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Abstract: We use the mathematical language of sheaf theory to give a unified treatment of non-locality and contextuality, which generalizes the
familiar probability tables used in non-locality theory to cover Kochen-Specker configurations and more. We show that contextuality, and
non-locality as a special case, correspond exactly to * obstructions to the existence of global sections*.

We describe a linear algebraic approach to computing these obstructions, which allows a systematic treatment of arguments for non-locality and
contextuality. A general correspondence is shown between the existence of local hidden-variable realizations using negative probabilities, and
no-signalling. Maximal non-locality is generalized to maximal contextuality, and characterized in purely qualitative terms, as the non-existence of
global sections in the support. Some ongoing work with Shane Mansfield and Rui Soares Barbosa is described, which identifies * conomological
obstructions* to the existence of globa sections, opening the possibility of applying the powerful methods of cohomology to non-locality and
contextuality.
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Overview

@ The usual probability tables of non-locality theory ('Bell-type scenarios') are
generalized to measurement covers. T hese include Kochen-Specker
configurations, and more. This provides a setting for a fully unified treatment
of contextuality and non-locality.
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existence of obstructions ta®global sections.
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general 'logic of contextuality'. Has been used this way, e.g. in CS. Opens
the possibility of links between study of non-locality and contextuality in
Quantum Foundations, and other fields.

o Contrast with ‘generalized probability theories'. We use classical probability,
encapsulated in the distribution functor/monad; contextuality arises from
functorial variation over contexts.

Samson Abramsky Joint work with Adam Brandenbu . 2 /33

Pirsa: 11110108 Page 6/94



Overview

@ The usual probability tables of non-locality theory ('Bell-type scenarios') are
generalized to measurement covers. [ hese include Kochen-Specker
configurations, and more. This provides a setting for a fully unified treatment
of contextuality and non-locality.

@ We use the mathematical language of sheaf theory. We show that
non-locality and contextuality can be characterized precisely in terms of the
existence of obstructions ta®global sections.

@ Sheaf theory is exactly about functorial variation over contexts; it provides a
general 'logic of contextuality'. Has been used this way, e.g. in CS. Opens
the possibility of links between study of non-locality and contextuality in
Quantum Foundations, and other fields.

o Contrast with ‘generalized probability theories'. We use classical probability,
encapsulated in the distribution functor/monad; contextuality arises from
functorial variation over contexts.

S. Abramsky and A. Brandenburger, The Sheaf-Theoretic Structure of
Non-Locality and Contextuality. Available at arXiv:1102.0264. To appear in
New Journal of Physics.
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T he Basic Scenario

3/33

Pirsa: 11110108 Page 8/94



A Probabilistic Model Of An Experiment

A B | (0,0) (1,0) (0,1) (1.,1)
a b 1/2 0 0 1/2
a’ b | 3/8 1/8 1/8 3/8
a b | 3/8 1/8 1/8 3/8
a’ b | 1/&%  3/8 3/8 1/8
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A Probabilistic Model Of An Experiment

A B | (0,0) (1,0) (0,1) (1.,1)
a b 1/2 0 0 1/2
a’ b | 3/8 1/8 1/8 3/8
a b | 3/8 1/8 1/8 3/8
a’ b | 1/&%  3/8 3/8 1/8

The measurement contexts are

{a, b}, {a’,.b}., {a,b'}, {a'.b'}.
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A Probabilistic Model Of An Experiment

Pirsa: 11110108
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{a"— 0, b— 1}.

A B (0,0) (1,0) (0,1) (1,1)
a b 1/2 0 0 1/2
a b 3/8 1/8 1/8 3/8
a b’ 3/8 1/8 1/8 3/8
a b 1/ 3/8 3/8 1/8
The measurement contexts are
{a, b}, {a’.b}, {a,b'}, {a'.b'}.
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Each measurement has possible outcomes 0 or 1. The matrix entry at row (a’, b)
and column (0, 1) indicates the event
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T he Presheaf of Distributions

We fix a set of measurements X, and a set of outcomes O.

For each set of measurements U C X, we define Dg&E(U) to be the set of
probability distributions on events s : U — O. Such an event specifies that
outcome s(m) occurs for each measurement m < U.
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T he Presheaf of Distributions

We fix a set of measurements X, and a set of outcomes O.

For each set of measurements U C X, we define Dg&(U) to be the set of
probability distributions on events s : U — O. Such an event specifies that
outcome s(m) occurs for each measurement m € U.

Given U C U’, we have an operation of restriction:
DrE(UR= DrE(UV) :: d — d|U,

where for each s € £(U):

d|U(s) = > d(s’).

s’e&(U’).s'|U=s
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T he Presheaf of Distributions

We fix a set of measurements X, and a set of outcomes O.

