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Abstract: In thistalk | will give an overview of localization and some of its applications for QFTs in three dimensions. | will start by reviewing the
localization procedure for N=2 supersymmetric gauge theories in three dimensions on S"3. | will then describe some of the applications to field
theory dualities and to holography, and the possibility of extracting information about RG fixed points from the localized partition function.
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Motivation

o Exact results in quantum fleld theory ar€ hard to come DbY.

o Localization enables exact computat
coupled theories (IR fixed points of 3d

Yang-Mills term).

jons even In strongly
gauge theories with a

%=1

o Many new and interesting supersymmetric theories In 2

dimensions (GW, BLG, ABJM, ABJ...).
o Lots of duality conjectures for IR fixed points.
o Holographic duals are available and comparisons can be made.

o Bonus: Euclidean partition functions knows something about
the RG flow.
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Localizaton
90000000

Path integral localization

Deformation
o |dentify an appropriat
o Choose V such that {@. V} is a positive semi-definite
functional (Q should square to 0 on V).
o Deform the action by a total @ variation S — S — t{Q@. V}.
The resulting path integral is independent of t!

e conserved fermionic charge: Q

o Add some Q closed operators (Wilson loops, defect operators).

S
=,

Localization
o [ake the limit t — .

o The measure exp(—S) is very small for {Q. V} # 0.

o The semiclassical approximation becomes exact, but there
may be many saddle points to sum over ("“the zero locus'" ).

o Integrate over the zero locus of {Q.V} (+ small ﬂuctuations)

I
|
i
}

J
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Supersymmetry on S°

We wish to compute all expectation values on S°

After a conformal transformation

@ All derivatives become covariant.
@ Scalars with a kinetic term get a conformal mass (proportional

to the Ricci scalar).

(Covariantly) constant spinors exist only on riccl flat

manifolds.

Manifolds of constant curvature have Killing spinors satisfying
Ve = 07

On the three sphere V= = £5~,= (two of each).

e (1]

Actions with fermionic symmetries may be constructed using
these spinors.
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N = 2 Vector multiplets

o The vector multiplet

e ————

7. D (real) | Ao (complex) [ Ay (real)

o Additional gauge fixing fields: ¢, ¢ and b

o The gaugino variation is (I have set the radius r = 1)

0N = (_%‘}”'Fﬂl‘ - D - f‘“‘“Dj,fT —7):

o We actually consider a combined supercharge

Q=Q-+Qersr.  V=Tr({QAN-z20"A, )
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N = 2 Vector multiplets

o The vector multiplet

[, D (veal) [ \ (complex) | Ay (real)

o Additional gauge fixing fields: ¢, ¢ and b

o The gaugino variation is (I have set the radius r = 1)

| 1
I\ = (=57 Fu = D= 17Dy — a1

o We actually consider a combined supercharge

é: Q- + QBRrsT . v = Tr({(q?.,\}?,\méi)”A,,)
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Vector multiplet localization

o The localizing functional is similar to a normal Yang-Mille

action
Sa=t [ AT (3P Fur + DoDy7 = (D= 7 = IN'DA
M
AL ] — A+ TED,c— bVHA, )
o Localizing to
Sy = 0= Ay = 0L A = M =0.c=0.2=0.D=—a = ao(const)

and with b unrestricted.
o Path integral reduces to

/ Seriginal|@ = const| (one loop determinant)
a=const
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Vector multiplet localization

o The localizing functional is similar to a normal Yang-Mills

action
G =t / VIET’(%F”F;H' L DI'aDya — (D — a)e L iNDA
M
~ j[AT. a]A — %,\"’,\ + V2D c — b\"”A,,)
o Localizing to
So=0&A,=0A=\N=0.c=0¢=0.D=—q=

and with b unrestricted.
o Path integral reduces to

/ Seriginal[7 = const] (one loop determinant)
a=const
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\ector multiplet localization

o The localizing functional is similar to a normal Yang-Mills

action
M 3
A a]A = =ATA + V42D, c = bV A
— i\ a]A = SATA £ V2D ¢ - )
o Localizing to
So=02A,=0\A=\'=0.c=0.2=0.D = —7 = gp(const)

and with b unrestricted.
o Path integral reduces to

/ Seriginal|® = const] (one loop determinant)
a=const
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Gauge sector matrix model

o The fluctuation determinant IS

S u.(aj))”"“ 2sinh(7(a))

