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Abstract: Ideas about information are pervasive, yet the fundamental nature and structure of information - if indeed it has one! - remains elusive.
Work done from many different perspectives, including those of physics, biology, logic, computer science, statistics, and game and decision theory,
has yielded insights into various aspects of information. Could there be a comprehensive, unified theory? We shall chart a particular path, focusing
on the idea of *information flow*, and show how common mathematical structures arise in the description of information flow in computer science,
logic and quantum information.
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Information Flow: tracing a path through Logic,

Computation, Topology and Physics

Samson Abramsky

Department of Computer Science, Oxford University
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Information is everywhere. We live in an Information Age.

But what is the fundamental nature and structure of information!
(Sceptics: If it has these things!)

A lot of disciplines have things to say about information:

Physics, biology, mathematics, logic, computer science, statistics, game and
decision theory, linguistics,

The blind men and the elephant?

All have yielded insights into various aspects of information. Could there be a
comprehensive, unified theory?
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Information, Information

Information is everywhere. We live in an Information Age.

But what is the fundamental nature and structure of information!
(Sceptics: If it has these things!)

A lot of disciplines have things to say about information:

Physics, biology, mathematics, logic, computer science, statistics, game and
decision theory, linguistics,

The blind men and the elephant?

All have yielded insights into various aspects of information. Could there be a
comprehensive, unified theory?

Sceptic: didn't Shannon give the definitive approach?
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A cautionary tale from over 10 years back.
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information theory. How can you speak of information increase?
Information theory tells us you can only lose information!
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An Anecdote

A cautionary tale from over 10 years back.

Consider the following ‘puzzle’:

lWhy do we compute?

Obvious answer: to gain information (which, therefore, we didn’t previously have).

Distinguished physicist (now knighted :) asks:

‘I don't know much about computer science, but | know some
information theory. How can you speak of information increase?
Information theory tells us you can only lose information!

A couple of morals:

@ Information gain is relative to subsystems (or agents).

@ The dynamics of computation (and language, cognition, etc.) is about
information flow to and from these sub-systems/agents.
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A simple model of information increase in computation
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A simple model of information increase in computation

Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.
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Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.

E.g. a recursive definition of factorial:

fact(n) if n =0 then 1 else n < fact(n — 1).
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A simple model of information increase in computation

Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.

E.g. a recursive definition of factorial:

fact(n) if n = 0 then 1 else n < fact(n — 1).

We can understand recursive definitions as fixpoints: fact F(fact), where F is a
suitable functional (acting on partial functions of natural numbers).
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E.g. a recursive definition of factorial:

fact(n) if n = 0 then 1 else n < fact(n — 1).

We can understand recursive definitions as fixpoints: fact F(fact), where F is a
suitable functional (acting on partial functions of natural numbers).

Zeroth approximation: factyg = @. We have no information about fact.
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A simple model of information increase in computation

Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.

E.g. a recursive definition of factorial:

fact(n) if n =0 then 1 else n < fact(n — 1).

We can understand recursive definitions as fixpoints: fact F(fact), where F is a
suitable functional (acting on partial functions of natural numbers).

Zeroth approximation: factg = @. We have no information about fact.

First approximation: fact; = {(0.1)}. We gain information about one value of
fact.
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A simple model of information increase in computation

Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.

E.g. a recursive definition of factorial:

fact(n) if n =0 then 1 else n < fact(n — 1).

We can understand recursive definitions as fixpoints: fact F(fact), where F is a
suitable functional (acting on partial functions of natural numbers).

Zeroth approximation: factyg = @. We have no information about fact.

First approximation: fact; = {(0.1)}. We gain information about one value of
fact.

Second approximation: fact, = {(0.1).(1.1)}.
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A simple model of information increase in computation

Recursive definitions: fundamental in computation — and in logic and foundations
of mathematics.

E.g. a recursive definition of factorial:

fact(n) if n =0 then 1 else n < fact(n — 1).

We can understand recursive definitions as fixpoints: fact F(fact), where F is a
suitable functional (acting on partial functions of natural numbers).