For each set of measurements U C X, we define Dg&(U) to be the set of
probability distributions on events s : U — O. Such an event specifies that
outcome s(m) occurs for each measurement m € U.

Given U C U’, we have an operation of restriction:
’DRE(U’)*—> DrE(U) :: d — d|U,

where for each s € £(U):
d|U(s) := > d(s’).
s’e&(U’),s'|U=s

Thus d|U is the marginal of the distribution d, which assigns to each section s in

the smaller context U the sum of the weights of all sections s’ in the larger
context which restrict to s.
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T he Presheaf of Distributions

We fix a set of measurements X, and a set of outcomes O.

For each set of measurements U C X, we define Dg&(U) to be the set of
probability distributions on events s : U — O. Such an event specifies that
outcome s(m) occurs for each measurement m € U.

Given U C U’, we have an operation of restriction:
DRg(U’)*—> DrE(U) :: d — d|U,
where for each s € £(U):
d|U(s) = > d(s’).
s’e&(U’),s'|U=s

Thus d|U is the marginal of the distribution d, which assigns to each section s in

the smaller context U the sum of the weights of all sections s’ in the larger
context which restrict to s.

Mathematical notes: (i) This is functorial, hence defines a presheaf.
(ii) Composed from the sheaf £(U) := OYand the distributions monad Dg.
(iii) We can vary R.
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Empirical Models: Reconstructing Probability Tables

Corresponding to the choices of measurements by agents, or more generally to the
idea that it may not be possible to perform all measurements together, we
consider a cover AMM: a family of subsets of X which covers X, | J M = X.

Samson Abramsky Joint work with Adam Brandenbu 6 /33
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Empirical Models: Reconstructing Probability Tables

Corresponding to the choices of measurements by agents, or more generally to the
idea that it may not be possible to perform all measurements together, we
consider a cover AM: a family of subsets of X which covers X, | J M = X.

The sets C € AM are the measurement contexts; the sets of measurements
which can be performed togetherx

These are the sets which index the rows of a generalized probability table.

Pirsa: 11110108 Page 17/94



Empirical Models: Reconstructing Probability Tables

Corresponding to the choices of measurements by agents, or more generally to the
idea that it may not be possible to perform all measurements together, we
consider a cover AM: a family of subsets of X which covers X, | J M = X.

The sets C € AM are the measurement contexts; the sets of measurements
which can be performed togetherx

These are the sets which index the rows of a generalized probability table.

Pirsa: 11110108 Page 18/94



Pirsa: 11110108 Page 19/94




Empirical Models: Reconstructing Probability Tables

Corresponding to the choices of measurements by agents, or more generally to the
idea that it may not be possible to perform all measurements together, we
consider a cover M: a family of subsets of X which covers X, | J M = X.

The sets C € AM are the measurement contexts; the sets of measurements
which can be performed togetherx

These are the sets which index the rows of a generalized probability table.

Covers are general: they include both the usual ‘Bell scenarios’, and
Kochen-Specker type constructions.

An empirical model for M is a family {ec}ccat, ec € DrE(C).
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Compatibility And No-Signalling

We shall consider models {ec | C € M} which are compatible in the sense of
agreeing on overlaps: for all C, C’ € M,

ec|C N C’ cncC.

ecr

Samson Abramsky Joint work with Adam BrandenburThe & oretic Struct DFf Nc DC . d T /33
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Global Sections

We are given an empirical model {ec}cecnaq-

Question: does there exist a global section for this family?

Samson Abramsky Joint work with Adam BrandenburlThe S i act " Nc DC . . 8 /33
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Global Sections

We are given an empirical model {ec}cenaq-
Question: does there exist a global section for this family?
l.e. d € Dr&E(X) such that, for all C €

d|C = ec.

A distribution, defined on all meagurements, which marginalizes to yield the
empirically observed probabilities?
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We are given an empirical model {ec}cenaq-
Question: does there exist a global section for this family?
l.e. d € Dr&E(X) such that, for all C € M

d|C = ec.

A distribution, defined on all meagurements, which marginalizes to yield the
empirically observed probabilities?

Note that s € £(X) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
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Global Sections
We are given an empirical model {ec}cenaq-

Question: does there exist a global section for this family?
l.e. d € DrE(X) such that, for all C € M
d|C = ec.

A distribution, defined on all meagurements, which marginalizes to yield the
empirically observed probabilities?

Note that s € £(X) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C, it restricts to yield s|C.

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {ec}, we recover the predictions of the
model by averaging over the values of these hidden variables:

ec(s) = d|C(s) = S0 d(s) = S0 saic(s) - d(s).

s'e&(X),s’|C=s s'e&(X)
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l.e. d € DrE(X) such that, for all C € M
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Note that s € £(X) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C, it restricts to yield s|C.