HH il N = 11~ (za(a))

a (=0 )_ T ”(a)_) [\ =roots

o The supersymmetric Chern-Simons action becomes

|

» : |
exp :l_rrf / Vg(2Da) | — exp(—imktre(a®))
M

@ The supersymmetric Wilson loop

Wijp = PTrg exp[r} (IAudx" — a|x|)] — Trrexp(27a)
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Gauge sector matrix model

o The fluctuation determinant Is

(=l —=1—ia(a)))" 2sinh(7(a))

((/ — u
HH | 5 (([=2) - (7“(J)J

a [=0 /*1) SRR @) nZEroots

o The supersymmetric Chern-Simons action becomes

]

Ko [ V8o | — e -imkin(a)

@ The supersymmetric Wilson loop

Wi = PTrg exp[% (1A dx" — o |x])] — Trrexp(27a)
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The Chern-Simons matrix model

The matrix integral
o The expectation value of the Wilson loop has been redu

a matrix integral

ced to

/ exp(—ikmtr(a?)) detag2sinh(7a)/(7a) trg exp(27a)

% dlassical CS term 1 loop det Wilson loop

Consistency checks

o The above matrix model was derived independently by other
means for pure CS theory.

o Exact results for U(N) are available and compare well with
known results.

o The supersymmetric computation demands a specific
"framing" .

Pirsa: 11110135
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Localization
00000080

Matter fields

o Component fields and fermion transformations

[0,F (complex) | i complex) |

_ . , 1
Ml = (_.’A..”‘_‘”() — | T() — 3(1) -

o The localizing term Is

SQ :l'/\/nglvlm{vﬂu—If'JrV“T',‘,U—-*rJ'fTOH—-— Zr;'r;
M

+FTF+’-'f(JV—irrU-—(1 +..:v)){‘]_ v,,E-.T

2

@ No additional zero modes arise. All fields are set to 0.
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Localization
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The matter determinant

A self dual representation R @ R (like a hypermultiplet)

1

Zmatttr i

1loop — H 2 COSh('-—t}’(a))

peweights

A general chiral superfield of conformal dimension A

ov = (—ivt'V, 0 — ico — Ao):. duf = =TFI

7 matter _ H e’(l—ﬁ*f(i'(d)))

1 loop
pEweights

where

{(z) = —zlog (1 — ezm) - |

is a solution to 0,/(z) = —wzcot(7z)
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Localization
0000000

The matter determinant

A self dual representation R @ R* (like a hypermultiplet)

1
(LU - S .
L1ioop = H 2 cosh(7p(a))

peweights

A general chiral superfield of conformal dimension A

(sf,' = (—n"-:“v;:(--) o a’.ﬂff) - A(_'))f. A1 Al — _‘TF"',
7 matter _ H ef(l-A_;(,,(a)))

1 loop

pEweights

where

(2) = ~zlg (1= &74) 4 3 (22 = ~L (1~ %) ) - 2

is a solution to d,/(z) = —wzcot(7z)

Pirsa: 11110135
Page 15/51



P
0000

The topological Chern-Simons theory

o The Chern Simons partition function has been computed
exactly, as were expectation values for Wilson loops (Witten).

o Comparing with the localization result we find agreement as
long as we take a supersymmetric framing

1 L= Tm
AGS— (k—N)Nz H (2sm A

m=1

o We can compute the expectation value for the unknot in the
fundamental representation and compare
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A Wilson loop in ABJM

A(harony)B(ergman)J(afferis)M(aldacena)

o A superconformal A" = 6 Chern-Simons matter theory.
o Gauge group U(N) x U(N) with CS levels (k. —k).
o Two hypermultiplets in the (V. N) representation.

o Low energy limit of A" = 8 SYM (k=1) and holographically
dual to M-theory on AdSy x S”/Zy.