Zeroth approximation: factyg = @. We have no information about fact.

First approximation: fact; = {(0.1)}. We gain information about one value of
fact.

Second approximation: fact, {(0.1).(1.1)}.

k-th approximation gives us the first k values. The /imit of the increasing
sequence of approximations gives us the whole thing — which is the /east fixpoint
of the associated functional.
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Reflexivity and Self-Application

Pirsa: 11110076 Page 27/138



Reflexivity and Self-Application
As a further illustration of the power of these ideas (elaborated in the Domain
theory pioneered by Dana Scott), we shall apply them to something more startling.
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Church’'s A-calculus:
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application abstraction
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Reflexivity and Self-Application
As a further illustration of the power of these ideas (elaborated in the Domain
theory pioneered by Dana Scott), we shall apply them to something more startling.

Church’'s A-calculus:

tu AXx. t

application abstraction

Dynamics: 3-reduction
(Ax. t)u — tlu/x]

We can form self-application . w = AX. XX.
Hence {2 = ww, which diverges:

Q—>Q— -
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Reflexivity and Self-Application
As a further illustration of the power of these ideas (elaborated in the Domain
theory pioneered by Dana Scott), we shall apply them to something more startling.

Church’'s A-calculus:

tu AXx. t

application abstraction

Dynamics: 3-reduction
(Ax. tHu — tlu/x]

We can form self-application . w = AX. XX.
Hence {2 = ww, which diverges:

Q-5 Q -

Also, ¥ = Af. (Ax. f(xx))(Ax. f(xx)) — recursion.
Yt — (Ax. t(xx))(Ax. t(xx)) — t((Ax. t(xx))(Ax. t(xx)))
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A model for the A-calculus
The A-calculus is not (just :) a logician’'s fantasy:
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The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.

We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.
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We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.

N.B. This is inductive! Need to start off with a non-empty set of ‘information
atoms’ and build up from there.

The idea is that a function satisfies or contains the information (S. a) if, whenever
it is applied to an argument which satisfies all the finite pieces of information in S,
it produces a result containing the information a.
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.

We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.

N.B. This is inductive! Need to start off with a non-empty set of ‘information
atoms’ and build up from there.

The idea is that a function satisfies or contains the information (S. a) if, whenever
it is applied to an argument which satisfies all the finite pieces of information in S,
it produces a result containing the information a.

The meaning of a term, [t], is the set of finite pieces of information it contains.
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.

an r a ma: matical r : 1 or ar ic 1 F ni
We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.

N.B. This is inductive! Need to start off with a non-empty set of ‘information
atoms’ and build up from there.

The idea is that a function satisfies or contains the information (S. a) if, whenever
it is applied to an argument which satisfies all the finite pieces of information in S,
it produces a result containing the information a.

The meaning of a term, [t], is the set of finite pieces of information it contains.

Definition of application:

[tu] {a| 3S5.(S5.a) € [t]. S C [u]}
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.

We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.

N.B. This is inductive! Need to start off with a non-empty set of ‘information
atoms' and build up from there.

The idea is that a function satisfies or contains the information (S. a) if, whenever
it is applied to an argument which satisfies all the finite pieces of information in S,
it produces a result containing the information a.

The meaning of a term, [t], is the set of finite pieces of information it contains.
Definition of application:
[tu] {a| 3S5.(S5.a) € [t]. S C [u]}

It works! Gives a consistent model of the calculus, self-application, fixpoints, etc.
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Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..
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Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..

At which physical level do they arise?
There are subtle issues here. Recursion involves copying/cloning.
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Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..

@ At which physical level do they arise?

@ There are subtle issues here. Recursion involves copying/cloning.

@ Eg. Y = Af.(Ax. f(xx))(Ax. f(xx)).

This is also why we defined a finite piece of information to be (5. a) rather
than just (a. b).

Diagonal arguments use diagonals A(x) = (x.x)! Also deeply implicated in
the blow-up of computational complexity.

