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between DOF(CFTyy) and DOF (CFTyR)

Introduction

Is there a function
DOF: M —=R, M= {all CFTs}
such that if CFTyy — CFTx by some relevant deformation then

DOF(CFTyy) > DOF(CFT;g)

One can also try to establish a monotonic function interpolating
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Introduc_tion

Applications of DOF (if exists)

M |f solutions to 't Hooft's anomaly matching conditions are too
complicated and require many fields, a contradiction with

H If the breaking of some symmetry entails too many
Nambu-Goldstone bosons, a contradiction with
DOF(CFIyy) > DOF(CFT;g) implies no symmetry breaking.

B The space of CFTs can be foliated and the flow has a fixed
direction. No cycles exist in the space of theories. If

CFT4 — CFTg by a relevant operator, no relevant operator can
cause CFTg — CFT},.

H Applications to Condensed Matter systems.
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DOF(CFTyy) > DOF(CFT;r) can establish symmetry breaking.
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Introduc__tion

M 0+1: a promising proposal exists (the “g-theorem,” by Affleck and
Ludwig), proof only in special cases by Friedan et al.

¥ 1+1: Solved by Zamolodchikov, his answer: DOF(CFT) = ¢,
where c is the central charge of the two-dimensional conformal
theory. In the end of the talk we will give a new proof of this.

W 2+1: Very inspiring proposal due to Myers and Sinha. Further
elaborated on by Jafferis,Klebanov,Pufu,Safdi. Evidence consists
of some N = 2 models, perturbative fixed points, holography.

®3+1: Cardy (followed by Osborn et al.) proposed DOF(CFT) = q,
where a is the Euler trace anomaly. Evidence consists of BZ fixed

points, SUSY, holography. Today we will develop some new tools in
QFT to prove this.
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Introduc;_tion

For a free (thus conformal) theory in four space-time dimensions

1 11

a= W (#scalum T ?#Weyl fermions + 62#9““95 fields)

Itis some measure of the number of degrees of freedom. One can

also prove a > 0 for every CFT (see also Hofman,Maldacena :
Kulaxizi,Parnachev).

Notably, other intuitive measures of the number of degrees of freedom
like the free energy, do not work in general ,
(Appelquist,Cohen,Schmaltz).
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Introduction
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Kulaxizi,Parnachev).
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Outline‘”’

® Conformal symmetry breaking and trace anomalies
¥ The Little a-Theorem

B General RG flows and the a-theorem

B Examples

B A new proof of Zamolodchikov’s theorem

® Open questions
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Conformal Symmetry
Breaking

Consider a spontaneously broken CFT. The Nambu-Goldstone
theorem tells us there is a massless particle, the dilaton 7(z).

We follow the rules of nonlinear Lagrangians. Introduce a space-time
BACKGROUND metric g,..,(z) and demand that the theory is invariant
under diff xWeyl transformations

2
Cfron == G 0fre ¢ T—T+0

Diffeomorphisms act as usual, with the dilaton a space-time scalar.

Useful to denote § = e~%"g,u, Since it transforms as a metric under
diffeomorphisms and is Weyl invariant.

Pirsa: 11110115
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Conformal Symmetry
Breaking

Most general theory up to two derivatives is
)|~
f? [ diz/-det (A + ER)

| where R = §““R,,[g]. f is the “decay constant”

If the dilaton really comes from spontaneously broken conformal
symmetry the vacuum degeneracy cannot be lifted and hence A = 0.

Let us go back to g,,, = 7,,,. We get

N = f2/.d'l:f:e'2"(87')2

We see that this is an ordinary free massless

particle. The equation of
motion is

O7 = (9r)?