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {ec}, we recover the predictions of the
model by averaging over the values of these hidden variables:

ec(s) = d|C(s) =  S° d(s) = S0 suic(s) - d(s).

s'e&(X),s’|C=s s'e&(X)
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Global Sections Subsume Hidden-Variable T heories

Note also that this is a local model:

5.0C(s") = T Sep(s'1x).

xeC

The joint probabilities determinedyby s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Samson Abramsky Joint work with Adam Brandenbu : i ct . . . ‘ 9 /33
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Global Sections Subsume Hidden-Variable T heories

Note also that this is a local model:

5s|C(s") = ] 8s1x(s’1x).

xeC

The joint probabilities determined by s factor as a product of the probabilities
assignhed to the individual measurements, independent of the context in which
they appear. This subsumes Bell 40ca|ity )

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

T heorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

So:

existence of a local hidden-variable model for a given empirical model
IFF
empirical model has a global section

Samson Abramsky Joint work with Adam Brandenbu . . . . . . 9 /33
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Global Sections Subsume Hidden-Variable T heories

Note also that this is a local model:

5s|C(s") = ] 8s1x(s1x).

xeC

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell l1(:oca|ity I

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

T heorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Hence:

No such h.v. model exists (the empirical model is non-local/contextual)
IFF
there is an obstruction to the existence of a global section

Samson Abramsky Joint work with Adam Brandenbu . ‘ . . ‘ 9 /33
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Existence of Global Sections

Linear algebraic method.

Define system of linear equations Mx = v.
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Existence of Global Sections
Linear algebraic method.

Define system of linear equations Mx = v.
Solutions <+— Global sections

Incidence matrix M (0/1 entries). Depends only on M and O.

N
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Existence of Global Sections
Linear algebraic method.

Define system of linear equations Mx = v.

Solutions <«— Global sections

Incidence matrix M (0/1 entries). Depends only on M and O.
Enumerate [ [ \4 O€ as s1,...,%.

Enumerate OX as t1,..., tq.

M[i.j]=1 — t;|C=s (si€EC)).
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Existence of Global Sections
Linear algebraic method.

Define system of linear equations Mx = v.

Solutions +«+— Global sections

Incidence matrix M (0/1 entries). Depends only on A and O.

Enumerate [J. OF as s1,....%.

Enumerate OX as t1, ..., tg.

M[!',j]=1 = I'j|C=S,' (S,ES(C))
Conceptually, boolean matrix representation of the map

EX) — J] €(C)::s— (s|C)cenm.
cCe M
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Existence of Global Sections
Linear algebraic method.

Define system of linear equations Mx = v.

Solutions +«+— Global sections

Incidence matrix M (0/1 entries). Depends only on A and O.

Enumerate [J. OF as s1,....%.

Enumerate OX as t1,..., tg.

M[!',j]=1 < I'J'|C=S,' (S,ES(C))
Conceptually, boolean matrix representation of the map

EX) — J] €(C)::s— (s|C)cem.
CcCe M

Bell scenarios (n, k,/1): matrix is (k/)" x /7.

Samson Abramsky Joint work with Adam Brandenbu 10 / 33
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The (2,2,2) Incidence Matrix

This matrix has rank 9.

8
.
i
-

Samson Abramsky Joint work with Adam Brandenbur
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The (2,2,2) Incidence Matrix

This matrix has rank 9.

11 / 33

This is a special case of a much

In general, the matrix for (n,2,2) has rank 3”.
more general result we will describe later.

Samson Abramsky Joint work with Adam BrandenburTh
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T he Linear System

A model e determines a vector v = [e(s1), ..., e(sp)].

Solve

Mx = v

for x over the semiring R. R
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T he Linear System

A model e determines a vector v = [e(s1), ..., e(sp)].
Solve

Mx = v
for x over the semiring R. R

The solution yields weights in R for the global assignments in OX; j.e. a
distribution in Dg&(X).
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T he Linear System

A model e determines a vector v = [e(s1), ..., e(sp)].
Solve

Mx = v
for x over the semiring R. "

The solution yields weights in R for the global assignments in OX; j.e. a
distribution in Dg&(X).

The equations enforce the constraints that this distribution marginalizes to yield
the probabilities of the empirical model.
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The Linear System

A model e determines a vector v = [e(s1), ..., e(sp)].
Solve

Mx = v
for x over the semiring R. "

The solution yields weights in R for the global assignments in OX; j.e. a

distribution in Dg&(X).

The equations enforce the constraints that this distribution marginalizes to yield
the probabilities of the empirical model.

Hence solutions correspond exactly to global sections — which as we have seen,
correspond exactly to local hidden-variable realizations!