Nlg/cloning:
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Reflexivity and Self-Application

As a further illustration of the power of these ideas (elaborated in the Domain
theory pioneered by Dana Scott), we shall apply them to something more startling.

Church’'s A-calculus:

tu AX. t

application abstraction

Dynamics: 3-reduction
(Ax. t)u — tlu/x]

We can form self-application . w = AX. XX.
Hence {2 = ww, which diverges:

Q-5 Q -

Also, Y = Af. (Ax. f(xx))(Ax. f(xx)) — recursion.
Yt — (Ax. t(xx))(Ax. t(xx)) — t((Ax. t(xx))(Ax. t(x

It extracts a fixpoint for any term!

"

= v

Samson Abramsky (Department of Computer Science,
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A model for the A-calculus

The A-calculus is not (just :) a logician’'s fantasy:
@ Foundations of LISP, many current languages
@ Universal expressive power: the Church-Turing thesis.

We can make a mathematical model based on the same ideas of increase of finite
pieces of information we have about the functional behaviour of an expression.

A finite piece of information is a pair (5. a), where S is a finite set of finite pieces
of information, and a is a finite piece of information.

N.B. This is inductive! Need to start off with a non-empty set of ‘information
atoms’ and build up from there.

The idea is that a function satisfies or contains the information (S. a) if, whenever
it is applied to an argument which satisfies all the finite pieces of information in S,
it produces a result containing the information a.

The meaning of a term, [t], is the set of finite pieces of information it contains.

Definition of application:

[tu] {a| 3S5.(5.a) € [t]. S C [v]}

Pirsa: 11110076 Page 49/138



Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..

@ At which physical level do they arise?

@ There are subtle issues here. Recursion involves copying/cloning.

@ Eg. Y = Af.(Ax. f(xx))(Ax. f(xx)).

This is also why we defined a finite piece of information to be (5. a) rather
than just (a. b).

Diagonal arguments use diagonals A(x) = (x.x)! Also deeply implicated in
the blow-up of computational complexity.
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Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..

At which physical level do they arise?

There are subtle issues here. Recursion involves copying/cloning.

E.g. Y = Af.(Ax. f(xx))(Ax. f(xx)).

This is also why we defined a finite piece of information to be (5. a) rather
than just (a. b).

Diagonal arguments use diagonals A(x) = (x.x)! Also deeply implicated in
the blow-up of computational complexity.

So how does this emerge from the quantum level, where we have no-cloning?

@ Otherwise put, how does (/ogical) non-linearity arise from linearity?

We shall now turn to linear forms of information flow.

@ These arise at the quantum level, and play a key role in quantum information.

@ We can also recognize linear versions of information flow in logic,
computation, and even linguistics and beyond.
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Where i1s Physics in all this?

@ Recursive and reflexive behaviours are emergent: it has been argued that they
play a fundamental role in biology (self-replication etc.) and at higher levels
in cognition, language, reasoning, agent interactions . ..

At which physical level do they arise?
There are subtle issues here. Recursion involves copying/cloning.

E.g. Y = M. (Ax. f(xx))(Ax. f(xx)).

This is also why we defined a finite piece of information to be (5. a) rather
than just (a. b).

Diagonal arguments use diagonals A(x) = (x.x)! Also deeply implicated in
the blow-up of computational complexity.

So how does this emerge from the quantum level, where we have no-cloning?

@ Otherwise put, how does (/ogical) non-linearity arise from linearity?

We shall now turn to linear forms of information flow.

@ These arise at the quantum level, and play a key role in quantum information.

@ We can also recognize linear versions of information flow in logic,
computation, and even linguistics and beyond.

@ Some steps towards a unified theory.
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Quantum Entanglement
Bell state:

00) + [11)

EPR state:
01) + |10)
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Quantum Entanglement
Bell state:

00) + [11)

EPR state:
01) + |10)

Compound systems are represented by tensor product: H, & H-. Typical element:
E /\; * (’j (P l’“'
i

Superposition encodes correlation.
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Quantum Entanglement
Bell state:

00) + [11)

EPR state:
01) + |10)

Compound systems are represented by tensor product: H, ¢ H»-. Typical element:
E /\; L )!' (P { “'
i

Superposition encodes correlation.