Pirsa: 11110115
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Conformal Symmetry
Breaking

Consider terms in the effective action with more derivatives. With four
derivatives, one has three coefficients

fd4$\/ —9 ("'\'41}‘%2 + "‘72&;21:; < R3R;2wpcr)

There is a better basis

Bu=Riupe ~AB B Wy = Ry = 2R, + LR

uvpo nypo

Thus, we can also write

/ddz\/ - (niffz + ky By + kW2 )

Ky po

Pirsa: 11110115
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Conformal Symmetry

fd“w\/—g (n’l R% + kLB, + RQW;,W)

We see that «; term is a total derivative. If we set g, = 7,,,,, then

guv = €7, is conformal to the flat metric and hence also the
. term does not play any role.

So only 7 matters in flat space. A straightforward calculation yields

[ diev/=gt

= 36]& (@7 - (87)?)*

Juv=TMuv

But the combination [J 7 — (67)2

Thus, the diffxWeyl invariant terms in the Lagrangian do not yield a
genuine tree-level four-derivative interaction.
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= 0 by the two-derivative theory eom.
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Conformal Symmetry
Breaking

Most general theory up to two derivatives is
10:
fzfddw\/—detg (A+ ER)

where R = g““R,,,[9]. f is the “decay constant.”
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Conformal Symmetry
Breaking

Most general theory up to two derivatives is

f2/d4 —det g (A+ SR)

. where R = §““R,,,[g]. f is the “decay constant.”

If the dilaton really comes from spontaneously broken conformal
symmetry the vacuum degeneracy cannot be lifted and hence A = 0.

Let us go back to g, = M- We get
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We see that this is an ordinary free massless particle. The equation of
motion is

Oz = (d7)?
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Conformal Symmetry
Breaking

Consider terms in the effective action with more derivatives. With four
derivatives, one has three coefficients

/dd.’c\/—_g} (5132 r K2Rﬁu T &3-&;2114)0)

" Thereis a better basis
— Jrr 1
Ea=Ryp —4R,, +R, W2, =R, —2R% + 13

uvpo nvpo

Thus, we can also write

/d4:c\/ - (r:’if??' + kp By + kW2 )

uvpo
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Conformal Symmetry
Breaking

[ dtaV=5 (B2 + w3 B+ W)

We see that «; term is a total derivative. If we set g, = 7,,,,, then

Juv = €%, is conformal to the flat metric and hence also the K4
term does not play any role.

So only x; matters in flat space. A straightiorward calculation yields

/d"z\/ —§R?

= 36 / d'z (O 7 - (97)?)°

Juv="Nuv

Thus, the diffxWeyl invariant terms in the Lagrangian do not yield a
genuine tree-level four-derivative interaction.
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But the combination O 7 — (97)2 = 0 by the two-derivative theory eom.
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Conformal Symmetry
Breaking

Better said, there is no s% + ¢2 + 2 term in the low momentum
expansion of the scattering amplitude of four dilatons.

We will later explain that such a contribution must be nonzero by
unitarity so something must save the day.

Pirsa: 11110115
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Trace Anomalies

So far we only examined functionals of g,..., 7 which are diffxWeyl
invariant. But all physical theories have trace anomalies.

The most general anomalous functional satisfying the WZ consistency
conditions is

OgOanomaly = /.d{l:t:\/—ga (chVW - aE,;)

We need to solve for S,

nomaly-

We solve for Sanomaly iteratively, by first replacing o on the right-hand
side above with = and then keep fixing.
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Trace Anomalies

1
Sanomaty = —a/d4$\/—_g(TE4+4 (RFV = 59‘“’.&) 0p78ur—4(87)2D 1r

+2(a7‘)4) + cfd'lxv —gTWErzpa
There is a self-interactions of the dilaton even in flat space due to the
‘non-Abelian” nature of the a-anomaly.

This is reminiscent of the Wess-Zumino term in pions physics that
leads to the universal KX — 77 decay.

Pirsa: 11110115
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Trace Anomalies

1
Sanomaly = =@ f d'z\/~g (TE4+4 (R‘“’ = 59“”3) 8,79, 7—4(0r)’0 7

i +2(8'r)‘1) - c/d‘l:z:\/ -—gTWfVW
There is a self-interactions of the dilaton even in flat space due to the
‘non-Abelian” nature of the a-anomaly.

