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Abstract: In this talk | will provide evidence supporting the Dolan/Nirschl/Osborn conjecture for the precise form of the amplitude of four-point
functions of 1/2-BPS operators in N=4 SYM theory at strong coupling and in the large N limit. | will also discuss the methods that allowed the
evaluation of amplitudes involving operators of arbitrary conformal dimension.
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In a conformal field theory the ful dynamical
information 1s contained in

the spectrum of

conformal weights | |
the coefficients of three point

functions of primary operators

(OPE coefhicients)

Integrability

Quantitative understanding of spectrum of anomalous dimensions.
Unclear how will it enter computations of 3p coefhcients

Pirsa: 11110118 Page 3/46



The simplest operators to discuss are the chiral
primary operators.

They are related to Kaluza-Klein modes in the
expansion of supergravity fields on the sphere.

‘Two- and Three-point functions are fixed by conformal
symmetry, apart from an over all constant.

Normalisation constant computed using SUGRA
is identical to large N free field theory result.
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Four—point functions have a non-trivial dependence

on the coupling, though they are constrained by

Non-renormalisation theorems
Ward Identities

All cases computed via SUGRA so far can be given an
OPE interpretation.

All the power—singular terms in the direct channel limit exactly match
the corresponding contributions to the OPE of the operator dual to the exchanged

bulk ficld and of its conformal descendents - e.g. graviton / stress-energy tensor

But calculations are in general quite cumbersome to

pcrf()rm.

and the community moved on to greener pastures.
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But let me give you an overview of the story of
correlation functions in the AdS/CFT
correspondence so far, and because

infographics and data visualization are all the
I'llgc NOW...
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Correlation Functions in AdS5/CFT4
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But what goes around comes back around.
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More recently, there has been a renewed interest in

computing correlation functions.

Going beyond operators dual to supergravity fields

Janik, et. al.

[ntroduced formalism for using semiclassical methods to evaluate correlation

functions of operators dual to classical spinning strings

Zarembo, Costa, et.al. Roiban and Tseytlin

Developed methods to evaluate three-point functions for the case in which two

operators are dual to semiclassical states and the other is dual to a SUGRA mode.

Buchbinder and Tseytlin

Evaluated f()lll’—p()int functions for the case in which two operators are dual to
semiclassical states and the others are dual to SUGRA modes.
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Finding a new formalism for evaluating these quantities.

Mach. Penedones

Change of basis from coordinate space by Mellin transform leads to simplifications.

Paulos. Fitzpatrick, Kaplan, et.al.

Gave simple (lizlgl‘zlmlnzltic rules for the construction of Mellin amplitudes
corresponding to tree-level Witten diagrams

Possibility of evaluating higher point diagrams and hence higher point correlation

functions
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Unfortunately, computing correlation functions holographically
is more than evaluating Witten diagrams and requires the
determination of the effective lagrangian (but for cases
computed in AdS supergravity, it is possible to determine the
Mellin transform)

Trying to use the power of integrability

for going beyond 2p-tunctions.

Escobedo, Gromov, Sever, Vieira

Computation of pl;mm‘ thrcc-point functions - structure
constants - using the underlying exactly solvable

structures of these theories.
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Correlation Functions in AdS5/C FT4
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Independently of how the previous eftorts might
change the playing field, there are still questions to
be answered when referring to specific processes in

AdS supergravity.
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Dolan, Nirschl and Osborn

Gave an expression for the four-point function of 1/2-BPS operators belonging
to representation of in N'=4 superconformal theories at strong C()llplil‘lg
and large NV with

Observation
Large N SUGRA AdS correlation functions reduce to a sum of contact
interactions

Dy an(@r o F) = S [ S Ty (i)

For n=3, the integral reduces to the standard form for the three-point function.

For n 4, the inlcgml can be L'.\lu‘cs.\ul n terms ul-\'cl another Illm'litm, im{t}wndtnl

of d, of two conformal invariants #, and . Namely, Pa,.a,.a,.a, (., v)

Da,ayaca (0, oy, ry) =5 TR s Da,aaga(ur)
| A ] '
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All known SUGRA results reduced to a sum of D-functions, of the form

l).r_p{'._"j.f‘(”- '“) tor /j, ~ P

‘These have a series expansion in powers of «, 1-v, in which terms of the form /5g u are also
present. [,u;: terms are inlm‘]n‘clul as arising from the lc-.u{ing' term in the 1.,"1'\"'cx|1;11|siml of the

anomalous dimensions of long multiplets.

