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Abstract: Correlations in quantum states are sometimes inaccessible if only restricted types of quantum measurements can be performed, an effect
known as quantum data hiding. For example highly entangled states shared by two parties might appear uncorrelated if the parties can only measure
locally their shares of the state and communicate classically with each other.

In this talk I will first discuss how a better understanding of the peculiar type of correlations found in quantum data hiding states is useful in
addressing two challenges of quantum information theory: the design of efficient algorithms for determining if a quantum state is entangled, and the
establishment of arealaws in gapped local Hamiltonians.

Second, | will present new efficient ways of generating data hiding, e.g. employing random local quantum circuits, and will briefly discuss the
relevance of this approach to the problem of proving quick equilibration of quantum systems unitarily interacting with alarge environment.
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Data Hiding

P Pacum: Projectors onto symmetric and antisymmetric
subspaces of C/ ® C“.

Define w_:=P_ /dim(P, ), w,:=P_. . /dim(P,. ).

States are orthogonal, hence perfectly distinguishable.

How about under LOCC measurements?
They cannot be distinguished with probability > 42+1/d
(Eggeling, Werner '02)

They are data hiding against LOCC.

LOCC: Local guantum Operations and Classical Communication

Z': y C >
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The LOCC Norm

Trace norm:
| |p_0| |1 = 2 max 0<Mc<| tr(IVI(p—G))

optimal bias of distinguishing two states by a quantum
measurement

LOCC norm
| |pAB - OABl |LOCC =2 max goyq triM(p — o)) : {M, I - M} in LOCC

We have % lw,=w_|],=1,
V2 | |w, = wW_| | occ < 1/d
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Data Hiding

(Shor '95, Steane ‘96, ...) Error Correcting Codes
(Wen et al ‘89, ...) Topological Order

(Cleve et al '99) Quantum secret sharing schemes
(Leung et al ‘01) Hiding bits in quantum states
(Hayden et al ‘'04) Generic states are data hiding

(Horodecki, Oppenheim '04) Big gap of key versus distillable
entanglement
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Quantum Entanglement

* Pure States: |l/}>AB = Cd ) C/

If ‘I/J>AB = ‘¢>A X ‘§0>B , it’s separable

otherwise, it’s entangled.

* Mixed States: O, = D(Cd X C/)

<¢ ‘ it’s separable

otherW|se it’s entangled.
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The Separability Problem

Given O,p = D(Cd X C/)

is it entangled?

(Weak Membership: Weeo(g, | |*]])) Given p,g
determine if it is separable, or e-way from SEP

——— —
- —

-"*-.__.—-""
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Relevance

Quantum Cryptography
Security only if state is entangled

Quantum Communication
Advantage over classical (e.g. teleportation, dense
coding) only if state is entangled

Quantum Many-body Theory
Best Separable State problem: compute ground
state energy of mean-field Hamiltonians
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The separability problem

When is p,, entangled?

- Decide if p,g Is separable or e-away from separable

Beautiful theory behind it (PPT, entanglement witnesses,
symmetric extensions, etc)

Horribly expensive algorithms

State-of-the-art: 20( |Allog (1/¢)) time complexity
(Doherty, Parrilo, Spedalieri ‘04)
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Hardness Results

When is p,s entangled?

- Decide if p,g is separable or e-away from separable

D |\
D|)

(Gurvits ‘'02) NP-hard with e=1/exp(|A

(Gharibian ‘08, Beigi ‘08) NP-hard with e=1/poly(|A||B])

]

(Harrow, Montanaro ‘10) No exp(O(log*V|Allog**|B|)) time
algorithm for | [*||,, withv+pu>0
(unless there is a subexponential algorithm for SAT)
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A Faster Algorithm

(B Chrlstandl Yard 10) There |sae><p( (€ IOJ A Io

time algorithm for W (| | * | | ocer €)
Compare (Harrow, Montanaro ‘10)
No exp(O(log™V|Allog"*|B|)) algorithm for Weeo(| [ *| |4, €),

withv + p > O and constant €.

l.e. a similar algorithm in trace norm would be optimal

!“r.

