Title: World Line Effective Theories and 2-D Partition Functions on the Plane with Compact Boundaries
Date: Nov 30, 2011 03:30 PM
URL: http://pirsa.org/11110133
Abstract: In this talk I will describe how to calculate the exact partition function for free bosons on the plane with lacunae using world line effective field theory. It will be shown that the partition function for a plane with two spherical holes can be calculated by matching exactly for the infinite set of Wilson coefficients and then performing the ensuing Gaussian integration. This same partition function can also be calculated using conformal field theory technique and the equality of the two results will be shown. I will demonstrate that there is an exact correspondence between the Wilson coefficients (susceptabilities) in the effective field theory and the weights of the individual excitations of the closed string coherent state on the boundary. The partition function for the case of three holes, where CFT techniques necessitate a closed form for the map from the corresponding closed string pants diagram, is still calculable within the EFT. I will also show how conformal mappings can be used within the matching procedure to calculate the partition function for elliptically shaped boundaries. Finally I will show that the Wilson coefficients for the case of quartic and higher order kernels, where standard CFT techniques are no longer applicable, can also be completely determined.

Com Yoleu + Markus Dessuno, IR (EPL 2011)
Ir Arxive ???/???2

$$
z=\int D e e^{-p H t}
$$

Monse Ganise

Com Yolcu + Markus Desseno, IR (EPL 2011)
IR Arxive??2/? ???

$$
\mathcal{H}=\dot{\delta}_{0}(\partial b)^{2}+k\left(\partial_{e}^{2}\right)^{2}+\cdots
$$

$$
z=\int D e e^{-p / t}
$$

Ir Arxive ??2/???2
LR (EPL 2011)

$$
\begin{aligned}
& \varphi(\bar{y}) \uparrow \quad z=\int D_{0} e^{-p \mid t} \\
& r / k \ll 1
\end{aligned}
$$

$H=\delta_{0}(\partial \zeta)^{2}+k\left(\partial_{\zeta}^{2}\right)^{2}+\ldots$

$H=\int_{b=1}^{\left(d_{b}\right)^{2} d_{x}^{2}}+C_{A} \delta\left(x-x_{A}\right)(d b)^{2} t$

$$
C_{B}\left(\left(x-x_{B}\right)()_{G}\right)^{2}+\ldots
$$

$E+M$

$$
\begin{aligned}
& \cdots \int A d T+C_{E} F^{2}+C_{B}(V F)^{2} \\
& \text { CFحX } \\
& \begin{aligned}
& E=E_{0} t \delta E\left.\int E_{0}\right)^{-} C_{E}\left(G(x . y) E_{d}(x) d y\right. \\
&=\text { Full Selutia } \\
& C_{E}=X_{E}
\end{aligned}
\end{aligned}
$$

$E+M$

$$
\begin{aligned}
& \therefore A d T+C_{E}^{R^{3}} F^{2}+C_{B}(V F)^{2} \\
& C_{F}=X
\end{aligned}
$$

$$
Y=\frac{R^{6}}{r^{7}}
$$

$$
\begin{aligned}
& \left.E=E_{0}+\delta E \int E_{0}\right)^{\prime} C_{e}\left(\cdot G(x . y) E_{d}(x) d y=\right.\text { Full Solutia } \\
& \operatorname{CE} X_{E} \quad \text { Jacksen }
\end{aligned}
$$

$E+M$
$\cdots \int \lambda A d T+C_{E}^{R^{3}} F^{2}+C_{B}(v F)^{2}$

$$
V=\frac{4 R^{6}}{r^{7}} \frac{1}{n} \text { Casimir }
$$

$$
\begin{aligned}
& C_{F}=X \\
& E_{0}+\delta E\left.d F_{0}\right) C_{E}\left(G(x-y) E_{d}(X) d y=\right. \\
& C_{E}=X_{E}
\end{aligned}
$$

$E+M$

$$
\begin{aligned}
& Y=\frac{4 R^{6}}{r^{7}} \bar{h} \text { Casimir } \\
& r=\frac{1}{\Delta F} \quad \Delta=\equiv \text { Energs } \\
& l^{37} \text { Eximat. }
\end{aligned}
$$

Inclide Dof thot like on- Would line

$$
\begin{aligned}
& \mathcal{Q}=\vec{p}(t) \cdot E
\end{aligned}
$$

$$
\begin{aligned}
& \left.\nabla(x)=\frac{1}{r^{6}} \sum_{r \cdot m}\left|\langle o| P_{z}\right| n\right\rangle\left.\left|\mid\langle 0| P_{z}\right| n s\right|^{2} E_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mationing fo } \quad C_{s}^{\prime}: \\
& e=\varphi(z, \bar{z}) \\
& \text { i) } p+\text { in } u=\varphi_{c}+\delta e \\
& \text { Maton } C_{d}\left(d_{u}\right)^{=}=C\left(d_{z} \varphi d_{z E}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Matching for Cs: } \quad Q_{B 6}=\frac{1}{2}(z+\bar{z}) \text { Diple } \\
& \varphi=\varphi(2,5) \\
& \text { 1) pt in } u=\varphi_{0}+\delta v \\
& \text { Matar } C\left(J_{G}\right)^{2}=C\left(\partial_{z} \varphi d_{z=}\right)
\end{aligned}
$$