Samson Abramsky Joint work with Adam Brandenbu ‘ ‘ . . . . 12 f 33
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The Bell Model

(0,0) (1,0) (0,1) (1.1)
(a. b) 1/2 0 0 1/2
(+.b) | 3/8 1/8 1/8  3/8
(a,b’) | 3/8 1/8 1/8  3/8
(a’. b") 1/8 3/8 3/8 1/8

Page 41/94
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T he Bell Model

(0,0) (1,0) (0,1) (1.1)
(a, b) 1/2 0 0 1/2
(.b) | 3/8 1/8 1/8  3/8
(a,b') | 3/8 1/8 1/8  3/8
(a,b') | 1/8 3/8 3/8  1/8

Solutions in the non-negative reals: this corresponds to solving the linear system
over R, subject to the constraint that x > O (linear programming problem).

Samson Abramsky Joint work with Adam Brandenbu 13 7/ 33
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Bell's Theorem

Proposition

The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 1, 6, 11
and 13 of the incidence matrix. We write X, rather than x[/].

X1 + Xo M X3 + Xa = 1/2
Xo + Xa + Xe + Xg = 1/8
X3 + Xa + Xii + X2 = 1/8

X1 + Xs + Xo + X3 = 1/8
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Bell's Theorem

Proposition

The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 1, 6, 11
and 13 of the incidence matrix. We write X, rather than x[/].

X1 + Xo M X3 + Xa = 1/2
Xo + Xa + Xe + Xg = 1/8
X3 + Xs + Xii + X112 = 1/8

X1 + Xs + Xo + X3 = 1/8
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Bell's Theorem

Proposition

The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 1, 6, 11
and 13 of the incidence matrix. We write X, rather than x[/].

X1 + Xo M X3 + Xa = 1/2
Xo + Xa + Xe + Xg = 1/8
X3 + X3 + X111 + Xi2 = 1/8

X1 + X5 + Xo + X3 = 1/8
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Bell's Theorem

Proposition
The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 1, 6, 11
and 13 of the incidence matrix. We write X, rather than x[/].

X1 + Xo ™M Xz + X5 = 1/2
Xo + X4 + Xe + Xsg = 1/8
Xz + Xg + X1 + X2 = 1/8
X1 + Xs + Xo + X3 = 1/8

Adding the last three equations yields

X1+ Xo+ X3 +2Xq + Xs + X + Xg + Xog + X171 + X12 + X13 = 3/8.

Samson Abramsky Joint work with Adam BrandenburilThe S oretic Struct N DC . . 14 / 33
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0,0) (1,0) (0.1) (1.1)
(a, b) 1 1 1 1
(a’, b) 0 1 1 1
(a. b') & 1 1 1
(a’, b') 1 1 1 0
ey e e = 15 /23
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0,0) (1,0) (0.1) (1.1)
(a, b) 1 1 1 1
(a’, b) 0 1 1 1
(a. b') & 1 1 1
(a’, b') 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive
entries by 1; thus it can be interpreted as the support of the probabilistic model.

Samson Abramsky Joint work with Adam Brandenbu . ‘ . . . . 15 / 33
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0,0) (1,0) (0.1) (1.1)
(a, b) 1 1 1 1
(a’, b) 0 1 1 1
(a. b') & 1 1 1
(a’, b") 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive
entries by 1; thus it can be interpreted as the support of the probabilistic model.

Now we are interested in solutions over the boolean semiring, /.e. a boolean

satisfiability problem. E.g. the equation specified by the first row of the incidence
matrix gives the clause

X1 v Xo v X3 VvV Xa
while the fifth yields the formula

-X1 A =X3 A = Xsg A X7.

Samson Abramsky Joint work with Adam Brandenbu ‘ . . . . . 15 f 33
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The 'Hardy paradox’

A solution is an assignment of boolean values to the variables which
simultaneously satisfies all these formulas. Again, it is easy to see by a direct
argument that no such assignment exists.

Proposition

T he possibilistic Hardy model has no global section over the booleans.
L3

Proof We focus on the four formulas corresponding to rows 1, 5, 9 and 16 of
the incidence matrix:

X1 V X5 vV X3 V Xa
-X1 A =Xz A - X5 A - X7
- X1 A - X5 A —Xo A - X10
- X4 AN - Xg A - X112 A\ - X16

Samson Abramsky Joint work with Adam Brandenbu : i ct . . . ‘ 16 / 33
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0,0) (1,0) (0.1) (1.1)
(a, b) 1 1 1 1
(a’, b) 0 1 1 1
(a. b') & 1 1 1
(a’, b') 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive
entries by 1; thus it can be interpreted as the support of the probabilistic model.

Now we are interested in solutions over the boolean semiring, /.e. a boolean

satisfiability problem. E.g. the equation specified by the first row of the incidence
matrix gives the clause

X1 v Xo v X3 VvV Xa
while the fifth yields the formula

X1 A =X3 A = Xg A X7.
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The ‘Hardy paradox’

A solution is an assignment of boolean values to the variables which
simultaneously satisfies all these formulas. Again, it is easy to see by a direct
argument that no such assignment exists.