An N = 2 Wilson loop

o A loop operator preserving 2 real supercharges

Wi/, = PTrg exp[% (iAdx* —a |x|)] — Trrexp(27a)

o There is a 1/2 BPS (in the N = 6 sense of ABJM) version in |
the same cohomology class (Drukker, Trancanelli) |

Pirsa: 11110135
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The ABJM matrix model

: 3 : S
o The matrix model for AB JM involves two matrices (we rewr!

with two sets of eigenvalues)

< Wi ,.:/(He”(:('\f ‘\},)d/\,-d:\,-)

f

H-‘ jsmh ( (’\ — A ))Sinh T ,\ — \
H,jcosh((\_ Ze

o The expectation value matches perturbative calculations in
the 't Hooft coupling A = N/k and for large N

5 ) =R 1 L\ (e
W / —_ 1 ——— . i et 0"
< 1,.2> (6T6N2) k2 (2 2N2) k3
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Large N comparisons

Wilson loop
o Computed in the large N limit (Marino and Putrov).

o Expectation value was computed exactly in A.
;'

o Scales as expected from holography < W >~ ——

Partition function

o A (formerly confusing) scaling for the number of degrees of
2)

freedom for holographic M-theory duals # dof -~ N3/2

o Derived from the large N limit of the matrix model partition
function (Drukker, Marino, Putrov).

o Other quiver theories have # dof «~ N>/2 with a coefficient
which matches gravity calculations on various backgrounds
(Klebanov et al).

Pirsa: 11110135
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Large N comparisons

Wilson loop
o Computed in the large N limit (Marino and Putrov).

o Expectation value was computed exactly in A.
. o ' =2\
o Scales as expected from holography < W >~ 7_\'/§Ke

-

Partition function

o A (formerly confusing) scaling for the number of degrees of
freedom for holographic M-theory duals # dof -~ NEIZ,

@ Derived from the large N limit of the matrix model partition
function (Drukker, Marino, Putrov).

o Other quiver theories have # dof «~ N>/2 with a coefficient
which matches gravity calculations on various backgrounds
(Klebanov et al).
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Supersymmetric Deformations

Real mass terms are supersymmetric configurations for background

flavor symmetry gauge fields Vi, > 66m

Smass = - /dBXdzﬂdzg Z ((J:i-ezvrnfl — (ﬁ;:l-e""zv;";'})

matter

in the matrix model this just shifts p(a) — p(a) — m.

Fayet-lliopoulos (Fl) terms

Fayet-lliopoulos (Fl) terms for the U(1) factors of the gauge group
are equivalent to gauging topological symmetries Vg x 661

SFI — Tf/d3Xd29d2§Z VFI g e2m'r;trf(a)
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Localization
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The matter determinant

A self dual representation R @ R* (like a hypermultiplet)

1
matter __
eer — H 2 cosh(7p(a))

peweights

A general chiral superfield of conformal dimension A

rSl_' —_ (-—f"l.“v'.‘,(_) — f(‘J’r_) — Ar,‘;)-_‘, r)‘.'_'% — ._‘TF‘T

Z]l-nlit;le)r o H e‘(l—A—"(l'(a)))

pEweights

where

{(z) = —zlog (1 — e27.'iz) A é

is a solution to 0,/(z) = —wzcot(7z)
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Localization
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The matter determinant

A self dual representation R @ R* (like a hypermultiplet)

1
matter __ . .
A= W s

peweights

A general chiral superfield of conformal dimension A

rS!_‘ — (—i',-“V,,o — fr‘J'r_‘) —_ Ar,‘;)-_‘, r)‘:_'? = ._-TFT

Z?wlit;;r s H e‘(l—a""(l‘(a)))

peweights

where

((z) = —zlog (1 — €°™%) + é

is a solution to 0,((z) = —wzcot(7z)
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Supersymmetric Deformations

Real mass terms are supersymmetric configurations for background

flavor symmetry gauge fields Vi, > #6m

3 ) =7 Tt a—2Vm -
S — /dJXdQHdQH Z (m’e*v’"r;-——(}'e r))

matter

in the matrix model this just shifts p(a) — p(a) — m.