Matuhing for C's:
$V_{06}=\frac{1}{2}(z+\bar{z}) \quad$ DipMe

Full thay. Sdue TBVP
(Neumann) lespone.

$$
\omega=\zeta_{B G}+A\left(\frac{1}{2}+\frac{1}{2}\right)
$$

Matching for C : $\quad P_{B 6}=\frac{1}{2}(z+\bar{z})$ Dipole

$$
e=\varphi(2, \bar{z}) \quad \text { Full thay. Solve Ts.VP }
$$

$$
\text { 1) put in } u=\varphi_{0}+\delta v_{p}
$$

$$
\text { Maton } C_{d}\left(\partial_{G}\right)^{2}=C\left(\partial_{z} \in d_{z=}\right)
$$

$$
\text { (Nermann) } \quad L^{\text {respou. }}
$$

$$
\begin{aligned}
& \omega=\operatorname{CBG}_{B}+A\left(\frac{1}{z}+\frac{1}{2}\right) \\
& \delta^{2}=\frac{R^{2}}{2}\left(\frac{1}{z}+\frac{1}{z}\right)
\end{aligned}
$$

$$
-
$$

$$
\begin{aligned}
\beta F= & \sum_{n=1}^{\prod_{n=2}^{n}}\left(\frac { (R _ { n } B _ { n }) } { n } \sqrt { \partial z _ { a } \delta _ { a } } \sqrt { \partial z _ { a + 1 } \partial z _ { a + 1 } } I _ { 1 } (2 R \sqrt { \partial _ { z _ { a } } \partial _ { z _ { a } } }) I _ { 1 } \left(2 R_{B} \sqrt{\partial_{=a}}\right.\right. \\
& x \ln \left(z_{a}-z_{a+1}\right) \ln \left(\bar{z}_{a}-\bar{z}_{a+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{E S}=\sum_{n}(2)^{n}\left(\partial_{2}^{n} \varphi\right)\left(\partial_{2}^{n} \varphi\right) \\
& H=\int d^{2} z \sum_{a} R_{a} I_{1}\left(2 R_{a} \sqrt{\partial z \delta \bar{z}}\right) \\
& \left.\alpha_{h}+\hat{\alpha}_{-h}\right) \mid \psi>=0 \\
& \phi(z) \phi(\bar{z}) \delta\left(z-z_{a_{1}} \bar{z}-\overline{z_{a}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{E S}=\sum_{n}(z)^{n}\left(\partial_{2}^{n} \varphi\right)\left(\partial_{\eta}^{n} \varphi\right) \\
& H=\int d^{2} z \sum_{a} R_{a} I_{1}\left(2 R_{a} \sqrt{\partial_{z} \delta_{\bar{z}}}\right) \\
& \left.\alpha_{h}+\tilde{\alpha}_{-h}\right) \mid \psi>=0 \\
& p^{2}+\mid 0> \\
& \text {.il? }\left(\partial^{3} \nmid\right)\left(J_{p} \phi\right) \\
& \begin{array}{c}
\phi(z) \phi(\bar{z}) \delta\left(z-z_{a 1} \bar{z}-\bar{z}_{a}\right) \\
\lambda
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x \ln \left(z_{n}-z_{n+1}\right) \ln \left(\bar{z}_{n}-\bar{z}_{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\beta F=\sum_{n=1}^{\prod_{a=\lambda z_{i}}^{i n-1}}\left(\frac{\left.R_{n} B_{n}\right)}{n} \sqrt{\partial z_{n} \partial z_{i}} \sqrt{\partial z_{a 1} \partial z_{n=1}} I_{1}\left(2 R \sqrt{\partial_{z_{0}} \partial_{z_{n}}}\right) I_{1}\left(2 R_{0} \sqrt{\partial_{2} \ldots \delta_{z_{3}}}\right)\right. \\
& x \ln \left(z_{n}-z_{n+1}\right) \ln \left(\bar{z}_{n}-\bar{z}_{n+1}\right) \\
& g_{a b}: e^{f(z)} \hat{g}_{a b} \frac{L}{(\pi}-\frac{1}{4 \pi} \int d M^{k} \leqslant d s \\
& L=\int_{M} d \mu k \phi+\int_{\partial M} \hat{K} \phi \\
& +\frac{1}{2} \int_{M} d \mu g^{a b}() \alpha d(0=1)
\end{aligned}
$$

$$
\begin{aligned}
& x \ln \left(z_{n}-z_{n+1}\right) \ln \left(\bar{z}_{n}-\bar{z}_{2+1}\right) \\
& L=\int_{M} d \mu k \phi+\int_{\partial M} \hat{k} \phi \\
& +\frac{1}{2} \int_{M} d \mu g^{a b}\left(\partial_{a} d\right)(0 v)
\end{aligned}
$$