Einstein's ‘spooky action at a distance'. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell's theorem: QM is essentially non-local.
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From 'paradox’ to feature: Teleportation

|[00) + |11)
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Entangled states as linear maps

Hq1 o Ho is spanned by
111) .-+ |[1m)
Inl) -+ |nm)

hence

) S | I'> — E CVjj |_j>
/

Yni Vnm

Pairs |¢'1.¢») are a special case — |jj) in a well-chosen basis.

This is Map-State Duality.
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Entangled states as linear maps

Hq1 o Ho is spanned by
111) -+ |[1m)
Inl) -+ |nm)

hence

—> |7} — E cvijlf)
/

Y1 Vnm

Pairs |¢'1.¢») are a special case — |jj) in a well-chosen basis.
This is Map-State Duality.

Notation. Given a linear map f : H — H, we write Ps for the projector on ‘H o H
determined by the vector corresponding to f under Map-State duality.

Pirsa: 11110076 Page 64/138



What is the output?

in

1)(.}(1 --Ph)(‘w(P,‘, -'1)0(1 "Pfl):/Hl
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What is the output?

“in

1)o(1®Pg)o(Pr®1)o(1®Pg): Hy @ Ha @ Hs

“out f3 0 fyo0 fgl o f_w,rlr o f1 o 2(®in)
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Follow the linel

fsofaofy off ofyof
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Bipartite Projectors

Information flow in entangled states can be captured mathematically by the
isomorphism

Hom(A.B) = A" ® B.

This leads to a decomposition of bipartite projectors into “names” (preparations)
and “conames’” (measurements).

In graphical notation:
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Follow the linel
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Bipartite Projectors

Information flow in entangled states can be captured mathematically by the
isomorphism

Hom(A. B) = A" @ B.

This leads to a decomposition of bipartite projectors into “names” (preparations)
and “conames” (measurements).

In graphical notation:
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Follow the linel

f3 o fa © f:_)l O fﬂi o f of

Pirsa: 11110076 Page 71/138



Bipartite Projectors

Information flow in entangled states can be captured mathematically by the
isomorphism
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Bipartite Projectors

Information flow in entangled states can be captured mathematically by the
isomorphism
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and “conames” (measurements).

In graphical notation:
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Compositionality

The key algebraic fact from which teleportation (and many other protocols) can
be derived.
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be derived.
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Compositionality

The key algebraic fact from which teleportation (and many other protocols) can
be derived.
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Compositionality ctd
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Compositionality
The key algebraic fact from which teleportation (and many other protocols) can
be derived.
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Compositionality ctd
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Compositionality ctd
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Teleportation diagrammatically

r
1
1
1
1
1
1
1
L
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Teleportation diagrammatically

r
1
1
1
1
1
1
1
L
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Categorical Quantum Mechanics

Work of many people, both in the Quantum Group at Oxford CS Dept and
elsewhere.
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Categorical Quantum Mechanics

Work of many people, both in the Quantum Group at Oxford CS Dept and
elsewhere.

@ Underlying mathematics: monoidal dagger categories, dagger compact
structure, Frobenius algebras, bialgebras . ..
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Categorical Quantum Mechanics

Work of many people, both in the Quantum Group at Oxford CS Dept and
elsewhere.

@ Underlying mathematics: monoidal dagger categories, dagger compact
structure, Frobenius algebras, bialgebras . ..

@ Diagrammatic representation. Connections to logic and category theory.
Underpinning mathematics, effective visualization, making mathematical

structures accessible.

[dagger compact

¥ catagory theory.
IRl mathematical
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Categorical Quantum Mechanics

Work of many people, both in the Quantum Group at Oxford CS Dept and
elsewhere.

@ Underlying mathematics: monoidal dagger categories, dagger compact
structure, Frobenius algebras, bialgebras . ..