This is reminiscent of the Wess-Zumino term in pions physics that
leads to the universal KK — mrr decay.
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Trace Anomalies

Setting g, = 7., and using the zeroth order equation of motion

=2¢'z‘/'¢'f‘:c(87')'I

Sanomuiy
Juv=Tuv

| Letus conclude: No diffxWeyl invariant terms give rise to the
scattering of four dilatons at the order of £4. Such a contribution,
however, arises from the anomaly functional, and its coefficient is fixed
by the a-anomaly.

We therefore arrived at a low energy theorem for dilaton scattering.
(Analogous to some soft pion theorems.)

3 1" Diverse Dimengiong . 1624
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Trace Anomalies

Setting g, = 7., and using the zeroth order equation of motion

= 2a / diz(97)"
Juv="Tuv

Let us conclude: No diffxWeyl invariant terms give rise to the
scattering of four dilatons at the order of £%. Such a contribution,
however, arises from the anomaly functional, and its coefficient is fixed
by the a-anomaly.

Suuomuly

We therefore arrived at a low energy theorem for dilaton scattering.
(Analogous to some soft pion theorems.)
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Trace Anomalies

Our first iteration
Sanomaty = / d'zy/=gr (Wi, oo — aBs) + - .

The variation of this includes the anomaly but this is not the whole
answer because E; is not Weyl invariant.

Thus, the c-anomaly is “Abelian” and the a-anomaly “non-Abelian.” The
a-anomaly is therefore quite distinct algebraically from the c-anomaly!

The final answer for Sanomaly iS:

Page 26/67



Pirsa: 11110115

Trace Anomalies

Our first iteration
Snnomn!y = /d'l:p\/ —{rnr (cwﬁvpa - aEq) 4+ eee

The variation of this includes the anomaly but this is not the whole
answer because E; is not Weyl invariant.

Thus, the c-anomaly is “Abelian” and the a-anomaly “non-Abelian.” The
a-anomaly is therefore quite distinct algebraically from the c-anomaly!
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Trace Anomalies

So far we only examined functionals of g,.,., 7 which are diffx Weyl
invariant. But all physical theories have trace anomalies.

The most general anomalous functional satisfying the WZ consistency
conditions is

Jasanomaly = /dqx\/ —go (‘:qupa o O’E"l)

We need to solve for Sanomaly:

We solve for Sanomaly iteratively, by first replacing ¢ on the right-hand
side above with ~ and then keep fixing.

%3 in Diverse Dmenmions - p. 13
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1

Digression: Unitarity

Consider any massless spin 0 particle. Its low energy 2 — 2 scattering
is given by
A(TT = 77) = os® + t° + u®) + O(E®)

In the forward limit we set ¢ = 0 and get

|

A(TT = 77) = 2a8® + O(s?)

Looking at.4/s? it has a branch cut and a pole at the origin. Closing
the contour we get

Hence, a > 0.

Page 29/67
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Digression: Unitarity

Consider any massless spin 0 particle. Its low energy 2 — 2 scattering
is given by
A(rt = 77) = as® + 2 + u®) + O(E®)

In the forward limit we set ¢ = 0 and get

A(TT = 77) = 2a8® + O(s?)

Looking at .A/s? it has a branch cut and a pole at the origin. Closing
the contour we get

i l/' ds,cr('r'r—)— X)
s’ §fe

Hence, o > 0.

“ N3~ 1T
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1

Digression: Unitarity

Consider any massless spin 0 particle. Its low energy 2 — 2 scattering
is given by
A(rr = 77) = as® + 2 + u®) + O(E®)

In the forward limit we set ¢ = 0 and get

A(TT = 77) = 2a8® + O(s?)

Looking at A/s? it has a branch cut and a pole at the origin. Closing
the contour we get

o= l/ ds,o'(TT——) X)
s'>0

Hence, o > 0.

7
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Digression: Unitarity

Such unitarity constraints have been used in many contexts, e.g. chiral
Lagrangians (Pham and Truong), W and Z bosons (e.g. Distler,
Crinstein, Porto, Rothstein), higher fermion interactions (Adams,
Jenkins, O'Connell), SUSY (Dine, Festuccia, ZK).

