Title: Formulating Quantum Theory as a Causally Neutral Theory of Bayesian Inference

Date: Nov 08, 2011 03:30 PM

URL: http://www.pirsa.org/11110114

Abstract: Quantum theory can be thought of as a noncommutative generalization of Bayesian probability theory, but for the analogy to be convincing, it should be possible to describe inferences among quantum systems in a manner that is independent of the causal relationship between those systems. In particular, it should be possible to unify the treatment of two kinds of inferences: (i) from beliefs about one system to beliefs about another, for instance, in the Einstein-Podolsky-Rosen or "quantum steering" phenomenon, and (ii) from beliefs about a system at one time to beliefs about that same system at another time, for instance, in predictions or retrodictions about a system undergoing dynamical evolution or undergoing a measurement. I will present a formalism that achieves such a unification by making use of "conditional quantum states", a noncommutative generalization of conditional probabilities. I argue for causal neutrality by drawing a comparison with a classical statistical theory with an epistemic restriction. (Joint work with Matthew Leifer).

Pirsa: 11110114 Page 1/41

Pirsa: 11110114 Page 2/41

Pirsa: 11110114 Page 3/41

Pirsa: 11110114 Page 4/41

Pirsa: 11110114 Page 5/41

Pirsa: 11110114 Page 6/41

Pirsa: 11110114 Page 7/41

Pirsa: 11110114 Page 8/41

Pirsa: 11110114 Page 9/41

Pirsa: 11110114 Page 10/41

Pirsa: 11110114 Page 11/41

Pirsa: 11110114 Page 12/41

Pirsa: 11110114 Page 13/41

Pirsa: 11110114 Page 14/41

Pirsa: 11110114 Page 15/41

Pirsa: 11110114 Page 16/41

Pirsa: 11110114 Page 17/41

Pirsa: 11110114 Page 18/41

Pirsa: 11110114 Page 19/41

Pirsa: 11110114 Page 20/41

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Those not arising in a restricted statistical classical theory

Wave-particle duality

Interference

collapse

noncommutativity

Teleportation

entanglement

No cloning

Coherent superposition

Key distribution

Bell inequality violations

Quantum eraser

Improvements in metrology

Bell-Kochen-Specker theorem

Computational speed-up

Pre and post-selection "paradoxes"

Pirsa: 11110114 Page 21/41

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Those not arising in a restricted statistical classical theory

Interference Noncommutativity Entanglement Collapse

Wave-particle duality
Teleportation
No cloning
Key distribution
Improvements in metrology
Quantum eraser
Coherent superposition
Pre and post-selection "paradoxes"
Others...

Bell inequality violations

Computational speed-up (if it exists)

Bell-Kochen-Specker theorem

Bell-Kochen-Specker theorem
Certain aspects of items on the left
Others...

Pirsa: 11110114 Page 22/41

Classical

- R phase-space coordinates of a canonical system
- P(R) Probability distribution over R

P(R = r) probability that R=r

$$\sum_{R} P(R) = 1$$

Quantum

- A label for a quantum system
- ρ_A Operator on Hilbert space of A

No obvious analogue (yet!)

$$\text{Tr}_A \rho_A = 1$$

Pirsa: 11110114 Page 23/41

Classical

R phase-space coordinates of a canonical system

P(R) Probability distribution over R

P(R = r) probability that R=r

$$\sum_{R} P(R) = 1$$

Quantum

A label for a quantum system

 ρ_A Operator on Hilbert space of A

No obvious analogue (yet!)

$$\text{Tr}_A \rho_A = 1$$

Pirsa: 11110114 Page 24/41

	Classical	Quantum
State of knowledge	P(R)	$ ho_A$
Normalization	$\sum_{R} P(R) = 1$	${ m Tr}_A ho_A = 1$
Joint state	P(R,S)	$ ho_{AB}$
Marginalization	$P(S) = \sum_{R} P(R, S)$	$ ho_B={ m Tr}_A ho_{AB}$

Pirsa: 11110114 Page 25/41

The Three Pillars of Bayesian Inference

Belief propagation

$$P(S) = \sum_{R} P(S|R)P(R)$$

· Bayes' theorem

$$P(R|S) = \frac{P(S|R)P(R)}{\sum_{R} P(S|R)P(R)}$$

Bayesian conditioning

$$P(R) \rightarrow P(R|X=x)$$

Pirsa: 11110114 Page 27/41

P(S|R)

Normalization condition

 $\sum_{S} P(S|R) = 1$

Conditional state

 $ho_{B|A}$

Normalization condition

 $\operatorname{Tr}_B(\rho_{B|A}) = I_A$

P(S|R)

Normalization condition

$$\sum_{S} P(S|R) = 1$$

Conditional state

 $\rho_{B|A}$

Normalization condition

 $\operatorname{Tr}_B(\rho_{B|A}) = I_A$

See: Leifer, PRA 74, 042310 (2006)

Normalization condition

$$\sum_{S} P(S|R) = 1$$

Relation of conditional to joint

$$P(S|R) = \frac{P(R,S)}{P(R)}$$

Conditional state

$$\rho_{B|A}$$

Normalization condition

$$\operatorname{Tr}_B(\rho_{B|A}) = I_A$$

Relation of conditional to joint

$$\rho_{B|A} = (\rho_A^{-1/2} \otimes I_B) \rho_{AB} (\rho_A^{-1/2} \otimes I_B)$$