@ Diagrammatic representation. Connections to logic and category theory.
Underpinning mathematics, effective visualization, making mathematical
structures accessible.

@ Software tool support: Quantomatic. Tactics, graph rewriting, visual
interface.

[daggor campact

Wl catagory theory.
{Rlng mathematical

pawrlting, visual

Samson Abramsky (Department of Computer Science,
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Categorical Quantum Mechanics

Work of many people, both in the Quantum Group at Oxford CS Dept and
elsewhere.

@ Underlying mathematics: monoidal dagger categories, dagger compact
structure, Frobenius algebras, bialgebras . ..

@ Diagrammatic representation. Connections to logic and category theory.
Underpinning mathematics, effective visualization, making mathematical

structures accessible.

Software tool support: Quantomatic. Tactics, graph rewriting, visual
interface.

Applications. Formalization of quantum protocols, QKD, measurement-based
quantum computation, etc. Analysis of determinism in MBQC, compositional
structure of multipartite entanglement. Foundational topics: e.g. analysis of
non-locality.
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String Diagrams Are Everywhere
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Teleportation diagrammatically

r
1
1
1
1
1
1
1
L
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String Diagrams Are Everywhere

This graphical formalism, with the underlying mathematics of monoidal
categories, compact closure etc., turns up in (at least) the following places:

1 monowal
following places:

Samson Abramsky (Department of Computer Science,
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String Diagrams Are Everywhere

This graphical formalism, with the underlying mathematics of monoidal
categories, compact closure etc., turns up in (at least) the following places:

@ Quantum mechanics, quantum information.
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This graphical formalism, with the underlying mathematics of monoidal
categories, compact closure etc., turns up in (at least) the following places:

@ Quantum mechanics, quantum information.

@ Logic: (linear version of) cut-elimination
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String Diagrams Are Everywhere

This graphical formalism, with the underlying mathematics of monoidal
categories, compact closure etc., turns up in (at least) the following places:

@ Quantum mechanics, quantum information.

Logic: (linear version of) cut-elimination

o
@ Computation: (linear version of) A-calculus, feedback, processes.
=

Linguistics: Lambek pregroup grammars, lifting vector space models of word
meaning

Topology, knot theory: Temperley-Lieb algebra, braided, pivotal and ribbon
categories.

We will trace a path through some of these . ..
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T he Temperley-Lieb Algebra
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The Temperley-Lieb Algebra

Generators:
1 2 3

1’ 2" 3
U,
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T he Temperley-Lieb Algebra

Generators:
1 2 3

1’ 2" 3
U,

Relations:
A4

't
U, Us Uy
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Structure of Temperley-Lieb category
General form of composition:
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General form of composition:
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Structure of Temperley-Lieb category
General form of composition:

Compact closure/rigidity:
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T he Temperley-Lieb Algebra

Generators:
1 2 3

1’ 2" 3
U,

Relations:
A4

4R
Uy Us U
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Structure of Temperley-Lieb category
General form of composition:
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Structure of Temperley-Lieb category
General form of composition:

Compact closure/rigidity:
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Structure of Temperley-Lieb category
General form of composition:

s Al

Compact closure/rigidity:

The same structure which accounts for teleportation:
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Temperley-Lieb: expressiveness of the generators

All planar diagrams can be expressed as products of generators.

E.g. the ‘left wave' can be expressed as the product U, U,:

N N

£ VY
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Temperley-Lieb: expressiveness of the generators

All planar diagrams can be expressed as products of generators.

E.g. the ‘left wave' can be expressed as the product U, U,:

A

Diagrammatic trace:

@—O = 00O

The Ear is a

Trace of ldentity
Circle

is the Dimension
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T he Connection to Knots

How does this connect to knots? A key conceptual insight is due to Kauffman,
who saw how to recast the Jones polynomial in elementary combinatorial form in
terms of his bracket polynomial.
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T he Connection to Knots

How does this connect to knots? A key conceptual insight is due to Kauffman,
who saw how to recast the Jones polynomial in elementary combinatorial form in
terms of his bracket polynomial.