Fayet-lliopoulos (Fl) terms

Fayet-lliopoulos (Fl) terms for the U(1) factors of the gauge group
are equivalent to gauging topological symmetries Vg x 0y

Sk = Tr / d>*xd?0d?0% Ve — e2mintre(a)
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Supersymmetric Deformations

R RS (Pl g —
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Mirror Symmetry

Figure: Brane construction of a 3d quiver theory and its mirror dual.

Basics of 3d mirror symmetry

o Relates the IR limit (strong coupling!) of different ' = 4
supersymmetric quiver gauge theories.

o Can be realized with S-duality in type |IB brane construction.

o Duality exchanges the Higgs and Coulomb branches of the
moduli space, and real masses with Fl terms.
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Mirror Symmetry

Figure: Brane construction of a 3d quiver theory and its mirror dual.

Basics of 3d mirror symmetry

o Relates the IR limit (strong coupling!) of different N = 4
supersymmetric quiver gauge theories.

o Can be realized with S-duality in type |IB brane construction.

o Duality exchanges the Higgs and Coulomb branches of the |
moduli space, and real masses with Fl terms. 1
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Mirror Symmetry

Figure: Brane construction of a 3d quiver theory and its mirror dual.

Basics of 3d mirror symmetry

o Relates the IR limit (strong coupling!) of different N = 4
supersymmetric quiver gauge theories.

o Can be realized with S-duality in type ||B brane construction.

o Duality exchanges the Higgs and Coulomb branches of the |
moduli space, and real masses with Fl terms. I‘
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|dentities

' '« it own Fourier transform.
@ [he function — © its o

o A free hypermultiplet is dual to a U(1) gauge theory with a
charge 1 hypermultiplet

1 ')"'m':;
= / dog———
cosh mw cosh T

Determinant formula

o A version of the Cauchy determinant formula

[1;-; sinh(x; xj)smh y, Y;) _Z 1”H 1
[1; cosh(x; - cosh(x;

= 376,
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Transforming the partition function

> ] : ' £
o The integral can be written as a set of contributions from

NS5 and D5 branes.
o Using the determinant formula and the basic Fourier
transform. we can rewrite the partition function In a

manifestly duality invariant way.

o Without deformations it takes the form

2= [ T geosd= -0 TT
=] -

Pa

ln(fr.T) —_ COSh(I(T) an = D5
COSh(:,—) o = NS5

o The mapping of deformations tak
es the form expect
the brane picture. ot o

Pirsa: 11110135
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ABJM and N =8 SYM

1 ABJM describes coincident M2

o At Chern Simons level k ’
d point of A" = ©

branes in flat space. It describes the IR fixe
SYM which lives on coincident D2 branes.

o We can compare the (very different looking) partition
functions and find agreement

il
=

IHl; Jsmh (7 (rr — 7;))e> "

J

1
7 : N
sym(1.«) = N /d P e G

Pirsa: 11110135
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N = 3 Seiberg-like dualities for a single gauge group

Wl
4

Figure: Brane moves leading to the duality of Chern Simons theories
introduced by Giveon and Kutasov.

o Relates different superconformal Chern-Simons theories with
N =53,
o Can be realized with brane moves in type |IB construction.
o Duality maps flavor symmetries to themselves and
U(No)k. Ne & U(|k| = Nf — Nc)_x. Nt
® An N =2 version was also proposed (more complicated).
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Giveon-Kutasov duality generalizes level rank du

(Nf =0)

o The partition function of pure Chern-Simons theory

i invariant under the exchange of level (k) and rank (N)

= sin
© = k= N)NP2 k=N

N—m

M=l

o The Nf = 1 partition function is a sum of unknotted Wilson
loops in the pure CS theory. Duality relates these operators to
Wilson loops in the dual. The reduction works in general
(Nf — N¢ — 1) but the mapping is not known.

o Cases with a larger number of flavors were verified numerically.
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Giveon-Kutasov duality generalizes level rank du

o The partition function of pure Chern-Simons theory (Nf = 0)
is invariant under the exchange of level (k) and rank (N)

N—m
= ' '
@GS (k o | )

o The Nf = 1 partition function is a sum of unknotted Wilson
loops in the pure CS theory. Duality relates these operators to
Wilson loops in the dual. The reduction works in general
(Nf — N¢ — 1) but the mapping is not known.

