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Abstract: We investigate the use of the embedding formalism and the Mellin transform in the calculation of tree-level conformal correlation
functionsin $AdSH/CFT.

We evaluate 5- and 6-point Mellin amplitudes in $phi”*3$ theory and even a 12-pt diagram in $phi~4$ theory, enabling us to conjecture a set of
Feynman rules for scalar Mellin amplitudes. We also show how to use the same combination of Méllin transform and embedding formalism for
amplitudes involving fields with spin. The complicated tensor structures which usually arise can be written as certain operators acting as projectors
on much simpler index structures - essentially the same ones appearing in a flat space amplitude. Using these methods we are able to evaluate a
four-point current diagram with current exchange in Yang-Mills theory.
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Bulk to boundary propagators

Mallin
ampiitudos
n ADS/CFT

m In this language, we have for instance:

[_Ju = —215’; . ,J - (.’Ii — .l'”)-2
- i g o
R = (ot (=)
L0

m For a conformal field of dimension A we have.

+00 i o )
Gop(P, X) ~ el LR o f ‘IL!_\, (2HPX
0

(=2P - X)Ai bisi®

m The Schwinger parameter representation is crucial to all the
calculations to come.

m The exponential implies that derivative interactions become as simple
as in flat space.
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Bulk to boundary propagators

Mallin
amplitudos
n AdS/CFT

m In this language, we have for instance:
Scalar

. 2
amplitudos Py = -=2PF. % = (yi — y5)
in AdS/CFT

- | 2 2
—2P-X = —(x5+ (x—1vy)°).

L0

m For a conformal field of dimension A we have.

(=2P - X)& T

00 ; -
Gop(P.X) ~ -—lh_:f ‘li!_\.!m,p._\.
0

m The Schwinger parameter representation is crucial to all the
calculations to come.

m The exponential implies that derivative interactions become as simple
as in flat space.
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Bulk to bulk propagators

amT;leitlLilges m [ he bulk-to-bulk propagator takes the remarkable form (/2 = d/2):

in AdS/CFT
Gpp(Xi1,X2) =

-+ OO
i de | ds ds h4ec h—e 28Q-X1425Q-X-
/ > -fs.0(c) / dqQ — S 29X Q-Xo

OAdS S S

Scalar
amplitudes
in AdS/CFT

J—ioc “~/

m Diagramatically this is the “factorization” property

J. (l(‘)_J‘ de [.;“_)
& AdS

\
O

P,

m The function fs5 o captures the fact that a spin-0 state of conformal
dimension ¢ is being propagated
£ 0(c) =~ 1 1
76,0 o [(0‘ — h)2 — 1'2] I'e)I'(—c)
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Bulk to bulk propagators

arpitision m The bulk-to-bulk propagator takes the remarkable form (h = d/2):

mn ADS/CFT
' Gep(XN1.X2) =

e ds ds h+c h=c 25Q-X,-+25Q-Xq
=]8.0(C) T S ¢

— e Y JOAdS NG

p.

' property

m The function fs captures the fact that a spin-0 state of &
dimension 4 is being propagated

1 1

fsolc) = (6= h)2 =3 T(OT(=0)
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Warm-up: three-point function in ¢* theory

Scalar
amplitudos
in AdS/CFT

® The X integration is simple: ¢*¥°@ —~ (.. )¢?" and we get

e SrAy—2h 2 dts S
-‘1“-3--5)=9F(——-2———)/ -T;-f'l-\' exp QZ!.UPU -

i=1

i<j
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Warm-up: three-point function in ¢ theory

Scalar
amplitudos
in AdS/CFT

J

1(1,2,3) = (O1(P1)Oa(P2)O3(Ps))

+o0 3 (“
L f A[ dX exp (2(t1 Py + taPs + taPs) - X)
0 AdS

;‘=

m The X integration is simple: ¢***? —~(...)e?", and we get

2% g D=2f dt;
.-l(l..’..-.i)=_(jf(;—?-——')/ = "\'t\p( E tit; P,_,).
i=]

<]
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Warm-up: three-point function in ¢> theory

Bmugle'lt'lil:bs
in AdS/CFT ) ) _ ‘ -
m Performing the integrals, and comparing with the Mellin form:
_k, — 2 e
Scalar --1(1-2--‘%)=.«;1‘(Z )HI(»U (xs — x;) 2%
in AdS/CFT i<J
A(x1,x2,...,Tn) = ?gdfiu' M (di5) H (8ij)(xi — x5) 2%,
’ i<j

we read off simply

Ma = V21,892,483 gT" (Z:A: —2/1)