Also an important interpretation of such analyticity constraints was
given by Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi. They
found applications for theories of modified gravity.
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Digression: Unitarity

Consider any massless spin 0 particle. Its low energy 2 — 2 scattering

is given by
A(rr = 77) = a(s® + t* + u?) + O(E®)

In the forward limit we set ¢ = 0 and get

A(TT - TT) = 2&32 + 0(33)

Looking at.4/s? it has a branch cut and a pole at the origin. Closing
the contour we get

Hence, o > 0.
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The Littlea-Theorem

Consider a conformal field theory, CFTy v (with anomalies ayv, cyv),
which has a moduli space of vacua {VAC}.

Pick a conformal symmetry-breaking vacuum. The dilaton must be
massless. In addition to it, there may be a nontrivial IR CFT, denoted

CFT ;g (with anomalies a;g, c; ).

Anomalies in the UV and IR must agree by the usual logic of 't Hooft
(emphasized in Schwimmer, Theisen).

This does not mean the a- and c-anomalies of CFTy;y. ; » match, rather,
that the difference must be compensated for by the dilaton.
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The Little a-Theorem

Consider a conformal field theory, CFTyv (with anomalies ayv, cuv),
which has a moduli space of vacua {V AC}.

Pick a conformal symmetry-breaking vacuum. The dilaton must be
massless. In addition to it, there may be a nontrivial IR CFT, denoted
CFT ;g (with anomalies a;p, c; ).

Anomalies in the UV and IR must agree by the usual logic of 't Hooft
(emphasized in Schwimmer, Theisen).

This does not mean the a- and c-anomalies of CFTyv ;1 » match, rather,
that the difference must be compensated for by the dilaton.
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The Little a-Theorem

The matching of the total anomaly forces the effective action in the IR
to take the form

Stalgus] = OFTialgun] + 5 / dioy/ =GR+ o / diz/—gR?

+K /dd.z\/ pup,
s — 4 — v 1 v
(ayv am)/d x\/_g('rE4+4 (R“ E Eg“ R) 9,10, 7—4(07)*0 7+2(07)
+(cuv — ¢ip /d z\/—gTW. WW

Here o/, =
€re arp = QIR + Gscalar, Chp = c1R + Cycarar. The shift is due to the
usual quantum anomaly of the dilaton.

Honormrai oz 1t

Pl
00N Lroud Flows m Diverso Dimanese
Uverso Dimongsons D. 20M8
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The Little a-1heorem

The matching of the total anomaly forces the effective action in the IR
to take the form

Srr|guv] = CFT1R[gu) + = f2 ] d'z\/—gk R+—- f d'z\/—GR?

+K ]d%w/ #,,po
; 1
—(ayv—ajp) /d‘x\/—_g (TE4+4 (R‘“’ - —g’“’R) 9,0, 7—4(07)*0 T+2(97)
+(cyy —cm fd z\/—gTW. xwpﬂ

Here o/, =
R = ARt Cscalar, C1p = CIR + Cyeqiqr- The shift is due to the
usual quantum anomaly of the dilaton.

Henormalizaton e w Cin
T e Fiowa in Diverse Dimongions - o anma
lld 0. 20
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The Little a-Theorem

The matching of the total anomaly forces the effective action in the IR
to take the form

Stalgus) = CFTinlguu] + 5 f° / dioy/GR+ o / d'z/—G 2
+K / d'i.c\/— o

—(ayv—a}p) / d'z/=g (TE4+4 (R‘“’ - 1g‘“’R) 9,70, 7—4(07)*0 T+2(07)

+(cuv — V=
(cuv —cip /d.z: gtW xwmr

Here o}, =
€re arp = GIR + Gscalary S = 1R + Cocarar. The shift is due to the
usual quantum anomaly of the dilaton.

et

abon Group Fiow T
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The Littlg a-1 heorem