o Cases with a larger number of flavors were verified numerically.
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Giveon-Kutasov duality generalizes level rank du

(N; =0)

o The partition function of pure Chern-Simons theory

is invariant under the exchange of level (k) and rank (N)

1 V= m
Z(_'5= (k 3 N)N 3 H (25”‘! T N)

N—m

m=1

o The Nf = 1 partition function is a sum of unknotted Wilson
loops in the pure CS theory. Duality relates these operators to
Wilson loops in the dual. The reduction works in general
(Nf — N¢ — 1) but the mapping is not known.

o Cases with a larger number of flavors were verified numerically.
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Seiberg-like dualities for quivers

N
(a)

Figure: A duality between different ABJ theories. This is a nodewise
version of the GK duality shown before.

o Relates superconformal Chern-Simons quiver theories with
N =6: UN+ [)x x UN)_x & U(N)x x UN — | — k)_,
both with two bifundamental hypers.

o Many generalizations can be found by examining the partition
function.
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N = 2 dualities

4d Seiberg duality. Implies

V)

o Aharony duality is the closest to

that U(N,) Yang Mills with N¢ flavors is dual to U(N;
with N flavors plus a Ny « Nf meson matrix (chirals).

o Addition fields are required to describe the coulomb branch.
There is also a superpotential

o Partition functions can be shown to be equal using identities
for hyperbolic gamma functions. The R-symmetry is abelian
and can mix, but the comparison of partition functions is
insensitive to the effect.

® The N = 2 version of GK duality is a consequence of Aharony
duality after acounting for the " parity anomaly’ .
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N = 2 dualities

berg duality. Implies

Ne)

o Aharony duality Is the closest to 4d Sel

that U(N,) Yang Mills with Ny flavors is dual to U(N;
with N flavors plus a Nf « Nf meson matrix (chirals).

o Addition fields are required to describe the coulomb branch.
There is also a superpotential

W - qu, ~ VeV + Ve

o Partition functions can be shown to be equal using identities
for hyperbolic gamma functions. The R-symmetry is abelian
and can mix, but the comparison of partition functions is
insensitive to the effect.

o The N = 2 version of GK duality is a consequence of Aharony
duality after acounting for the " parity anomaly"” .
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The superconformal R-symmetry

o The supermultiplet containing the EM tensor also contains, at
the IR fixed point, a distinguished U(1)g symmetry. In the
presence of other (flavor etc.) U(1)s

RrR=Ruv~ >, aifi

flavor currents

Determining the correct IR R-symmetry requires additional
input (besides identifying the currents).

o In 4d this is done by "a maximization". Rjg is the linear
combination which locally maximizes the "a type" conformal
anomaly as a function of trial R charges.

@ The R-charge of a chiral field determines its IR conformal
dimension (in 3d A = Qg).
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The superconformal R-symmetry

o The supermultiplet containing the EM tensor also contains, at
the IR fixed point, a distinguished U(1)g symmetry. In the
presence of other (flavor etc.) U(1)s

RrR=Ruv— >, aifi

flavor currents

Determining the correct IR R-symmetry requires additional
input (besides identifying the currents).

o In 4d this is done by "a maximization". Rjr is the linear
combination which locally maximizes the "a type" conformal
anomaly as a function of trial R charges.

o The R-charge of a chiral field determines its IR conformal
dimension (in 3d A = QR).
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The superconformal R-symmetry

o The supermultiplet containing the EM tensor also contains, at
the IR fixed point, a distinguished U(1)g symmetry. In the
presence of other (flavor etc.) U(1)s

RrR=Ruv— Y, aifi

flavor currents

Determining the correct IR R-symmetry requires additional
input (besides identifying the currents).

@ In 4d this is done by "a maximization”. Rjg is the linear
combination which locally maximizes the "a type” conformal
anomaly as a function of trial R charges.

o The R-charge of a chiral field determines its IR conformal
dimension (in 3d A = QR).
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nformal dimensions

The S° partition function and co

o The localized S* partition function depends on A through the

fermion variation.

N = (—-f"""\-,,u — jow—Ao):.