[0,0,0] >

m Conformal symmetry (Mellin momentum conservation) completely fixes
the parameters, say:
A1+ As — Ag

)

O12 = k1 - ko =
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Comments on higher-point functions

Mellin

amplitudos m Exchange diagrams are related to contact diagrams via the
in AdS/CFT . . .
) diagrammatic relation
Q
Scal
amaplait:Jdes P P, P,
in AdS/CFT
= -" d(‘gJ‘ de fi(c)
& AdS

P, P, P,

m AdS integrations are trivial! Do them once for the 3-pt function, and
that's it.

m Boundary integrations are also trivial in the embedding formalism, if we
use Schwinger parameterisation:

/(1(3('213-(? — (‘IJQ

m We are left with the Mellin integrals in ¢, and the Schwinger parameter
integrals, one for each and every leg.
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Symanzik’s star formula

Mollin
ampiitudos
in AdS/CFT ; ; A 2
W m A generic amplitude always involves integrals of the form

- f]:[ (” f]:[ (t‘l'-.z ds; h-!-c 3 :n—c )*\l’(_Z’ o))

amplitudas 1<)
in AdS/CFT

With Qi = Pij X qij(s;,3;)-

m The ¢; integrals are now traded for 4,; integrals, via Symanzik's result:
Symanzik 72

Rl l’]f R T -_d3
| | Siaxp(—tit, (08 = fdm)l (0i5)(Qiz)~""
0

m The Mellin amplitude will then take the form

+i20

< v Sy 1+c,; h=—
\I(O'J) ~ H/ (l‘»‘j.féj ((‘j)/ (ii-dT'L-.j -',»‘.'1 CJ) H(qu(.ﬁj.‘;‘j))"éu
—in0 0 S v

i<j

Mallin and two internal Schwinger parameter integrals for oach internal log,
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Symanzik’s star formula

Mellin
amplitudes
in AdS/CFT . . ) )
m A generic amplitude always involves integrals of the form
(lfif‘li (lH.j (IHJI ht+c; _h—c; — N T
Scalar t ¢ I I e: Ba Sy S exp(— E i _]-‘,1._))
amplitudes . i . j v ) J i< j
in AdS/CFT

with Q;i; = Pi; < qij(s5,5;5).
m The ¢; integrals are now traded for §,; integrals, via Symanzik’'s result:

Symanzik ‘72

+°‘~1—[ 1t; .
/ (f f;;l('X[)(—I t; ()z_]) = %II(‘;;JI‘((‘LJ)((‘,}Q])_
- . (] -

0

m The Mellin amplitude will then take the form

M (6 H +h:'|f--f* (c; (222 435 shtes gh e 8ij
4 0ij) 3iJé; cj) o s; 55 S H(‘h_}(‘”_} 55))

1<_)

Mellin and two internal Schwinger parameter integrals for each internal leg.
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Feynman rules?

Mellin
amplitudes
in AdS/CFT

Scalar
amplitudes
in AdS/CFT
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m Test Feynman rules: compute higher n-point functions.
m This should also tell us what the vertices are.

m Computations are relatively straightforward - complicated part is integral
over internal Schwinger parameters.

P.

>

P, P,
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m Test Feynman rules: compute higher n-point functions.
m This should also tell us what the vertices are.

m Computations are relatively straightforward - complicated part is integral
over internal Schwinger parameters.

P,

>

P, Py
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Mollin
ampitudos
n AdS/CFT

Scalar
amplitudos
in AdS/ICFT

Computing the six-point amplitude

m After integrations over @, t; and half of the internal Schwinger
parameters are performed, we obtain the Mellin amplitude.

'J'l.l'--ha.ﬂ—cl_h I" Ar.l-‘-Al.(_‘"cr_h [“ Cy ‘&'!l‘-‘v
(lw 2 2 2

)

7 [—li:[] 2 (_—'5"'1-:_.l Ea )F(:,)F(—e )[(r'l -——-h)-—:li

2
r h—cy—co—cqg T [~
2
J0O i=

—Ci+h— s Sl U 51 C1-+ca+ca—h

ff,‘:.—-—-— =

(1 4+ )‘) (I'LZ.

y =

9 1 2 9 D)

m The ¢; poles leads to poles in s; at &; - conformal dimensions of
exchanged states.

m Need to evaluate the triple integral!