We now examine the effective action with a flat space-time metric
Guv = Tuy. The result is

Str=CFTir
i / d'z (£2%(0r) + (@ 7 = (97)%)° + (auv — al) (4(87)%0 7 — 2(87)"

We see that the difference between the a-anomalies a;y — a1
appears in front of some specific four-derivative and thus

— /
A(S, t) — M (82 L t2 + u2) SE

f4

Thus,

s oltr—=> X
ayy —arp = — el = 2.9)
IR ds 7 S0

8'>0
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The Little a-Theorem

The matching of the total anomaly forces the effective action in the IR
to take the form

1 . ~
Strlgus] = CFT1r[gu] + - 2 f d'z/-jR + % f d'z\/—GR*

++ / d'z\/—gW2,,,
et il ! e v 1 v
(apv a,R)fd“m\/_g(TE4+4 (R“ - §g“ R) 9,0, 7—4(07)*0 7+2(07)
uvpa T °

+(CUV — C'}R)/d"w\/ —gTW2 + e

' e
Here Arp = QIR + Qgcqlar, C}R =CIrR +¢C

scalar- 1N€ Shift is due to
usual quantum anomaly of the dilaton. g

Renormaiizaton Groug Flows i Devars
940 Fiows in Diverse Dimengions D. 2018
ons 0
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The Little a-Theorem

We now examine the effective action with a flat space-time metric
Guv = Tuy- The result is

Str=CFTir
+/d4:1: (fze‘?"((?'r)2 +x(07- (81')2)2 + (ayv — a}p) (4(87‘)2D T — 2(61-)4

We see that the difference between the a-anomalies a;;y — arp
appears in front of some specific four-derivative and thus

i
Afs,t) =Y —_2IR (s + 2 +u?) +...

ffi
Thus,

4
aUV"a’;R=I-/. ds’g—(:rlj_xl>0
T Jg'so g2
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The Little a-1heorem

This result applies to many highly nontrivial flows that can be
investigated (such moduli space are ubiquitous in SUSY). In fact, a
“counterexample” (recently revisited by Gaiotto,Seiberg, Tachikawa)
was supposed to utilize such a mechanism.

Let us now consider general massive RG flows.
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General RG Flows

Consider CFTyv which flows to CFT;r by adding a relevant operator

with typical mass M. (Wilson)

Conformal symmetry at short distances is broken explicitly by the mass
M. There is no anomaly matching.

However, explicit symmetry breaking is indistinguishable from
spontaneous breaking with a large decay constant.

THIS IS A VERY GENERAL FACT THAT APPLIES IN ALL
BRANCHES OF PHYSICS - IT IS ALSO KNOWN AS SPURION
ANALYSIS.

So the “little a-theorem” implies the strongest version almost
immediately, just need to close some little gaps.

“;“'J"':"‘:J-C'Z’JLJ"Q":.;r; . 2478
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General RG Flows

We restore (spontaneously broken) conformal invariance in every flow
as follows:

Denote (2 = e~7, we replace every mass scale according to
M; — M. We also add a kinetic term for this dilaton so in total

S = Smatter(®is MiQ) + f2 / d'z(99)*
This theory satisfies the operator equation

T# =0
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Gene(al RG Flows

We restore (spontaneously broken) conformal invariance in every flow
as follows:

Denote 2 = ¢~7, we replace every mass scale according to
M; — M;§2. We also add a kinetic term for this dilaton so in total

S = Suatter|Piy M;Q) + f2 /d“;c((f)Q)2
This theory satisfies the operator equation

T =

M
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General RG Flows

Since f appears as the coefficient of the kinetic term of the dilaton, we
see that the physical dilaton fluctuations couple to matter fields by
inverse powers of f and thus if we take

M, K f
the coupling between the dilaton and the matter sector is arbitrarily
weak.
So the original flow is unperturbed.

Now anomaly matching applies; the dilaton carries the difference
between the anomalies of the UV and IR theories.