Long Multiplets AA Superconformal symmetry

nm,l
Anomalous dimensions arise only for long multiplets where the lowest

dimension operator belongs to ,scale A and spin

OPE analysis / Ward identities demand that long multiplets may only be present for

,and anomalous dimensions are obtained tml_\' for multip]cl.\' with twist

Uﬂitilfit\f U!lil’all‘ity bound in su}wrum!}n‘nml representation theory only

requires

So long multiplets with twist must be absent from the OPE of two CPOs in the

large NV limit.
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Short multiplets B,,,,, and Semi-Short multiplets Crm.l

Contributions without anomalous dimensions correspond to operators in short and semi-

short nmlli}\lcls, w/ lowest dimension operator hclunging to cscale and spin
or and spin
12n+1+2 ] ‘ ] ) .
A”,“_[ et ('nm.n’ [ ('u FlmJd—1 " 0 m n
! J 1 =1
( nm,—1 7~ [’H lm
Only such short or semi-short multiplets contribute to the OPE for twist This is,

long multiplets which decompose in semi-short multiplets are the only ones contributing to
the OPL.

Observation from Sugra results for p=2
‘The only twist two singlet operator necessary in the OPE for + | is when

This is, g'cn‘rcs}mnding to the stress-energy tensor, All other ]L".uling twist two

singlet operators belonging to long multiplets were absent for any
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The disappearance of twist 2 operators belonging to long
multiplcts at strong coupling requires a non-trivial
cancellation between the free field contributions at order

O and the leading non terms from the dynamical
D-functions.

Hence the OPE for large NV at strong coupling Only has
contributions from multi-trace operators with anomalous
dimensions suppressed by powers of

This fact was used as a gu1d1ng pr1nc1ple to conjecture
the form of the dynamical piece of the amplitude at large NV
and strong coupling
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Direct evaluation of the amplitude
<C)‘.3C)'_’C)n C)u>

in AdS supergravity, provided further evidence for the
DNO conjecture.

[deally, we would like to evaluate the most general four-

point function of CPOs of arbitrary conformal weight,
but this is a step too far with current techniques. We settle for:
I ]

(Ok 4205420, 10,4 1)

Which is a next-next-extremal process as:

.A| ‘AgiA;{ A] |
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Direct evaluation of the amplitude
<C)'.3C)'._’C)HC)H>

in AdS supergravity, provided further evidence for the
DNO conjecture.

[deally, we would like to evaluate the most general four-

point function of CPOs of arbitrary conformal weight,
but this is a step too far with current techniques. We settle for:

(Ok 42054120, 4.0, 4 1)

Which is a next-next-extremal process as:

AI ‘AB’A.". AI |
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When there is an additional symmetry reducing the number of coefficient functions

further to 2.

Wiard Identities and dynamical considerations force the function to split into two distinct

picces:
G(u,v;o,7) = Go(u,v;0,7) + s(u,v; o0, 7)H;(u,v;0,7)

The first rnrrcs}mnds to the contribution coming from Free Fields. The sccond contains all the

non-trivial dynamics. Here

stuvi0,7) =v+ouw+ ru+ovv—u—1)+7(l—u—v)+or(u—v—1)

We are interested in

Showing that the same structure is respected in SUGRA.
Comparing the form of // with the one conjectured by DNO.

Comparing the free field contribution as read off from the SUGRA amplitude
with the results obtained by direct computation in YM.

.-'\n'.il_\'sinf_f connections to results obtained l)_\' Buchbinder &'l'.\c_\'t]in in the limit in

which 7 becomes large.
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When there is an additional symmetry reducing the number of coefficient functions
further to 2.

Wiard Identities and dynamical considerations force the function to split into two distinct

pieces:
Gu,v;0.7) = Go(u,v,0,7) + 8(u,v;0,7)H;(u,v;0,7)

The first rurrts}mnds to the contribution coming from Free Fields. The sccond contains all the

non-trivial dynamics. Here

stuv;0,7) =v+ouww+ T u+ovlv—u—1)+7(l —u—v)+or(u—v—1)

We are interested in
Showing that the same structure is respected in SUGRA.
Comparing the form of 7/ with the one conjectured by DNO.

Comparing the free field contribution as read off from the SUGRA amplitude
with the results obtained by direct computation in YM.