The basic idea of the bracket polynomial is expressed by the following equation:

(X0 - K =) K) O
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T he Connection to Knots

How does this connect to knots? A key conceptual insight is due to Kauffman,
who saw how to recast the Jones polynomial in elementary combinatorial form in
terms of his bracket polynomial.

The basic idea of the bracket polynomial is expressed by the following equation:

(X0 - K =) e

Each over-crossing in a knot or link is evaluated to a weighted sum of the two
possible planar smoothings in the Temperley-Lieb algebra. With suitable choices
for the coefficients A and B (as Laurent polynomials), this is invariant under the
second and third Reidemeister moves. With an ingenious choice of normalizing
factor, it becomes invariant under the first Reidemeister move — and vyields the
Jones polynomiall
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Computation: back to the A-calculus

We shall consider the bracketing combinator
B=XxAy.A\z.x(yz):(B—>C)—> (A—>B)—> (A— Q).

This is characterized by the equation Babc = a(bc).
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Computation: back to the A-calculus

We shall consider the bracketing combinator

B = XAy A\z.x(yz):(B—->C)— (A—>B)— (A— Q).

This is characterized by the equation Babc = a(bc).
We take A B C 1 in TL. The interpretation of the open term
x:B—-C,.y:A—>B.z: A+ x(yz): C

is as follows:
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We shall consider the bracketing combinator

B=XXxA\y\z.x(yz):(B—>C)—>(A—>B)—> (A— Q).

This is characterized by the equation Babc = a(bc).
We take A B C 1 in TL. The interpretation of the open term
x:B—-C,.y:A—>B.z: A+ x(yz): C

is as follows:
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Diagrammatic Simplification as /J-Reduction
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Diagrammatic Simplification as /5-Reduction

When we abstract the variables, we obtain the following caps-only diagram:
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Diagrammatic Simplification as /7-Reduction

When we abstract the variables, we obtain the following caps-only diagram:
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Diagrammatic Simplification as /7-Reduction

When we abstract the variables, we obtain the following caps-only diagram:

£y &N

O ZzTy yTXxT Xx"

Now we consider an application Babc (where application is represented by cups):

O
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A Non-Planar Example
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A Non-Planar Example

We shall consider the commuting combinator

C=XMN&x Ay \z.xzy . (A—->B—>C)—>B—>A—C.
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A Non-Planar Example

We shall consider the commuting combinator

C=XxA\wyX\z.xzy . (A—-B—>C)—-B—>A—> C.
This is characterized by the equation Cabc = ach.
The interpretation of the open term
X A—->B—->C,y:B,z: A xzy : C

is as follows:
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A Non-Planar Example

We shall consider the commuting combinator
C=XxA\y\z.xzy . (A—->B—>C)—>B — A
This is characterized by the equation Cabc = ach.
The interpretation of the open term
X A—->B—>C,y:B.z: Ak xzy : C

is as follows:

]
o

Here x* is the output of x, x! the first input, and x? the second input. The
output of the whole expression is o.
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Diagrammatic Simplification as /5-Reduction
When we abstract the variables, we obtain the following caps-only diagram:

NN

o z y x? x! x7

Now we consider an application Cabc:
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Linguistics
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Linguistics

Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.
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Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7 pronoun, /i infinitive, o direct object,
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Linguistics
Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7 pronoun, /i infinitive, o direct object,

Does he like her? question

i o o s

|

Samson Abramsky (Department of Computer Science,
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Linguistics
Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7 pronoun, 7/ infinitive, o direct object,

like her? question

o o : s
[

|

|
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Linguistics
Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7w pronoun, i/ infinitive, o direct object,

Does he like her? question
o o s
[

|

|

Distributional models: words interpreted as vectors of frequency counts of
co-occurrences of a set of reference words (the basis) within a fixed (small) word
radius in a large text corpus. Widely used in information retrieval.
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Linguistics
Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7 pronoun, /i infinitive, o direct object,

Does he like her? question

silaw! = i o o s
‘ E

| | | |

Distributional models: words interpreted as vectors of frequency counts of
co-occurrences of a set of reference words (the basis) within a fixed (small) word
radius in a large text corpus. Widely used in information retrieval.