Proposition

T he possibilistic Hardy model has no global section over the booleans.
L3

Proof We focus on the four formulas corresponding to rows 1, 5, 9 and 16 of
the incidence matrix:

X1 V X V/ X3 V Xa
-X1 A =Xz A - X5 A - X7
- X1 A - X5 A —Xo A - X10
- X4 AN - Xg AN - X12 A\ -X16

Since every disjunct in the first formula appears as a negated conjunct in one of
the other three formulas, there is no satisfying assignment. O
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Boolean obstructions are stronger than probabilistic ones

Proposition

Let v be the vector over R~ for a probabilistic model, vy, the boolean vector
obtained by replacing non-zero elements of v by 1. If Mx = v has a solution over

R=o, then Mx = v, has a solution over the booleans.
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Boolean obstructions are stronger than probabilistic ones

Proposition

Let v be the vector over R~ for a probabilistic model, vy, the boolean vector
obtained by replacing non-zero elements of v by 1. If Mx = v has a solution over
R=o, then Mx = v, has a solution over the booleans.

Proof Simply because Rk
0 +— O, r>0—1

is a semiring homomorphism. O
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Boolean obstructions are stronger than probabilistic ones
Proposition

Let v be the vector over R=q for a probabilistic model, vy, the boolean vector
obtained by replacing non-zero elements of v by 1. If Mx = v has a solution over
R=o, then Mx = v, has a solution over the booleans.

Proof Simply because S

0 +— 0, r >0+—1
is a semiring homomorphism. ]
So:

non-existence of solution over booleans
=N
non-existence of solution over R
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Boolean obstructions are stronger than probabilistic ones
Proposition

Let v be the vector over R=q for a probabilistic model, vy, the boolean vector
obtained by replacing non-zero elements of v by 1. If Mx = v has a solution over
R=o, then Mx = v, has a solution over the booleans.

Proof Simply because Rk

0 +— 0, r>0—1
is a semiring homomorphism. ]
So:

non-existence of solution over booleans
=
non-existence of solution over R

Bell: no solution over R g; solution over the booleans.
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Boolean obstructions are stronger than probabilistic ones
Proposition

Let v be the vector over R=q for a probabilistic model, v, the boolean vector

obtained by replacing non-zero elements of v by 1. If Mx = v has a solution over

R=o, then Mx = v, has a solution over the booleans.

Proof Simply because S
0 +— 0, r>0—1

is a semiring homomorphism.

So:

non-existence of solution over booleans
=
non-existence of solution over [R- g

Bell: no solution over R-; solution over the booleans.
Hardy: no solution over the booleans.

Conclusion: Bell << Hardy.
:
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Negative Probabilities And No-Signalling

Distributions over R: signed measures (‘negative probabilities’).
Wigner, Dirac, Feynman, Sudarshan, ...
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Negative Probabilities And No-Signalling

Distributions over R: signed measures (‘negative probabilities’).
Wigner, Dirac, Feynman, Sudarshan, ...

Feynman:

The only difference between a probabilistic classical world and the

equations of the quantum waoeld is that somehow or other it appears as if
the probabilities would have to go negative . .
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Negative Probabilities And No-Signalling

Distributions over R: signed measures (‘negative probabilities’).
Wigner, Dirac, Feynman, Sudarshan, ...

Feynman:

The only difference between a probabilistic classical world and the

equations of the quantum wawld is that somehow or other it appears as if
the probabilities would have to go negative . .

Theorem

Probabilistic models have local hidden-variable realizations with negative
probabilities if and only if they satisfy no-signalling.

Samson Abramsky Joint work with Adam BrandenburTh 18 / 33
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Linear Span T heorem

The fact that all probabilistic models have such global sections over signed
measures is a consequence of the following:

T heorem

The linear subspace generated by the local models over an arbitrary measurement
cover M coincides with that generated by the no-signalling models. Their

common dimension — and the rank of the incidence matrix — is
A
D = E (! — 1)]UI
veld
where | = |O| and U is the abstract simplicial complex generated by A .

Pirsa: 11110108
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Linear Span T heorem

The fact that all probabilistic models have such global sections over signed
measures is a consequence of the following:

T heorem

The linear subspace generated by the local models over an arbitrary measurement
cover M coincides with that generated by the no-signalling models. Their

common dimension — and the rank of the incidence matrix — is
A
D = E (/I — 1)]UI
veld
where | = |O| and U is the abstract simplicial complex generated by A .
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Linear Span T heorem
The fact that all probabilistic models have such global sections over signed

measures is a consequence of the following:
Theorem

T he linear subspace generated by the local models over an arbitrary measurement
cover M coincides with that generated by the no-signalling models. Their

common dimension — and the rank of the incidence matrix — is
LS
D := > (/—1)Y
veld

where | = |O| and U is the abstract simplicial complex generated by M.