.-'\n'.il_\'sinf_{ connections to results obtained l)_\' Buchbinder &'l'.\c_\'t]in in the limit in

which 7 becomes large.
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Free Field Theory at Large N

Using the propagator basis there are six diagrams to consider

Introduce a basis for U(N), and the basic two-point

function of adjoint scalars  {7,}.a = 1... N*
v v - . - . 1.
.1111 ]hl J m‘n‘]r' I‘I'( ]u]h) ‘)()rth
L] L] L] - - . I I l -
tr(T,A)tr(T,B) = _tr(AB) I,.T, = - NI
2 2
L] L] L] L]
(X.Xy) = 2000
We evaluate the two-point function of CPOs
. L] L .
tr(XP)tr(X7)) = 2p! te(1 I, ) te(1 I, )
i 4 2p tr(T r, )eel(l, T,
7 o otr(T | 1 pN?
‘ . and the three-point function of equal weight CPOs
te( X7 ) tr( X P tr( XV prpaps N
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l‘()lll‘-p()int functions need to be evaluated taking care of the number of ways in which one can

contract the npct';ltm's

te( X5 e (XN e (X e (X"t N E2k(k +2)%(n k) (n 4 K
(X5 (XY er( X" (X N 5k +2)°( k+1)
(tr( X’ tr( XN (X Moer(X NE(R + 2)5( n— 2)

r( X (XR (X" F)er( X Nk + 2)%(n - A k)(n — k

By normalising the two-point function so it has unit coefficient, the large NV free field result

for the correlation function reads:

1 - 9 o U”

Go(uyv30,7) = +73v/(k +2)(n — k)(n 4 A-){%r F (k4 1)(0-” + T:’) F (n '.2](n“ + T:‘)
t(n — K l)nruu}
)
Notice that in the limit in which , the result becomes:

1 ) \ y . .2 2
Go(u,v30,7) = 3 V/(k +2)3(3k ‘3){2A-(l b o? 4 —w”,,) - (k A l)(nu Frl 4 orl )}

N? v? v v
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Evaluating Correlation ﬁlnCtiOIlS in AdS

supergravity

Write down 5d effective lagrangian
Evaluate Witten Diagrams

Evaluate effective vertices and quartic couplings

Simplify and rewrite in terms of D-functions
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Witten Diagrams

A A AY
A
A, YN A
Scalars m?
Vectors M3
Tensors f(2k)

plus a contact diagram

t-channel

o

m< =n(n —4)
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The five-dimensional lagrangian reads:

L= Lo+ L3+ L
Represent the solutions to the equations of motion in the form:

) _ .0 ~ ) 0 1 . .0 r
8p =8,+ 8 Ay=A, + A, Guv = G, + v

where the fields with the “0” superscript are solutions to the linearised equations with fixed
lmund.n‘_\' conditions and the tilded fields represent the fields in the bulk with \-;um}nng

boundary conditions.

Express the tilded fields as integrals on the bulk, by introducing corresponding

Green'’s functions.

Fvaluate the on-shell value of the action.

We still need to evaluate the effective couplings coming trom integrals over the five-sphere.

Integralsin S’

How do these expressions relate to the standard techniques in the literature? The typical

scalar cubic coupling has the form

Al 1215 “/T: / YA]-_‘ }'Af_' YA—!: Ay23(ki, ka, k-’iN(H::,A-. .n|("|ifl.k,.u\("\{ul.k 0,0 )
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\\"l 1¢1¢

W +[ v/ w1, 7 vl
<( 0,k ,0 C 0,k2,0 C 0,ks,0 ) C ( .( I

tientagJleoJag Jreedaag bl da

and the C¥ form a basis of symmetric traceless tensors in SO(6). Generic exchange integrals
contain eftective couplings of the form:

/ '] 12 D \ / .4 1] v5 \
\( .'“( .f’,'( [0 k.0 "'-( ,w;( m( Ok 0/

Contracting them give raise to Kronecker deltas, so the higher the representation, the

more complicatcd it gets. The original SUGRA induced 4p functions that were

calculated, ump]n_\'ul the formula explicitly.

("" ; ('{l . Xﬂ; X fS.II, I..A(\'_, R Iy . & 2k) . . 15 45
ko bt = yisiday ' oA i

For generic representations it was clear one needed to do SOlnCthillg different.
In fact, these eftective couplings coming from the sphere can be expressed as eigentunctions
of the Casimir operator:

L? =1L, La L*Y (0.7) = =2CY (0. 1)

Up to a normalisation constant, cach function Y can be identified with an
irreducible representations of , $0 Ynm corresponds to the

t‘cprcsvm;uiun
with Dynkin labels
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Determination of the l'lOl‘Il’l&lliSill'i()ll constant for the ,lep case was done lv_\‘ L‘,\'plirit

calculation with lower p cases (p=1,2,34). For the k+2k+2n-k n+k this was not enough.

