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Abstract: Quantum theory can be thought of as a noncommutative generalization of Bayesian probability theory, but for the analogy to be
convincing, it should be possible to describe inferences among quantum systems in a manner that is independent of the causal relationship between
those systems. In particular, it should be possible to unify the treatment of two kinds of inferences: (i) from beliefs about one system to beliefs about
another, for instance, in the Einstein-Podolsky-Rosen or & quot;quantum steering& quot; phenomenon, and (ii) from beliefs about a system at one
time to beliefs about that same system at another time, for instance, in predictions or retrodictions about a system undergoing dynamical evolution or
undergoing a measurement. | will present a formalism that achieves such a unification by making use of & quot;conditional quantum states& quot;, a
noncommutative generalization of conditional probabilities. | argue for causal neutrality by drawing a comparison with a classical statistical theory
with an epistemic restriction. (Joint work with Matthew Leifer).
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Classical statistical theory
+

fundamental restriction on statistical distributions

r

A large part of quantum theory

In the sense of reproducing the operational predictions
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Classical statistical theory
+

fundamental restriction on statistical distributions

’

A large part of quantum theory

In the sense of reproducing the operational predictions

In the resulting model
quantum states are states of incomplete knowledge
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The principle of classical complementarity:

An observer can only jointly know a set of variables if they
commute relative to the Poisson bracket.
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The principle of classical complementarity:

An observer can only jointly know a set of variables if they
commute relative to the Poisson bracket.

A commuting pair {F,G} =0

eg{QA.Qp}. {Qa, Pp}, and {Q4 — Qp, P4 + Pp)}
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The principle of classical complementarity:

An observer can only jointly know a set of variables if they
commute relative to the Poisson bracket.

A commuting pair {£:G} =0
e.2{Q4| @B}, {Qa. Pp} and {Qa — @p. Pa+ Pp}

Valid preparations
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The principle of classical complementarity:

An observer can only jointly know a set of variables if they
commute relative to the Poisson bracket.

A commuting pair {£,G} =0

eg{QA,Qp}, {Qa, Pp}, and {Q4 — Qp, P4 + Pp}

Valid preparations
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\ - Analogue of EPR
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of epistemic state as a result of measurement

.\
I P But this would ﬁolate the
Measure (Q g find ¢ statistical restggtion!

e q
A
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Update| of epistemic state as a result of measurement

Measuwfe @ 4+ find ¢

| |
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Update| of epistemic state as a result of measureme:

MeasmLe Q4 find ¢

o

\ Hap = PaUB : N

q 1
Q."V == Q_.{ + A!’QB

PA’ = R'l
QBI =QpB
Pgr = PB+7PA
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Update| of epistemic state as a result of measureme

- = D

Agent knows only that Qg
was mneasured
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Categorizing quantum phenomena

Those arising in a restricted Those not arising in a restricted
statistical classical theory statistical classical theory

Wave-particle duality
collapse

o Interference
noncommutativity

Teleportation _
entanglement No cloning

Coherent superposition

Key distribution Bell inequality violations Quantum eraser

. Bell-Kochen-Specker theorem
Improvements in metrology

Pre and post-selection
Computational speed-up “paradoxes’
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Categorizing quantum phenomena

Those arising in a restricted
statistical classical theory

Those not arising in a restricted
statistical classical theory

Interference
Noncommutativity
Entanglement
Collapse
Wave-particle duality
Teleportation
No cloning
Key distribution
Improvements in metrology
Quantum eraser
Coherent superposition
Pre and post-selection “paradoxes”
Others...

Bell inequality violations
Computational speed-up (if it exists)
Bell-Kochen-Specker theorem
Certain aspects of items on the left
Others...
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Classical

R phase-space coordinates
of a canonical system

P(R) Probability
distribution over R

P(R =r) probability that R=r

ZRP(R):l

Quantum

A label for a quantum system

pA Operator on Hilbert
space of A

No obvious analogue (yet!)

Trapsa =1
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Classical

R phase-space coordinates
of a canonical system

P(R) Probability
distribution over R

P(R =r) probability that R=r

ZRP(R):l

Quantum

A label for a quantum system

pA Operator on Hilbert
space of A

No obvious analogue (yet!)