We proceed as before, the IR action is:

Page 50/67



General RG Flows

- 1 T L | B P
S]R[gw,] = CF f;;f[guu] + f—)fz/.d‘.l, -'-_(jR -+ :}6 /dl£ —_(]RQ
-*-r:'/d’lm/—gﬁ/ﬁupa
: R 1 -
_(“UV—WR)/C{I(E\/—Q (TE-I+4 (R’w = QyFUR) OuT0,7—4(07)*0 7+2(87)’

+(cvv —c;,q)/d"w\/—grl«tfz g

unvpa

Thus,
1
LY == = ds’'
>0 §'?

and a monotonically decreasing function is defined precisely as before

Pirsa: 11110115 Page 51/67



General RG Flows

1 , O ‘, -z
S]R[gw,] = CFT[{{[gup] -+ 6f2/dl.'1,‘\/ —gR + 3—6 /dl$\/ —_(}Rz
-*-ra'/ddm/—gﬁ/’fupo
e 1 :
-(ﬂUv-am)/d’w\/—y(TE.Wl (R‘“’ - éy‘“’R) Out0,7—4(07)°0 74+2(87)"

+(cvv = cir) /d"w\/?gTWfUW =P

Thus,

U 8" >0 52

and a monotonically decreasing function is defined precisely as before
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Examples

Consider a free massive scalar

G= %/d”x (90) — M??)

It flows from the CFT of a single massless particle to the empty theory.
We can render this flow spontaneously conformally broken via the

dilaton

1
oL f d'z ((09)* — M2 " 9?)

We can now perform the path integral over ¢ and obtain an effective
action for the dilaton.

This is done by expanding the = dependent det(O + M2e=27) in
derivatives of 7.
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Examples

Consider a free massive scalar

6= %/d"r ((0)2 — M2®?)

It flows from the CFT of a single massless particle to the empty theory.
We can render this flow spontaneously conformally broken via the

dilaton

1 ~
S = 5 /d'l:z: ((0®)* — M2 '2T<p-)

We can now perform the path integral over ¢ and obtain an effective
action for the dilaton.

This is done by expanding the  dependent det(T + M2e=27) in
derivatives of 7.

7
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Examples

There are many nontrivial cancelations, and the answer in fact
eventually matches the answer allowed by our analysis of conformal
invariance

k (O7 - (07)2)° + 4a(07)20r — 2a(07)"

This agreement depends on infinitely many consistency checks, for
instance, because the heat kernel above terminates at four TS.

We also get from the expansion of the heat kernel o = S0lETas
expected. g
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Examples

Consider a free massive scalar

6= % f d'z ((9)2 — M®?)

It flows from the CFT of a single massless particle to the empty theory.
We can render this flow spontaneously conformally broken via the

dilaton

l . 2
S= f d'z ((09)% — M%7 ¢?)

R

We can now perform the path integral over ¢ and obtain an effective
action for the dilaton.

This is done by expanding the dependent det(0] + )2 =) {in
derivatives of r.
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Examples

There are many nontrivial cancelations, and the answer in fact
eventually matches the answer allowed by our analysis of conformal
invariance

k (Or — ((')7')2)2 + 4a(07)°07 — 2a(07)"

This agreement depends on infinitely many consistency checks, for
instance, because the heat kernel above terminates at four rs.

We also get from the expansion of the heat kernel ¢ — SoTa= 77, S
expected.
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Examples

We also demonstrate the procedure by studying a general perturbative
flow. Consider a CFT with an operator O of dimension A = 4 — ¢. Take

¢ < 1. Then deforming

0S = Au‘0
we have 8y = —e)\ + CA? + ... Thus
A =¢/C

is a nearby nontrivial CFT,

The massive flow evolving from A = 0 to \. can be rendered conformal
by writing

05 = Ae"(z)u)u 0
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Examples

Integrating out from the scale . to a lower scale we find that one
generates at four derivatives the effective action

5k (Or — (87)2)" + 46a(7)*Tr — 26a(d7)" .

This again depends on non-trivial consistency checks.