Zmatter oa H e‘(l—A—-—f(p(.—))—m))

1 loop

p=weights
o Since A = qr,, = qryy — 2 3iGF, and m = > qr,m;, the
dependence is holomorphic in a; — im;.

o The variation with respect to m; is a one point function and

therefore vanishes in the IR CFT. This implies (by
holomorphicity)

03 Zs3| =0

and the correct (trial) R-charge extremizes | Zs3| (Jefferis)

Pirsa: 11110135
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The S° partition function and conformal dimensions

o The localized S partition function depends on A through the

fermion variation.

N = (_-j-.“vﬂu — |00 — Ar:)._

matter _ H e*(l—&—~i(;a(.—))—m))

1 loop
p=weights

o Since A = qr, = Gryy — 2 3iqF, and m = ) qF,m;, the
dependence is holomorphic in a; — im;.

o The variation with respect to m; is a one point function and
therefore vanishes in the IR CFT. This implies (by
holomorphicity)

UJ;IZS3| =0

and the correct (trial) R-charge extremizes | Zs3| (Jefferis)
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The §' partition function and conformal dimensions
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The S° partition function and countin

o The free energy as for a euclidean 3d CFT has been
conjectured to decrease along RG flows (Jafferis, Klebanov...)

F=—log(|Zs3l)

o F also scales in the correct way at large N, reproducing
F ~ N3/ and its coefficient for " = 2 theories.

o Fis a "global" quantity, very different from the "a type"
anomaly in 4d (the "a" theorem) or the conformal anomaly
"c" in 2d (the "c" theorem).

o F can sometimes appear to be 0 or . It can be
non-vanishing for topological theories such as Chern-Simons.
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The S° partition function and counting dof

o The free energy as for a euclidean 3d CFT has been
conjectured to decrease along RG flows (Jafferis, Klebanov...)

F = —log(|Zs3)

o F also scales in the correct way at large N, reproducing
F ~ N3/ and its coefficient for ' = 2 theories.

o Fisa "global' quantity, very different from the "a type”
anomaly in 4d (the "a" theorem) or the conformal anomaly

"c" in 2d (the "c" theorem).

o F can sometimes appear to be 0 or . It can be

non-vanishing for topological theories such as Chern-Simons.
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The S° partition function and counting dof

o The free energy as for a euclidean 3d CFT has been
conjectured to decrease along RG flows (Jafferis, Klebanov...)

F =—log(|Zs3])

o F also scales in the correct way at large N, reproducing
F ~ N3/2 and its coefficient for A" = 2 theories.

o Fisa "global" quantity, very different from the "a type"
anomaly in 4d (the "a" theorem) or the conformal anomaly

" "

c¢' in 2d (the "c" theorem).

@ F can sometimes appear to be 0 or . It can be
non-vanishing for topological theories such as Chern-Simons.
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The S° partition function and counting dof

o The free energy as for a euclidean 3d CFT has been
conjectured to decrease along RG flows (Jafferis, Klebanov...)

F=—log(|Zs3)

o F also scales in the correct way at large N, reproducing
F ~ N3/2 and its coefficient for A" = 2 theories.

o Fisa "global' quantity, very different from the "a type"
anomaly in 4d (the "a" theorem) or the conformal anomaly

" "

c¢' in 2d (the "c" theorem).

@ F can sometimes appear to be 0 or >. It can be
non-vanishing for topological theories such as Chern-Simons.
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ige theories on 5% reduces computation

o Localization of 3d gal
of BPS observables to solving a matrix model.

o Observables evaluated using localization reproduce other exact
and perturbative results. Results for holographic duals also
agree.

o Comparing partition functions and expectation values for
Wilson loops with the matrix model gives a strong check of
proposed dualities and allows us to generalize them.

o The S? partition function determines the IR R-symmetry.
o The free energy derived from Z reproduces the one computed
In supergravity.

o The free energy may help in analyzing the RG flow of 3d
theories.
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Future Directions

ty and

o It is known that monopole operators play a role in dual
correlators including them might be computed by localization.

Other defect operators are also a possibility.
o Localization may also be useful in probing the structure of the

chiral ring.

o One can incorporate more complicated quivers (not coming
from brane constructions) and arbitrary representations In a
straight forward manner.

o Different manifold, dimension, amount of supersymmetry
boundary conditions...
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