These seem very different: but they have the same categorical/diagrammatic
structure — vector spaces treated as in the quantum information setting!

Auestion
s

wancy counts of
flo i fomed (arnall) word
jtrioval,

frieal fellagrammatic
ation settingl
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Linguistics
Clark, Coecke and Sadrzadeh: Compositional Distributional Models of Meaning.

Lambek grammars: 7 pronoun, 7/ infinitive, o direct object,

Does he like her? question

sila! = o
‘ [

]

o o s
[ |

Distributional models: words interpreted as vectors of frequency counts of
co-occurrences of a set of reference words (the basis) within a fixed (small) word
radius in a large text corpus. Widely used in information retrieval.

These seem very different: but they have the same categorical/diagrammatic
structure — vector spaces treated as in the quantum information setting!

So we can functorially map Lambek pregroup parses into vector spaces to lift the
distributional word meanings compositionally to meanings for phrases and
sentences.

Implementations and benchmarks look promising: see recent work by Sadrzadeh
and Graefenstette.

Pirsa: 11110076 Page 133/138



Final Remarks

@ Structures in monoidal categories, involving compact structure, trace etc.,
which support the diagrammatic calculus we have illustrated seem to provide
a canonical setting for discussing processes. Have been widely used as such,
implicitly or explicitly, in Computer Science. Recent work has emphasized
their relevance in quantum information and quantum foundations. Significant
links to work at Pl in the Quantum Foundations group.
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@ Structures in monoidal categories, involving compact structure, trace etc.,
which support the diagrammatic calculus we have illustrated seem to provide
a canonical setting for discussing processes. Have been widely used as such,
implicitly or explicitly, in Computer Science. Recent work has emphasized
their relevance in quantum information and quantum foundations. Significant
links to work at Pl in the Quantum Foundations group.

As we have seen, the same structures reach into a wide range of other

disciplines. There are more we didn’'t have time to discuss; e.g. logic
(cut-elimination as information flow through proofs).

JeS———————
P viidaly used as such,
fork i wimphas zed.
foundations, Signlicant
»

tha range of avhar

bt o Togic

Samson Abramsky (Department of Computer Science,
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Final Remarks

@ Structures in monoidal categories, involving compact structure, trace etc.,
which support the diagrammatic calculus we have illustrated seem to provide
a canonical setting for discussing processes. Have been widely used as such,
implicitly or explicitly, in Computer Science. Recent work has emphasized
their relevance in quantum information and quantum foundations. Significant
links to work at Pl in the Quantum Foundations group.

As we have seen, the same structures reach into a wide range of other

disciplines. There are more we didn’'t have time to discuss; e.g. logic
(cut-elimination as information flow through proofs).

There are other promising ingredients for a general theory of information
flow. In particular, sheaves as a general 'logic of contextuality'. Again, very
direct connections to quantum foundations, quantum information. The
subject of my talk in the Quantum Foundations seminar yesterday.
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Final Remarks

Structures in monoidal categories, involving compact structure, trace etc.,
which support the diagrammatic calculus we have illustrated seem to provide

a canonical setting for discussing processes. Have been widely used as such,
implicitly or explicitly, in Computer Science. Recent work has emphasized

their relevance in quantum information and quantum foundations. Significant
links to work at Pl in the Quantum Foundations group.

As we have seen, the same structures reach into a wide range of other

disciplines. There are more we didn’'t have time to discuss; e.g. logic
(cut-elimination as information flow through proofs).

There are other promising ingredients for a general theory of information
flow. In particular, sheaves as a general 'logic of contextuality'. Again, very
direct connections to quantum foundations, quantum information. The
subject of my talk in the Quantum Foundations seminar yesterday.

The interface between physics and computer science is vibrant and fruitful.
Long may this continue!
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