Since the local models are included in the no-signalling models, this is proved by
showing that every compatible model is determined by linear equations in D
variables; while there are D linearly independent local models.

As a special case, we derive a formula for the dimension for Bell-type
(n, k, I)-scenarios:

D= (k-(l—1)+1)".
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Example: PR Boxes have global sections over IR
The 'Popescu-Rohrlich box’:

(0,0) (1,0) (0,1) (1.1)

(a, b) 1/2 0 0 1/2
(a’, b) 1/2 0 0 1/2
(a, b’) 1/ 0 0] 1/2

(a’, b") 0 1/2 1/2 0
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Example: PR Boxes have global sections over IR
The '‘Popescu-Rohrlich box':

(0.0) (1,0) (0.1) (1.1)
(a. b) 1/2 0 0 1/2
(a/.b) | 1/2 0 0 1/2
(a.b') | 1/ 0 0 1/2
(a', b') 0 1/2  1/2 0

The PR boxes exhibit super-quantum correlations, and cannot be realized in
quantum mechanics.

Example solution for PR Box:

[1/2,0,0,0,—1/2,0,1/2,0,—1/2,1/2,0,0,1/2,0,0,0].
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Strong Contextuality

Given an empirical model e, we define the set
Se = {s€&(X):VC € M.s|C € supp(ec)}.

A consequence of the extendability of e is that S. is non-empty.
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Strong Contextuality

Given an empirical model e, we define the set
Se = {s€&(X):VC € M.s|C € supp(ec)}-
A consequence of the extendability of e is that S. is non-empty.

We say that the model e is strongly contextual if this set S_. is empty. Thus

strong non-contextuality implies non-extendability.
N
In fact, it is strictly stronger. The Hardy model, which as we saw in the previous

section is possibilistically non-extendable, is not strongly contextual. The Bell
model similarly fails to be strongly contextual.

The question now arises: are there models arising from quantum mechanics which
are strongly contextual in this sense?
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Strong Contextuality

Given an empirical model e, we define the set
Se = {s€&(X):VC € M.s|C € supp(ec)}.
A consequence of the extendability of e is that S. is non-empty.

We say that the model e is strongly contextual if this set S. is empty. Thus

strong non-contextuality implies non-extendability.
LS
In fact, it is strictly stronger. The Hardy model, which as we saw in the previous

section is possibilistically non-extendable, is not strongly contextual. The Bell
model similarly fails to be strongly contextual.

The question now arises: are there models arising from quantum mechanics which
are strongly contextual in this sense?

We shall now show that the well-known GHZ models, of type (n, 2,2) for all
n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy << GHZ

of increasing strengths of obstructions to non-contextual behaviour for these

salient models.
Samson Abramsky Joint work with Adam Brandenbu ‘ . . . 21 /33
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GHZ Models

The GHZ model of type (n,2,2) can be specified as follows. We label the two
measurements at each part as X() and Y (), and the outcomes as 0 and 1.

For each maximal context C, every s in the support of the model satisfies the
following conditions: h

@ If the number of Y measurements in C is a multiple of 4, the number of 1's
in the outcomes specified by s is even.

@ If the number of Y measurements is 4k + 2, the number of 1's in the
outcomes is odd.

Samson Abramsky Joint work with Adam Brandenbu 2 /33
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GHZ Models

The GHZ model of type (n,2,2) can be specified as follows. We label the two
measurements at each part as X() and Y (), and the outcomes as 0 and 1.

For each maximal context C, every s in the support of the model satisfies the
following conditions: R

@ If the number of Y measurements in C is a multiple of 4, the number of 1's
in the outcomes specified by s is even.

@ If the number of Y measurements is 4k + 2, the number of 1's in the
outcomes is odd.

NB: a model with these properties can be realized in quantum mechanics.
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GHZ Models Are Strongly Contextual

We consider the case where n = 4k. Assume for a contradiction that we have a
global section.

If we take Y measurements at every part, the number of R outcomes under the
assignment has a parity P. Replacing any two Y's by X's changes the residue
class mod 4 of the number of Y's, and hence must result in the opposite parity
for the number of R outcomes under the assignment.

Thus for any Yy, yU) assigned the same value, if we substitute X’'s in those
positions they must receive different values. Similarly, for any Y (), Y U) assigned
different values, the corresponding X (), XU) must receive the same value.

Suppose not all Y () are assigned the same value. Then for some i, j, k, Y () is
assigned the same value as YU), and YU) is assigned a different value to Y (),
Thus Y is also assigned a different value to Y (¥). Then X() is assigned the
same value as X(¥) and XU) is assigned the same value as X(¥). By transitivity,
X () is assigned the same value as XY), yielding a contradiction.