Bi))
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A Faster Algorithm

)

(B., Christand|, Yard ‘10) Thereis a exp(O(e~“log|A|log|B|))
time algorithm for W (| | * | | ,ocer €)

Compare (Harrow, Montanaro ‘10)

No exp(O(log™V|Allog"*|B|)) algorithm for Weeo(| [ *| |4, €),

with v + u >0 and constant €.

l.e. a similar algorithm in trace norm would be optimal
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Entanglement Monogamy

Classical correlations are shareable:

Opg,..B, = Ep_,o'/\.j X0 |
J
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Entanglement Monogamy

Classical correlations are shareable:

R0
Oap,..B, = Epjo/l.j B.j
J

Def. p,g is k-extendible if there is pag; gk B4
s.t foralljin [k], try g; (Pag1 Bk) = Pag

- Separable states are k-extendible for every k
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Entanglement Monogamy

Quantum correlations are non-shareable:
pp €Ntangled iff p,g not k-extendible for some k

Follows from:

Quantum de Finetti Theorem
(Stormer '69, Hudson & Moody '76, Raggio & Werner '89)

E.g. Any pure entangled state is not 2-extendible
The d x d antisymmetric state is not d-extendible
(but is (d-1)-extendible...)
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2-extendible

3-extendible

| 37-extendible

separable states=
00 —extendible

—> search for a 2-extension, 3-extension......
How close to separable is pp if a k-extension is found?
How long does it take to check if a k-extension exists?
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Entanglement IVIonogamy

Quanhtahve version: For any k extendlble pAB

—a” <0O|—

min
OESEP

k

Follows from: Finite quantum de Finetti Theorem (Christandl, Konig,
Mitchson, Renner ‘05)

Close to optimal: (|B)

thereis p,g S.t. [23}]” p-0| =Q -

Guess what? ©
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Entanglement IVIonogamy

Quanhtahve version: For any k extendlble p,._\B

—a” <0O|—-

min
oESEP

k

Follows from: Finite quantum de Finetti Theorem (Christandl, Konig,
Mitchson, Renner ‘05)

Close to optimal: (|B)

thereis p, s.t. 1’23}3” p-0| =2Q -

Guess what? ©
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Exponentially Improved Monogamy

(B. Christandl, Yard ‘11) For any k-extendible p,,,

I
2

log|A
k

min
OESEP

p/\[f o O-/\[)' HL()(‘(‘ =

Bound proportional to the (square root) of # qubits
Highly extendible entangled states must be data hiding

Algorithm follows by searching for a (O(log|A|/£?))-symmetric
extension by Semidefinite Programming

(SDP with |A| |B|CleglAl/e2) yariables - the dimension of the k-extension)
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Proof Techniques

[k-extendible

, log | A
min l|pan — oap|| < const.
oA p separable k
* Coding Theory
Strong subadditivity of von Neumann
entropy as state redistribution rate (Devetak, Yard ‘06)

* Large Deviation Theory
Hypothesis testing of entangled states (B., Plenio ‘08)

* Entanglement Measure Theory
Squashed Entanglement (Christandl|, Winter ’04)
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oAp sceparable k
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Computational Data Hiding

“Most quantum states look maximally mixed for all
polynomial sized circuits”

Most with respect to the Haar measure: We choose the state
as U|0">, for a random Haar distributed unitary U in U(2")

l.e. For every integrable function in U(d) and every V in U(d)

EU ~ Haarf(U) = EU ~ Haarf(VU)
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Computational Data Hiding

“Most quantum states look maximally mixed for all
polynomial sized circuits”

e.g. most quantum states are useless for measurement
based quantum computation (Gross et al ‘08, Bremner et al ‘08)

Let QC(k) be the set of 2-outcome POVM {A, |-A} that can
be implemented by a circuit with k gates

Pr ( max \<w|A|w>-2-”n~(A)\ag)s2-"2”

‘qi>~Huur AEQC (poly(n))

Proof by Levy’s Lemma + eps-net on the set of poly(n) POVMS
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The Price You Have to Pay...

To sample from the Haar measure with error £ you need
exp(4"log(1/e)) different unitaries

Exponential amount of random bits and quantum gates...
E.g. most quantum require exp(cn) two qubit gates to be

approximately created...

Question Can data hiding states against computational
bounded measurements be prepared efficiently?
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Quantum Pseudo-Randomness

Sometimes, can replace a Haar random unitary by
pseudo-random unitaries:

Quantum Unitary t-designs

Def. An ensemble of unitaries {u(dU), U} in U(d) is an

g-approximate unitary t-design if for every monomial

M=U U U*rl,sl...U*rt, st,

pl, ql..pt, qt

|E(M(U)) = By, (M(U)) | < d*'e

Haar
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Quantum Unitary Designs

Conjecture 1. There are efficient e-approximate unitary
t-designs {u(dU), U} in U(2")

Efficient means:

* unitaries created by poly(n, t, log(1/)) two-qubit
gates
* p(dU) can be sampled in poly(n, t, log(1/g)) time.