Define spherical harmonics transforming in the

representation ot SU(4) t c S°

Given that the basis of Iul;lll}' symmetric tensors is orthonormal, we can fix z(4)

sl S
/ }A_ h,‘ u,ﬂ-,é’ Iz,
JSh

50
2(k) V:’.z;\- Uk + 1)(k +2).

One can prove that:

so it 1s possible to establish the result

PR

Vo =z (k) (1 )

Vi = 2(k)C! , €€
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A typical integral arising in AdS superg

sravity calculations is of the form

[_ @ [ a0t €0 o DR Q\E ta €)'

where we are summing over the representations being ml

[t mive
Js2 @R [ du(ty - &)% (2 - €)% T, V(€)Y () (s - & (?n-.-su)*‘*

N ‘
s Ky lkalkalks! (ka+2) ks Lk k(. 1%
= 2L - [-gl‘.._-—gl‘.l‘g“.-..-_l;”"(.i: Tex FA -ty kg —ky ( )(tl Y t'.') '(51 % t'_') o 7
where
: +b+2n+1)!
(a+b=2n) _(a+b+2n ~(a.b)
Sty o (G )= i Yax (@7)
- 1
b 5k + Ky + ky + ky)
a ,I,U. ky — ky — ky) b= _(k ky = ky — ky)
1 i1
Tist = ',u b ke, + k), ag = 5 (k +k; — k)
The is a two variable harmonic polynomia.l of degree , which correspond to the
e $ 3

SU(4) representation with
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A l‘ypiC‘.l] intcgml arising in AdS supergravity calculations is of the form
/ ol [ Aty - €)% (b2 €2)" D V(€)Y (€)(ts - €)™ (ta - €2)*
J S J SO I\

where we are summing over the representations being exchanged. It gives

[ d2y [ o dS2 (¢, )R (ta €)Y, Y." (& ”}_.[‘ (€2)(ts - Ea)*(ty - Eo)ke

wi kilko!kslka!(ks+2) ~k Y-k ks b
TT (arane D) (0n s 2lerartannel Fha—ky ky—ky (O T)(E1 - 82) =750 (Ey - 2)" (Ey - £2)* (81 - 22)
where \
W(a4+b+4+2n), (”‘ 1 b f 2” f ]'}r r(a,b)
]fh a,a+b {(T‘T) H.!’J! }HH (U'T}
. 1
) (K ko + ky + ky)
2
| ! :
a _J[A ky — ko — ky) b (ko + kg — Kk k)
1 - !J o
o EIA, k, + k) o0 ;)J.. ki, — k)

The is a two variable harmonic polynomial of degree , which correspond to the

SU(4) representation with
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[he can be expressed in terms nt'Legendre Polynomials

(a,b) (a,b) (a,b) ab), -
1)“':"(1}(”' "7) = P”-hl (y)["'“ (l) . [)m ( )I,H'-l ( )
y—1
where
Lot 1
o= 7u+1)@F+1) =11-9Q1-7)
SO
“(ah) I 2(n4+1 ) a+btn+])! (a.b)
}"“' ~ (a-+1),, (b+1 ) o (40420 +2)! l,'””

This result alre: ady gives the correct normalisation factor. For i instance, an exch'1
dlagram will then contain expressions of the form

YNNI N / / Y Y" ZY YA AV IS

—me -
e — ¢ —

~ +(i ,>._.. —
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The can be cxprusscd in terms of chcndrc l)()lyll()lllialls

(a,b (a,b) (a.b \ (a.b)
(a,b l)u!. 1'(!‘,)[),”J (U) I)”JJ [-U)[)n ‘» | (U)
Pam " (0 )
' y—y
where
1 |
o=y Iy +1) r=,( y)(1—y)
50
~(a.b) 20m+ 1) a+b+n+1)" yab)
)rrm (a+1),, (b4+1),, (at+b4+2n+2)! l rm

This result already gives the correct normalisation factor. For instance, an exchange
diagram will then contain expressions of the form

3 rlyyrls RV IRV IR VI ER VI I
Arop, 1 @ryn,1 *-./ / };_ ’;_. 2 }-"}a }x.}h,
J S JSSH !