The remaining cases are where all Y's receive the same value. Then any pair of
X's must receive different values. But taking any 3 X's, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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GHZ Models Are Strongly Contextual

We consider the case where n = 4k. Assume for a contradiction that we have a
global section.

If we take Y measurements at every part, the number of R outcomes under the
assignment has a parity P. Replacing any two Y's by X's changes the residue
class mod 4 of the number of Y's, and hence must result in the opposite parity
for the number of R outcomes under the assignment.

Thus for any Yy (), yU) assigned the same value, if we substitute X’'s in those
positions they must receive different values. Similarly, for any Y (), Y U) assigned
different values, the corresponding X (), XU) must receive the same value.

Suppose not all Y () are assigned the same value. Then for some i, j, k, Y () is
assigned the same value as YU), and YU) is assigned a different value to Y (),
Thus Y is also assigned a different value to Y (¥). Then X)) is assigned the
same value as X(¥) and XU) is assigned the same value as X(¥). By transitivity,
X () is assigned the same value as XU), yielding a contradiction.

The remaining cases are where all Y's receive the same value. Then any pair of
X's must receive different values. But taking any 3 X's, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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Strong Contextuality and Maximal Contextuality

Strong contextuality is defined in a simple ‘qualitative’ fashion. It is equivalent to
a notion which can be defined in quantitative terms, and has been studied in this
form in the special case of Bell-type scenarios

We consider convex decompositions
e = AL + %1 — \)gq, o< A<, (1)

where L is a local model, and g a no-signalling model.

We define the non-contextual fraction of e to be the supremum over all A
appearing in such convex decompositions (1).
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Quantitative Contextuality

We can consider the followed ‘relaxed’ version of the linear programming problem
for contextuality:

(LP1) Maximize 1 - x, subject to the constraints Mx < v and x > 0.
Proposition
T he values that 1 -x* can take, fox any M and v, lie in the unit interval. Moreover

1 - X"=1 <— Mx* = v.

Thus the distance of 1 - x* from 1 quantifies ‘how contextual' the model is.

Proposition

T he following are equivalent:
Q1 - x*=y*".-v=0.

Q T he model is strongly contextual.

Samson Abramsky Joint work with Adam Brandenbu
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Cohomology of Non-Locality and Contextuality

Joint work with Shane Mansfield and Rui Soares Barbosa.
Paper in Proceedings of QPL 2011.

Samson Abramsky Joint work with Adam BrandenburThe S -Theoretic Struct DFf Non-Loc : d Ce 26 / 33

Pirsa: 11110108 Page 78/94



Cohomology of Non-Locality and Contextuality

Joint work with Shane Mansfield and Rui Soares Barbosa.
Paper in Proceedings of QPL 2011.

The basic idea: to view non-locality and contextuality as cohomological
obstructions to global sections.

@ Given an empirical model e on a cover 4, we define an abelian presheaf

F = F;z5., the free abelian group functor applied to the support presheaf of
the model. o

@ We work with the Cech cohomology groups F’l‘?(u,}‘) for this presheaf.
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Cohomology of Non-Locality and Contextuality

Joint work with Shane Mansfield and Rui Soares Barbosa.
Paper in Proceedings of QPL 2011.

The basic idea: to view non-locality and contextuality as cohomological
obstructions to global sections.

@ Given an empirical model e on a cover U/, we define an abelian presheaf
F = F;z5., the free abelian group functor applied to the support presheaf of
the model. o

We work with the Cech cohomology groups I:Iq(u,]——) for this presheaf.

@ To each s € S.(C), we associate an element v(s) € HY (U, Fz) of a
cohomology group, which can be regarded as an obstruction to s having an
extension within the support of e to a global section. In particular, the
existence of such an extension implies that the obstruction vanishes. Thus
the non-vanishing of the obstruction provides a cohomological witness for
contextuality and strong contextuality.

@ We show for many examples, including GHZ, PR boxes, various
Kochen-Specker constructions, the Peres-Mermin square etc. that this
obstruction does indeed not vanish for any section, yielding witnesses for
strong contextuality.
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Important Equivalence

The following are equivalent:
@ The cohomology obstruction vanishes: y(s1) = 0
@ There is a family {r; € F(C;)} with s; = r1, and for all /,:

rijC;ﬁC}=rj|C;ﬁC}

Sufficient Condition for Non-Locality /Contextuality

e is local/ obstruction vanishes for
= —
non-contextual every section in the support
e is not obstruction vanishes for
° —
strongly contextual some section in the support

Samson Abramsky Joint work with Adam BrandenburlTh
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The Hardy Model
Support of the Hardy Model

(0,0) | (0,1) | (1,0) | (1,1)
(A, B) S1 S5 s3 sS4
(A, B") 0 S6 s7 sg
(A’, B) » S$10 S11 S$12
(A", B) S13 S14 S15 0