d

¢
.r,)
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Mellin six-point amplitude

m Performing pole pinching we can finally write

-0 3 Pd, .
Vo n, 17A1.82,611,83.84,82(A5,86,637761,62,63
6 = E : c [0,0,n,] [0,0,n4] [0,0,n4g) [n1.nq,ng)

Ld 50 —0; — 2ny
ni.na,na=0 \i=1

m Possible polynomial contributions not ruled out, but not expected.
m Feynman rules hold! General vertex is

Vit = Vot (HAL=h),, (1+Aa—h),, (1+Aa=),,

9
AYESS.]
F_Ela) (Z—'z——‘- {=1.—na. —na}  {1+A1=h, 1+Aa—h. 1+Ag—=h}; 1,1, l) ]

m Series defining Fi*’ reduces to a finite sum for integer ;.
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Maollin
ampiitudas
in AGS/CFT

Curront
amplitudos
in AdS/CFT

Embedding formalism for currents

W d + 2 dimensional tensors map to d-dimensional ones only if
pPM Tra... =0 Costa et al ‘09, Weinberg ‘10,

m Mapping from d + 2 valued amplitudes to d dimensions involves the
pullbacks

m Overall, have the suggestive conditions:

9

m Strong constraints on conformally invariant index structures!
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Current propagators

Mellin
amplitudes
in AdS/CFT
m In the embedding formalism, current bulk to boundary propagator is
p ¥ ‘ J\! +1
M A M A 1 -\ (“ 1A 2t P.X
8,3(1)\)_( S )/ 12 e .
Current . .
amplitudes m Satisfies
in AdS/CFT M M A JMA A
P Gsp = Gap X° 0

m Equivalent to usual current propagator.
m The Schwinger parameterised form allows us to write

GNMNP,.X)=DMAGop(P, X)

; : 1 )
MA _ _MA »A
D =7 +SI SPM
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Current propagators

Mellin
amplitudes
in AdS/CFT
m The D projectors decouple from calculations, so that amplitudes satisfy
AM ..My = ]_)"‘“"‘1 . -4 ]_)“IN AN --i_.;l AN
Current m Reduced amplitudes A have much simpler index structures - essentially
et those appearing in flat space.

m The D operators enforce correct behaviour under conformal
transformations, e.g. dilatations:

M A 1 ) ;
])l 1-'1;\11___:()<2‘[)1 1 (l‘l—jl)l'(.)])l -.l:\l...'

m Importantly, the same projectors exist for stress-tensors - index
structure is dramatically simplified.
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Mollin
amplitudos
in AdS/CFT

Curront
amplitudos
in AdSICET

Current-scalar-scalar amplitude

m Consider (J ©0) correlator, following from Einstein-Maxwell scalar
theory in AdS.

m Using Schwinger parameterised form of propagators,

(]MOO e DM /H Gk ':\‘ [ dX (¢1P1,4 — f:.-:[f’_;,“_l}r,QHlPl'{’*QPJHLIPLH-.\‘

\dS

m After the X integration we obtain

It;
N(DMM[H( O (P, A P e S S

~ aM3A Pl,.-\ P? A
~eD (Pm )HF 8ij) (Pij) ]

1<)

m In this case “flat space” index structure is already gauge invariant,
action of D projector is trivial.
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Current-scalar-scalar amplitude

Mellin
amplitudes
in AdS/CFT

Current
amplitudes
in AdS/CFT
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m Consider (JM ©O©) correlator, following from Einstein-Maxwell scalar
theory in AdS.

m Using Schwinger parameterised form of propagators,

3
; AT dft; | - ‘ o PottaPa)-X
(JMOOY = e DM34 /H LS AX (t1 P14 — taPa 4) (112 PrHal) X
ti
) i=1

J AdS

m After the X integration we obtain

l—I3 1
P .
~ ('])'\135-" / r .
- . 2

=1

| P . Ps. . i s
~ e DM3A Sl — o (8i5) (Piz) %
.« (],13 22) TI T 6i) (P

t<<jg

A' > > ._::3_: t;t; Py
ty "(t1 P11, A —taPa 4)e 1<J 35

m In this case “flat space” index structure is already gauge invariant,
action of D projector is trivial.
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Current 3-pt amplitude

Mollin
amplitudas
n AGS/CFT ‘
LF S m On to something less trivial - 3pt current correlator for AdS YM theory:

(J“'Ml (Pl ).]b..\fg (P‘J )JC..\I;](]-,:”-/ - ’-( f‘(lbc [-),\fg."l [-).\!-‘] B [-).\’;-,C' 1:" BC.