(Harrow and Low '08)
Efficient construction of approximate unitary (n/log(n))-design
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Random Quantum Circuits

Local Random Circuit: in each step - -
anindexiin{l, ...,n}is chosen - S e o
uniformly at random and a two-

qubits Haar unitary is applied to 2
qubitsie i+l
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Random Quantum Circuits

Local Random Circuit: in each step - -
anindexiin{l, ...,n}is chosen a3 - 1
uniformly at random and a two-

qubits Haar unitary is applied to 2
qubitsie i+l

Random Walk in U(2")
(Another example: Kac’s random walk — toy model Boltzmann gas)

introduced in (Hayden and Preskill ‘07) as a toy model for the
dynamics of a black hole
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Random Quantum Circuits as t-
designs?

Conjecture 2. Random Circuits of size poly(n, log(1/s)) are
an e-approximate unitary poly(n)-design
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Computational Data Hiding

Most quantum states created by O(n“) circuits look maximally
mixed for every circuit of size O(n'“*4/®)

Vost is defined in terms of the measure on quantum circuits
given by the local random circuit model
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Computational Data Hiding

Most quantum states created by O(n“) circuits look maximally
mixed for every circuit of size O(n'"“*4/°)

Same idea (small probability + eps-net), but replace Levy’s
lemma by a t-design bound from (Low ‘08):

Pr,_, (‘(0 ‘UAU|0> i, tr(A)‘ > (5) < exp(O(tlog(1/d) - nt))

with t =s/°n"?and v_  the measure on U(2") induced by
s steps of the local random circuit model
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Proof Techniques

* Quantum Many-body Theory
Technique for lower bounding spectral
gap of frustration-free local Hamiltonians  (Nachtergaele ‘96)

* Representation Theory
Permutation matrices are approximately
orthogonal (Harrow '11)

* Markov Chains
Path coupling to the unitary group (Oliveira ’08)
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Area Laws

Let H be a local Hamiltonian on a lattice and | {,> its groundstate

How complexis |[g,>?

Conjecture: For gapped H,

S(p)=OWR).,  py=1r4(|we )W)

Pirsa: 11110109 Page 41/48



Pirsa: 11110109

Previous Work

(Vidal et al ‘02, Plenio et al '05, Etc) Area law for particular
models (XY, quasi-free bosonic models, etc)

(Hastings ‘04) Exponential decay of correlations in gapped models

(Aharonov et al ‘07, Gottesman, Hastings ‘09) Groundstates of 1D
systems with volume law

(Hastings '07) are law for every gapped 1D Hamiltonian!

(Arad et al '11) improved area law for 1D frustration free models
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Area Law vs Decay of Correlations

Decay of Correlations: ‘n‘(pM‘X XY)- fr(p/_,lX)fr(p(‘Y)‘ <o
Does it imply Paic =P, ® P ?

A Bl C
Would lead to area law
Unfortunately,

No, because of Data Hiding states (Hastings ‘07)

Does it work for stronger forms of decay of correlations?
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Stronger Decay of Correlations

One-way LOCC:
m?(Z‘W(PﬂX,\ OL)- ”‘(p;\Xk)rr(p(.)ﬁ_ )’ : ZXA <I0<Y < [) <e™

Implies area law. But is it satisfied by gapped systems?

Guessing Probability:

”,"‘"‘(E’"(P,«-XA QY,)-1r(p, X )oY, )‘ : EX,\ = [’E Y, < I) <e
k I |

s satisfied by gapped systems. But does it imply area law?
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Stronger Decay of Correlations

One-way LOCC:
max(z‘n 0,:X, QY )=tr(p X )ir (p(Y)’ EX,\ sl,()s)/,\sl)s(w
implies area law. But is it satisfied by gapped systems?

Guessing Probability:

max(Zn P,X, ®Y)-tr(p,X,) n p( ‘ EX <[EY <[)<e t

s satisfied by gapped systems. But does it imply area law?
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Summary

* Quantum correlations can be hidden in interesting ways

 LOCC data hiding entangled states are the hardest to
characterize — correlations more shareable

* One can hide data against efficient measurements
efficiently

« O(n’t°log(1/¢)) local random circuits are e-approximate
unitary t-designs

* Data Hiding is obstruction to area law. Can we overcome
it? Guessing probability decay of correlations useful?
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