@ Label non-zero sections
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The Hardy Model
Support of the Hardy Model

@ Label non-zero sections

@ Compatible family of Z-linear combinations of sections:

n =35,

rp = s¢ + sy — sg,

Samson Abramsky Joint work with Adam BrandenburThe &
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(0,0) | (0,1) | (1,0) | (1,1)
(A, B) s1 2 s3
(A, B) 0 S6 s7
(A, B) (v s10 s11 s12
(A", B") 513 514 515

r3 = si1.

rqa = 3515
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The Hardy Model
Support of the Hardy Model

(0.0) | (0.1) | (1,0) | (1,1)
(A, B) s1 2 s3 sa
(A, B) 0 S6 S7 sg
(A, B) ® S10 s11 12
(A, B’) $13 S14 S15 0

@ Label non-zero sections
@ Compatible family of Z-linear combinations of sections:

rn = s, =S +5S7—Sg, I3 =S11. 4= 515
@ One can check that
ra| A = 1- A—0)+1-(A—1)—1-(A—1) = nlA,
nB = 1-(B—1)+1-(B"—0)—1-(B"—1) = n|B'
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The Hardy Model

v(s1) vanishes! N

@ T his example illustrates that false positives do arise

@ Cohomological prescription does not pick up on the non-locality of the Hardy
model
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Kochen-Specker-type Models

@ In a Kochen-Specker problem, we
wish to assign the outcome 1xo a
single measurement in each context

@ So sections in the support are the
ones with exactly one 1

30 / 33
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Kochen-Specker-type Models

@ In a Kochen-Specker problem, we
wish to assign the outcome 1%o a
single measurement in each context

@ So sections in the support are the
ones with exactly one 1

e E.g. 18-vector K-S model

Samson Abramsky Joint work with Adam Brandenbu
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HKGL h k g /
BEMN b = m n
IKNO i k n o
PQDJ P q d J
PRFL P r f /
QRMO q r m o
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Kochen-Specker-type Models

@ In a Kochen-Specker problemkwe
wish to assign the outcome 1 to a
single measurement in each context

@ So sections in the support are the
ones with exactly one 1

@ E.g. 18-vector K-S model

Samson Abramsky Joint work with Adam BrandenburTh
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b4+ c+d
+ b+ d
+c+ d
+ b+ ¢
+f+ g
+e+f

@ L L L L W

+ e+ g
i+c+j
h+c+J
h+i+c
h+ g+ 1
h+ k+ g
b+ e+ n
b+e+ m
i+ k +n
q+d+j
p+d+j
p+f+1

e+ f 4+ g
h+i+j
e+ m+n
P+q—+J
b+ m+n
h+ k + 1
p+r+1
k+g+1
k 4+ n+ o
p+qg+d
i+ n+4 o
p+r+f
q+r+o
i+ k + o
q-+r+ m
r+f +1
r+ m-+ o

g+ m+ o
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A Class of KS-type Models

Proposition (Abramsky-Brandenburger)

A necessary condition for Kochen-Specker-type models to have a global section is:

ged{&, | me X} | U,

where d,, .= |[{C €l | me C}|

Corollary

All models that do not satisfy the above condition are therefore strongly
contextual
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A Class of KS-type Models

Proposition (AMB)

If v(s) vanishes for some section s in the support of a connected
Kochen-Specker-type model, therRthe GCD condition holds for that model

Corollary

The vanishing of the cohomological obstruction is a complete invariant for the
non-locality /contextuality of any connected KS-type model that violates the

GCD condition
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A Class of KS-type Models

Proposition (Abramsky-Brandenburger)

A necessary condition for Kochen-Specker-type models to have a global section is:

ged{&, | me X} | |U|,

where d,, .= |[{C €eld | me C}|

Corollary

All models that do not satisfy the above condition are therefore strongly
contextual
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Kochen-Specker-type Models

@ In a Kochen-Specker problem, we
wish to assign the outcome 1%o a
single measurement in each context

@ So sections in the support are the
ones with exactly one 1

e E.g. 18-vector K-S model
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AEFG a = f g
HICJ h i c g
HKGL h k g /
BEMN b = m n
IKNO i k n o
PQDJ P q d J
PRFL P r f /
QRMO q r m o
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Limitations and Further Directions

@ In general, the cohomological condition for contextuality is sufficient, but not
necessary

Conjecture N

Under suitable assumptions of symmetry and connectedness, the cohomology
obstruction is a complete invariant for strong contextuality
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Limitations and Further Directions

@ In general, the cohomological condition for contextuality is sufficient, but not
necessary

Conjecture N

Under suitable assumptions of symmetry and connectedness, the cohomology
obstruction is a complete invariant for strong contextuality

@ We have been computing the obstructions by brute force enumeration

@ We would like to use the machinery of homological algebra and exact
sequences to obtain more conceptual and general results
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