One finds da = —V0l(S*)336 log 4 which can be integrated to give
" A.
Aa = —Vol(S5%) / Brd
J O

Hence, the total change in a is minus the area under the beta function
curve.

This formula agrees with explicit perturbative computations of the
change in the a-function.
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Examples

Integrating out from the scale y to a lower scale we find that one
generates at four derivatives the effective action

5k (Or — (97)2)° + 46a(67)*Tr — 260 (d7)" .

This again depends on non-trivial consistency checks.

One finds da = —V0l(S5?)336 log 1 which can be integrated to give
v A.
Aa = —Vol(S?) / BrdA
Jo

Hence, the total change in « is minus the area under the beta function
curve.

This formula agrees with explicit perturbative computations of the
change in the a-function,
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Zamolodchikov’s
Theorem

Here we explain how to prove the C-theorem in two dimensions in the
spirit of our ideas.
As before, consider the dilation coupled to some background metric.

One can write many diffx Weyl invariants, but with two derivatives there
is only one candidate [ ,/gR, which is a total derivative. So there is no
diffxWeyl invariant term with two derivatives.

We must invoke anomalies to find such a term. Indeed, there is the WZ
action for trace anomalies also in two dimensions

Swz = /\fg (TR + (07)?)

This is the sole source for two-derivative terms in the action.
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Zamolodchikov’s
Theorem

We again couple 7 as an auxiliary field that restores conformal
invariance. The coupling as before takes the form 77/.

Now that the theory breaks conformal invariance only spontaneously
we invoke anomaly matching to find that the coefficient of the WZ term
must be

Swz = AL/ \/y (TR - (07‘)2) :

We hence find that
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Zamolodchikov’s
Theorem

Fourier transforming this to position space we find
NCE= /1:2('1“"“(:5)1"‘1‘((])}(1235 > (0) .

This agree with the known results about the ' function.

Note that here we do not need a scattering matrix argument to
establish positivity, it follows directly from reflection positivity in
Euclidean field theories. In other words, it is just the statement that the
auxiliary field acquires a positive definite Kinetic term.
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|

Zamolodchikov’s
Theor_em

Fourier transforming this to position space we find
NCE= /xz(T““(:c)T“j((])}dzw > 0.

This agree with the known results about the ' function.

Note that here we do not need a scattering matrix argument to
establish positivity, it follows directly from reflection positivity in
Euclidean field theories. In other words, it is just the statement that the
auxiliary field acquires a positive definite kinetic term.
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Open Questions

B The “non-Abelian” structure of the Euler anomaly is important.
This leads to the universal WZ-like 2 — 2 scattering. It would be
interesting to understand better the algebraic (cohomological)
structure of this phenomenon.

B We have constructed a monotonic decreasing function that
interpolates between a; v and a; 5. However, we have not said
anything about gradient flow. This should be interesting to address.

® The dilaton is clearly an auxiliary object, itis a bookkeeping device
for four-point functions of the EM tensor. The fact that the

a-anomaly appears in four point functions is the key for positivity.
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Open Questions

M Interesting to understand the effective action of the dilaton on the
moduli space of A/ = 4 Yang-Mills theory and to compare with

expectations from strong coupling.

B These WZ-like dilaton self-interaction may have an interesting
manifestation in holography. Consider conformal symmetry
breaking in AdS spaces and try to identify the (perhaps geometric)
reason for the universality of the coefficient of this interaction.

M Generalization to 6d seems feasible.

¥ Odd dimensions ? (Even in quantum mechanics answer unknown!)
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Open Questions

N Interesting to understand the effective action of the dilaton on the
moduli space of A/ = 4 Yang-Mills theory and to compare with

expectations from strong coupling.

B These WZ-like dilaton self-interaction may have an interesting
manifestation in holography. Consider conformal symmetry
breaking in AdS spaces and try to identify the (perhaps geometric)
reason for the universality of the coefficient of this interaction.

® Generalization to 6d seems feasible.

® Odd dimensions ? (Even in quantum mechanics answer unknown!)
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