~ :(k;):ux-:,:ku:(‘An:/ s [ Sty - €)' (ta - €)% DY (€)Y (€2)(ts - &) (84 -
J S J 5 j

rha’
rs

Page 38/46



but using the formulas before, we can immediately express these in terms of classical
fe] p

polynomials in o, 7

‘I(':u_ |.('{ix_ ||('::A j".('f ky |(‘f|:;.x._ |(“:|A 0/
(4 ) Rty )R (b - ) (8 - t2)? 2(ky )z (o) 2(ka) 2 (k) ki tkolkslka! (ks + 2) (ks + 1)!' ¢ (ap) .
Ayos(ky, k2, ks ) Agas (ks kay ks) au=1 (125 + 2)og45 + 2)laslagys!  albl '
LM 200~ ags lagiplausslass! | _ (ks 21?}, ab) (g ) R )R (8 - 2)0(t - L)
(kg!)2z(ks)? gu-1  glp Tnn V1772 %15 /11 T8

“‘.?':I!"'::1"-"1'-61-“\1:! I y (ab) (4 t ]\ ki B YKV (s o )t ot J
k! alp "ot b ‘ bt

(hlﬂl‘ti(‘ interactions also contain CXPressions of the form @1250345 and in fact, (llc_\' are

the hardest to evaluate.

One first shows that the four-derivative COllp]iI]gS vanish, as they should so the

lagrangian is of the sigma-model type.

f 3 — Y4 EY i sl LV, PR
A _\‘ ] ] Y
l ; 1
L ( rn* ™m 2m \ B ¥ n " 1)
2 20 2 2
: | |
T N o Ch § "
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Results from Supergravity

(2m)" |/ (k)T (r k-2(n+k -2

2N\ k3 n k- 2)(n+ k- 2)T(k + 2)T(n — k)[(n + k

and we substitute the on-shell value of the action. In general, the result is extremely messy
and is written in terms of sums D-functions, 0.7 . Normalisation is such that the
two-point function has unit coefhicient. The amplitude as a whole can be shown

to respect crossing symmetry and is consistent with conformal symmetry,

(Q ("O(I'f/]-{'ft'ﬂff ({/‘0}"/:'1' ()

i L k4 1)%(2 1wl
2k )
! 1) (v, D
)k 3)
k 2)(1 ) [y 1
K 2)(r k 2
( .i k+1))2uD
(2k §) /

but one can show, that cvery coefhicient function can be reduced to a singlc D-flll]Cti()l].

{-I(”"f‘) 2”-1)}\"'._’#"..’ n—k n+k+

)
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When l'cdun'inj_: to l)-flll'lCtiOl'lS, one needs to be mindful of cases in which one of the

conformal weights becomes zero:

DA, A,y +18:+1 T UDA 18, +18,8, T VDA Ay 418418, AL +As+A5 A,
['(A)(A2)I(A3)

This fact leads to finite pieces which will determine the “free field” contribution to

the correlation function as read from supergravity.

Final Supergravity amplitude:

k + 2)2 k -k | ‘
G(u,v,0,7) v ) (”._ )(n ){(A' +1) (rru. . ’T“) +(n—k l](r"r”

1 P K
- }.q(u.. v, o, T Kk Dp—k ntk+2 k+2 k+2(u,v)
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Dynamical piece of the amplitude:

V(k+2)4(n—k)n+k)

n—~k_ .k
= ‘ ‘ ) ")r. -+ 2 k=2 k+2 , U
N2(k+ D20(n — k= 1)% ¢ Drok ntke2 k=2 kr2(U V)

Hi(u,v) =

This result supports the DNO conjecture and the known field-theoretic

arguments for the partially non-renormalised form of four-point
amplitudes of CPOs.

[n fact one could then conjecture that the most gcncrzll next-next-to extremal process
will have the form (at strong coupling, large N)

VP1P2pP3pa

G(u,v;o,71) N2

{(P; L)ou + (p2 1)7“ t(p3 — 1)oT
v v
1

s(u.v:o. P, Pl '.fl)l 42 P . )
[ (p, DT (ps — Dl (ps — 1) (u,v; o, 7)u1 D3 pa+2 p1 p3 (U r]}

which in turns suggests that the DNO conjecture can be generalised and the generic
t‘cnn‘—lminl -.nnpliludr of CPOs with different conformal wcij_[hls, can be given in closed

torm.
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Summary & Conclusions

We have given further evidence for the DNO conjecture (and its
generalisation) which specifies that the dynamical piece of the strongly
coupled large N four-point amplitude of CPOs in N=4 SYM

theory is determined by specific combinations ot D-functions.

[n particular, in the next-next-to extremal case, the dynamical
contribution is determined by a single Sillgle D-function. The result is

consistent with SllpL‘I‘L‘(}llf-()l'll'l;ll S}’l]lll'l(.‘l'l'_\,’.

The DNO conjecture could be generalised to determine the most
1

general form of the dynamical piece of the tour-point amplitude for

generic CPOs.

Maybe worth looking at more examples making use of recent
developments (?)
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And, at the end of the day, this is

: another non-trivial check of the
AdS/CFT correspondence

Thanks for your attention

Page 46/46
Pirsa: 11110118



