” and “no switch-off threshold for
photoproduction” constraints are satisfies if and only if

o+ +P+B-1—-1=0
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RELATIVITY PRINCIPLE, REPRISE

He conjectures that the “golden rule” o + o + B + B2 — 71 — 1o = 0is anecessary
and sufficient condition for a momentum-space to be relativistic.

We studied the problem in full generality (assuming only undeformed rotational
invariance and polynomial expressions in the momenta):

a PoP%** a’ng) =m?

1
2 2
P p1+Mp(

|
(k®P)0=k0+P0+A7p (ﬁlklm + Bakopo + B3 kG +54P(2)+55k%+3617%)

|
(k®p)1 =k + p1 +Mp (Y1 ko p1+ Y2 k1po+ Y3 k1po + Yakikp)

(I show only th 1+1D case, for simplicity)
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RELATIVITY PRINCIPLE, REPRISE

The novelty of our approach consists in only demanding the existence of a consis-
tent set of deformed Lorentz transformations:

P1+ﬁp9~|P1P0

Po N, po Po
A ) — + = + )
5] ( Pl ) : (N,.Dl ) ( P1 ) : p0+3}p (lzp%ﬁ—/u_:p%)

with the most generic back-reaction of momenta on rapidity:

A[€$p®ql=/\[€+£—p( q0+ po),P]®A[§+ﬂ%( po+ QO)»Q}
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RELATIVITY PRINCIPLE, REPRISE

The novelty of our approach consists in only demanding the existence of a consis-
tent set of deformed Lorentz transformations:

P1+ﬁpilplpo

Po N, po Po
A ) - -+ = + .
5] ( Pl ) : (N,.Dl ) ( Pl ) : p0+3}p (lzp%ﬁ-/u_:p%)

with the most generic back-reaction of momenta on rapidity:

A[€,p®Q]=A[€+£—p( qo0+ po),P]®A[§+%( po+ %)»‘I}
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RELATIVITY PRINCIPLE, REPRISE

Consistency conditions:

1. Invariance of the dispersion relation C(p) = p% - p% + }L}

C(A[S,p]) =C(p)

(m pop+ pg)

2. Closure of a Lorentz algebra (in the 3+1D case)

[Nj,Ni| = €jiiR;

3. Invariance of the composition law

g

Mp

(1190+ po),p}CDA[éﬂfp po+

AlS,p®ql=A |G+

Page 53/59



RELATIVITY PRINCIPLE, REPRISE

We find that the 19 parameters o}, B, 7,4, and 7], are not independent:

MH+204+2A3=0
o) = 2/12 Oh = %).1 %2.&2
n=- =" B=- V4= —

Bi=n+rn-a P=-0p B3=p=0 PBs=1 Ps=Wn

these 13 relations allow to express «;, 37, 7; in function of the 6 independent A,

and 77 .. |we have 6 degrees of freedom ‘
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RELATIVITY PRINCIPLE, REPRISE

If the above relations are satisfied, we have (up to order M p”z) a relativistically

invariant system with two invariant scales (¢ and Mp)
We tested our rules with Amelino-camelia’s two golden rules:
THEY ARE AUTOMATICALLY SATISFIED.

that is, no in-vacuo photon decays are allowed, and no there is no switch-off
threshold for photoproduction.

But that’s not the end of the story...
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RELATIVITY PRINCIPLE, REPRISE

Amelino-Camelia’s rules are necessary, but NOT sufficient for a theory to be rel-
ativistic!

That is, there are choices of the o, B j»7j»/A; and 1), parameters that satisfy A-C’s
golden rules, but don’t satisfy our constraints.

This can be easily seen in the simpler case considered by Amelino-Camelia,

2 2 2

|
P(}—P1+AT( IPOP%JF‘IZP(?S) =m
P

1

T, (B1 k1 p1+ Bakopo)
p

(k® p)o=ko+po+

|
(k@ p)1 =k +p +ATP (Y1 kop1+2k1po)

which, to us, corresponds to the choice 77, =17, =0
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RELATIVITY PRINCIPLE, REPRISE

In this case, imposing Amelino-Camelia’s golden rule:

a+n+p+ph-n—-r=0

we find that, despite no in-vacuo photon decay and no switch-off threshold for
photoproduction are allowed, we still don’t have a relativistic theory unless:

Br=-m

we conjecture that there are OTHER GOLDEN RULES (a number of forbidden
processes) that, together with A-C’s two, ensure that the relativity principle holds.

45
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CONCLUSIONS

Why should we care about that?  because it’s measurable (GRBs...)

Quantum Groups fit very naturally into the RL scheme

Where did noncommutative spaces end?  turn 7 on

Lorenz transformations, initially expected to be more trivial than translations,
hid a surprise: different particles transform with different rapidities

Up to first order in Mp'1 we have the most general Lorentz-invariant case.
Described by 6 independent parameters

Two golden rules are insufficient to specify it: how many are enough?
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Quantum Groups fit very naturally into the RL scheme

e Where did noncommutative spaces end?  turn £ on

e Lorenz transformations, initially expected to be more trivial than translations,
hid a surprise: different particles transform with different rapidities

Up to first order in Mp'1 we have the most general Lorentz-invariant case.
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Two golden rules are insufficient to specify it: how many are enough?
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