Trapa =1

Page 24/41



Pirsa: 11110114

State of knowledge

Normalization

Joint state

Marginalization

Classical

P(R, S)

P(S) =Y, P(R,S)

Quantum

PA

Trapa =1
PAB

pB = Trapan
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The Three Pillars of Bayesian Inference

- Belief propagation

P(S) =) _P(S|R)P(R)

iy

- Bayes’ theorem

P(S|R)P(R)

PRIS) = = P(SIRP(R)

- Bayesian conditioning

P(R) = P(R|X = x)
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Conditional probability Conditional state

P(S|R) PB|A
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Conditional probability Conditional state

P(S|R) PB|A
Normalization condition Normalization condition
>.sP(S|R) =1 Tre(pBla) = Ia
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Conditional probability
P(S|R)

Normalization condition

Y s P(S|R) =1

Conditional state

PB|A

Normalization condition

Tre(pB|a) = Ia

See: Leifer, PRA 74, 042310 (2006)

Page 29/41



Pirsa: 11110114

Conditional probability Conditional state

P(S|R) PB|A
Normalization condition Normalization condition
>.sP(S|R) =1 Tre(pBla) = Ia

Relation of conditional to joint Relation of conditional to joint

S 12 ~1/2
P(S|R) = Spa pBla = (P4 " ®IB)paB(py '~ ® IB)
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Conditional probability
P(S|R)
Normalization condition
s P(S|R) =1
Relation of conditional to joint
P(S|R) = prhy

P(R, S) = P(S|R)P(R)

Conditional state

PB|A

Normalization condition

Tre(pB|a) = Ia

Relation of conditional to joint

—1/2 _ 1/
PBIA= P4 PABP4

1/2 1/2
PAB = P4 PB|APA
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Conditional probability
P(S|R)
Normalization condition
s P(S|R) =1
Relation of conditional to joint
P(S|R) = i

P(R, S) = P(S|R)P(R)

Classical belief propagation

P(5) = )>_r P(S|R)P(R)

Conditional state

PB|A
Normalization condition
Tre(pgja) = Ia
Relation of conditional to joint

PBIA = PAB * P4

PAB = PB|A * PA

Quantum belief propagation

pB = Tra(ppjapa)
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Two formulas for the
joint probability

P(R, S) = P(S|R)P(R)
— P(R|S)P(S)

Classical Bayes’ theorem

P(S|R) i P(R|S)P(S)

Two formulas for the

joint state

1072 1/2
PBA = P4 PB|APA

e v 1/2
= Pp PA|BPp

Quantum Bayes’ theorem

-1/2 1/2 -1/2 1/2
PBIA =Po PB PAIBPA PB

Page 33/41



Pirsa: 11110114

----{s| P(RS)

P(S|R) = P(R, S)/P(R)

P(S) = )_g P(S|R)P(R)

P(R, S)

PUSIR)= P(R,.S)/ P{R)

P(S) = ) g P(S|R)P(R)

O @

2999

2999

2999

o 2900
o 2999

pe =Ea-8(pa)
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RI----|s| P(RS9) ®____. PAB

%o
P(S|R) = P(R, S)/P(R) ey Y e

=Y r P(S|R)P(R) pB =Tra(pBlapa)

P(S) =T r-s[P(R)] pB = €4-B(pA)
pBjA = 0
¢ i B 111 1s CP
g 0AB
: o =Ll -1/2

P(S|R) = P(R, S)/P(R) OBIA= 04 ' 0ABP4

o =

== PEIRPR)  (a) s =Tra(esara)

P(S) =Tgr_s[P(R)] pB =EaB(pa)
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Comparing causal and acausal correlations
in Quantum Mechanics

() = I()]

'[EPR)

|EPR) ¢ A id C C
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Comparing causal and acausal correlations
in Epistemically Restricted Liouville mechanics

Piq(9B.PB|qA,PA)
x 0(ga —qB)d(pa — pB)

B
QB = QA
+ Pp = Py
A [F="—"1rB A
PEPR(qA.pA.qB.pB) X 0(ga — qB)d(pa + PB)
Qe —Qa=0
Pp+P4=0
QA:QB PAJPB QA:QB PA!PB
Pepr C A Piq C C
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Jeffrey conditioning

Suppose P(S) =), P(S|R)P(R) Suppose pg = Tra(pplapa)
If P(R)— PPOSY(R) i N
then P(S) — PPOSt(s) then pp — pb°
where PPOSY(S) = 3~ P(S|R)PPOS!(R) where plBO = Tra(pg 4P108t)

Bayesian conditioning

Suppose P(S) =) _, P(S|X)P(X) Suppose pp = Trx(ppxpx)
If P(X)— PPOSt(X) =06y, ¥ px =Py =|a)(zlx
then P(S)— PPOSY(s) then pp — pB
where PPOY(5) = °y P(S|X)PPO!(X)  where pp™" = Trx(ppixpk )
PSIA =a) PB|X=x
P(5) = P(S|1X = z) PB —* PB|X =z
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Other applications of the formalism

* |dentify analogies between multi-time and multi-system
scenarios
e.g. no-broadcasting theorem <> monogamy of entanglement
BB84 key distribution <+ Ekert key distribution

* Accommodate Aharonov et al. two-time and multi-time states
(pre and post selection is an instance of Bayesian inference)

* Obtain quantum analogues of key notions of Bayesian statistics
e.g. sufficient statistics, conditional independence, etc.

* Multiple observers: state compatibility criteria, state pooling
rules, etc.

* Quantum analogues of belief propagation algorithms are
important for quantum error correction
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