Normalization condition

$$\sum_{S} P(S|R) = 1$$

Relation of conditional to joint

$$P(S|R) = \frac{P(R,S)}{P(R)}$$

$$P(R,S) = P(S|R)P(R)$$

Conditional state

$$\rho_{B|A}$$

Normalization condition

$$\operatorname{Tr}_B(\rho_{B|A}) = I_A$$

Relation of conditional to joint

$$ho_{B|A} =
ho_A^{-1/2}
ho_{AB}
ho_A^{-1/2}$$

$$ho_{AB} =
ho_A^{1/2}
ho_{B|A}
ho_A^{1/2}$$

Normalization condition

$$\sum_{S} P(S|R) = 1$$

Relation of conditional to joint

$$P(S|R) = \frac{P(R,S)}{P(R)}$$

$$P(R,S) = P(S|R)P(R)$$

Classical belief propagation

$$P(S) = \sum_{R} P(S|R)P(R)$$

Conditional state

$$\rho_{B|A}$$

Normalization condition

$$\operatorname{Tr}_B(\rho_{B|A}) = I_A$$

Relation of conditional to joint

$$\rho_{B|A} = \rho_{AB} * \rho_A^{-1}$$

$$\rho_{AB} = \rho_{B|A} * \rho_A$$

Quantum belief propagation

$$\rho_B = \operatorname{Tr}_A(\rho_{B|A}\rho_A)$$

Two formulas for the joint probability

$$P(R, S) = P(S|R)P(R)$$
$$= P(R|S)P(S)$$

Classical Bayes' theorem

$$P(S|R) = \frac{P(R|S)P(S)}{P(R)}$$

Two formulas for the joint state

$$ho_{BA} =
ho_A^{1/2}
ho_{B|A}
ho_A^{1/2} =
ho_B^{1/2}
ho_{A|B}
ho_B^{1/2}$$

Quantum Bayes' theorem

$$\rho_{B|A} = \rho_A^{-1/2} \rho_B^{1/2} \rho_{A|B} \rho_A^{-1/2} \rho_B^{1/2}$$

Pirsa: 11110114 Page 34/41

Pirsa: 11110114 Page 35/41

Comparing causal and acausal correlations in Quantum Mechanics

	$\widehat{m{Q}}_{A},\widehat{m{Q}}_{B}$	\widehat{P}_A , \widehat{P}_B
EPR>	С	Α

	$\widehat{m{Q}}_{A},\widehat{m{Q}}_{B}$	$\widehat{P}_A, \widehat{P}_B$
id	С	С

Comparing causal and acausal correlations in Epistemically Restricted Liouville mechanics

$$P_{\mathrm{id}}(q_B, p_B|q_A, p_A)$$

 $\propto \delta(q_A - q_B)\delta(p_A - p_B)$

$$Q_B = Q_A$$

$$P_B = P_A$$

$$P_{ ext{EPR}}(q_A, p_A, q_B, p_B) \propto \delta(q_A - q_B)\delta(p_A + p_B)$$
 $Q_B - Q_A = 0$ $P_B + P_A = 0$

	Q_A , Q_B	P_A,P_B
P _{EPR}	С	Α

	Q_A , Q_B	P_A,P_B
P _{id}	С	С

Jeffrey conditioning

$$\begin{split} \text{Suppose } P(S) &= \sum_R P(S|R) P(R) \\ & \text{If } \quad P(R) \to P^{\text{post}}(R) \\ & \text{then } \quad P(S) \to P^{\text{post}}(S) \\ & \text{where } P^{\text{post}}(S) = \sum_R P(S|R) P^{\text{post}}(R) \end{split}$$

Suppose
$$\rho_B = \text{Tr}_A(\rho_{B|A}\rho_A)$$

If $\rho_A \to \rho_A^{\text{post}}$
then $\rho_B \to \rho_B^{\text{post}}$
where $\rho_B^{\text{post}} = \text{Tr}_A(\rho_{B|A}\rho_A^{\text{post}})$

Bayesian conditioning

Suppose
$$P(S) = \sum_{X} P(S|X)P(X)$$

If $P(X) \to P^{\operatorname{post}}(X) = \delta_{X,x}$
then $P(S) \to P^{\operatorname{post}}(S)$
where $P^{\operatorname{post}}(S) = \sum_{X} P(S|X)P^{\operatorname{post}}(X)$
 $= P(S|X = x)$
 $P(S) \to P(S|X = x)$

Suppose
$$\rho_B = \operatorname{Tr}_X(\rho_{B|X}\rho_X)$$

If $\rho_X \to \rho_X^{\operatorname{post}} = |x\rangle\langle x|_X$
then $\rho_B \to \rho_B^{\operatorname{post}}$
where $\rho_B^{\operatorname{post}} = \operatorname{Tr}_X(\rho_{B|X}\rho_X^{\operatorname{post}})$
 $= \rho_{B|X=x}$
 $\rho_B \to \rho_{B|X=x}$

Pirsa: 11110114 Page 38/41

Other applications of the formalism

- Identify analogies between multi-time and multi-system scenarios
- e.g. no-broadcasting theorem ↔ monogamy of entanglement BB84 key distribution ↔ Ekert key distribution
- Accommodate Aharonov et al. two-time and multi-time states (pre and post selection is an instance of Bayesian inference)
- Obtain quantum analogues of key notions of Bayesian statistics
 e.g. sufficient statistics, conditional independence, etc.
- Multiple observers: state compatibility criteria, state pooling rules, etc.
- Quantum analogues of belief propagation algorithms are important for quantum error correction

Pirsa: 11110114 Page 39/41

Pirsa: 11110114 Page 40/41

Pirsa: 11110114 Page 41/41