amplitudos

3
: dti A : -5 tit P
Curront Iasc = ]H --’--!lf, '[’I.-\B (t1Prc —taPa ) - perms]c- it [ AN ISTE
in AJS/CFT .

m Direct map between flat-space and CFT amplitude.

m Shows current 3-pt amplitude is directly related to sum of (JOO)
amplitudes. In fact,

: Di L AB :
oo~ (T - 52) o] LGN
= - i<j

m Acting with D projectors leads to polynomial in X. / structures
expected.
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Current 3-pt amplitude

m On to something less trivial - 3pt current correlator for AdS YM theory:

(Jﬂ.;\f; (Pl )Jb..\fg(])ll ).IC“\I:J(I"’;}};J — Z¢ 'fﬂb(_‘ [__):”‘A [).”3 B [).‘I::CI.-‘.BC'-

3
1t - .
Iagc = ]H (-t—lf',l' [nag (t1Prc — taPac) + permse™ Zi<i it
i=1 ¢

m Direct map between flat-space and CFT amplitude.

m Shows current 3-pt amplitude is directly related to sum of ( JOO)
amplitudes. In fact,

; R R AR
JABC L [( Plia\ i 1;’3‘) 'I")m + perms] Hr(f"u)(ﬂjl—éu-
2 : i<j

m Acting with D projectors leads to polynomial in X /
expected.
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Current exchange

Mollin
ampitudas
n AGS/CFT

m Defining the invariant (product of two currents):

1
Curront Y12 = E ("‘13 — Sa3) = ”-'1 - }\'2) o ”n'_‘] —_— ln'.l}
amplitudos x :
bzl m The Mellin amplitude takes the form

+ 00

M(s12) = Z ——= 112 PO VA AG=1{-A.4 -1

= 1) = [0,0,n] (0,0,n]
n=0 B

m Agrees with Mack's predictions.

m Vertices are same as for scalars, shifting  and™®
m Suggests Feynman rules for current sector.
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Current four-point function

Mollin
amplitudos
in AGS/CFT

m Current four-point function calculation similar to current exchange.

m Life is made easier because of “momentum conservation” (!): originally
we had DM X4 = 0, due to the transversality condition. After the X
integrations are performed this means that

[ ([%e) 24(S upa)em= s =0

m Upshot: under the integral sign, and action of D, there is “momentum”
conservation at each vertex.

m Another piece of evidence that we're missing some nice (d + 2)
dimensional description of the physics.
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Mollin
amplitudos
in ADS/CFT

Current 4pt exchange diagram

m Using momentum conservation, the index structure of the amplitude
decouples from the exchange part.

m Calculation becomes almost exactly the same as in 4pt scalar
current-exchange diagram:

.:1[.-\1....-1.; — I-‘ll:‘z:\u:\"(ﬁlﬁ.‘;12}
+0o0

]‘_)d—l
E : n “-d—l.d—l.ci—-‘.‘!“-d—l.d—I.d—'."!
s12 — (d — 2) — n [0,0,n] [0,0,n] -
n=0 - o

m For d = 4 we get the remarkable result

MAV-AL — piA2dsAg (s12,712) : “r l
e e \C g e DL g

m The index structure is fully known - there is a direct map from it to the
flat space index structure.
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Index structure of four-point function

Maollin
amplitudas .
s~ m To see how this how this map works, recall that due to the Schwinger

parameterisation, P plays the role of momentum.
m At some point in the amplitude computation we have something like

4 4
. (“,‘ A1Aa AaAdg —
.'1:{ = H D'u"l' /( ) /H f—f:\'.]ill'\"B.lg"‘B“ C t't.inJ.
i A o TERT M

m The currents are simply the three-point vertices of Yag-Mills theory
with & — t; P;. Their contraction gives the flat-space re

m When going to Mellin space we have the simple rule

: R
ff’jP{\F{jB—'ﬁu . z
Plj

which determines M1 MaMaMy

m The full amplitude index structure is obtained by acting with the D
operators - straightforward but tedious (unnecessary?).
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Summary

Mellin
amplitudes
in AdS/CFT
m Mellin space is a powerful tool for representing CFT's with an

(effectively) small number of primaries.

Current

e m Mellin amplitudes in AdS/CFT context seem to be described by a
simple set of Feynman rules - possible solution of the scalar sector at
tree-level.

m Embedding formalism simplifies description of conformal invariance
dramatically, and seems to go hand in hand with the Mellin

representation.
m Schwinger parameterisation+embedding formalism: more than a trick?
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