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Abstract: It is usually assumed that the quantum wave-particle duality can have no counterpart in classical physics. We were driven into revisiting
this question when we found that a droplet bouncing on a vibrated bath could couple to the surface wave it excites. It thus becomes a self-propelled
& quot;walker& quot;, a symbiotic object formed by the droplet and its associated wave.

Through severa experiments, we addressed one central question. How can a continuous and spatially extended wave have a common dynamics with
alocalized and discrete droplet? Surprisingly, quantum-like behaviors emerge; both a form of uncertainty and a form of quantization are observed.
This is interesting because the probabilistic aspects of quantum mechanics are often said to be intrinsic and to have no possible relation with
underlying unresolved dynamical phenomena. In our experiment we find probabilistic behaviors and they do have arelation with chaotic individual
trajectories. These quantum like properties are related in our system to the non-locality of a walker that we called its & quot;wave mediated path
memory& quot;. The relation of this experiment with the pilot wave model proposed for quantum mechanics by de Broglie will be discussed.
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Can any of the phenomena characteristic of the quantum wave-

particle duality be observed in a non quantum system?

We were drawn into investigating this question by the, almost
accidental, finding of a wave-particle association at macroscopic
scale.
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Introduction

A massive particle driven by the wave it generates

The bouncing droplet and its coupling to surface waves.

Yart I : Walking straight

'he wave-field structure and its ““path-memory’’: a non locality in time.

Part II: Walking in circles

The orbits of walkers when submitted to a transverse force

Yart 111 : Walking when confined
(a) In corrals
(b) Through slits (diffraction and interference)

(¢) By a single barrier: a tunnel effect of a Kind

Discussion
['he relation to de Broglie’s pilot waves

Trajectories and probability of visit
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The basic experimental set-up

- !

Experimental Ll

cell

130x130x 6mm Vibration

exciter

Silicon oil of viscosity

u=50 10" Pa.s

Vertical acceleration
There is always an air film between the

Y=y COS{mw!
bt (1) drop and the substrate

with ®/2x =80 Hz

and 0 <y, <5
The drop can bounce for days!
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Phase diagram of the different types of bouncing
(for u=50 10" Pas and w/2n=80 Hz)

as a function of the droplet size and the amplitude of the forcing
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The Faraday instability of a vertically vibrated liquid surface

-
L]
-
.
-
*
-

-

Vertical oscillations

'R R BE BE R
"B E BE BE B

AR 2T EE BE N

y =y, cos(wr)

‘ Far
/ » / 1
When vy, =27V,

the surface becomes covered
with standing waves of frequency w/2

In the present experiment

w/2r =80Hz and y' " =45¢g
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cf e.g. Stéphane Douady, Thesis (1989)

Analogous to the parametric forcing
AN AN of a rigid pendulum

The motion is given by Mathieu’s equation:

Ja - da >
+2f —+w;(1+2ecoswt) =0

ot* ot

and its frequency is half that of the forcing
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The drop’s bouncing: (for 0.6 < D < 1.Imm)
Spatio-temporal diagrams of the vertical motion

v.=1.5¢

Bouncing at the
forcing frequency

n
Vo= A0
m el —

Period doubling

Y= 48
no l‘ll'.IlJS ‘.III(I

complete period
doubling

Time
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Part I (b)

A simple model of the walking bifurcation

(Arezki Boudaoud)

Proticere S., Boudaoud A. & Couder Y. J. Fluid Mech. 554, 85-108, (2006)
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The first model for the walking transition
(Arezki Boudaoud)

Newton’s equation, the fast vertical motion being averaged over one period

d’x b dx/ dt .
m—-= F"sin| 2x — |- f"dx/dt
dt” Vi

-m ~ 109 kg mass of the droplet

- " effective force due to the bouncing on an inclined surface

b Al T -6
F’=my,——|=10" N
AT,

v,, Vertical acceleration,
A /h slope of the surface
t duration of the collision

-V damping due to the shearing of the air film

/ \‘: ~at - :l()_h N
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The “*walking** bifurcation

27T X

{
%

" b
mx = F"sin

- [N

Seeking steady solutions
(and in the limit of small velocities)
2ax 1 2xx

T «
fx=F — - '
V, 6\ V|

for small values of F” the only solution is x =0

Above a threshold, the motionless solution becomes unstable

And two self propagative solutions of opposite velocities appear.

WV == (N6 /2n)y(F" - F!) 1 F"

0,1
r sF
\r“f\r .
0,08
0,06
Stable
0,04
0,02
I'nstable
Stable
Stable
Fr
0 0,02 0,04 0,06 0,08 0,1
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The computed and observed bifurcation
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| 0,02 , | lr
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A more complete model based on the same principle has been developed recently by Jan
Molacek and John Bush
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The energy balance

The system is dissipative : viscous friction damps the droplet motion and the
wave
However steady regimes are obtained because energy is provided by the forcing
to both the droplet and the wave.
- The droplet is Kicked up at each of its collision with the interface.
( similar to the escapement mechanism of mechanical clocks)
- The wave being a Faraday wave is almost sustained by parametric forcing

(in the vicinity of the instability threshold).

I'he main limitation of this experiment is that the forcing imposes a fixed

frequency: the energy is fixed
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A walker is formed of:
- A spread-out and continuous wave
A discrete and localized droplet

How can they have a common dynamics?

I Walking straight
IT Walking in circles

I1I Walking when confined
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Part 1
Walking straight

The wave field structure and its “path-memory”,

A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder,
J. Fluid Mech., 674, 433- 464, (2011).
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A detail of the phase diagram
A
Evolution of the wave held as a
function of the distance to the

Faraday instability threshold

I' the non-dimensional distance to threshold tends to zero

C=(yn-7.)/7
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The measured wave field

Obtained by an adaptation of a particle image velocimetry technique (PIV) to
measure the shape of the interface, a technique due to

Frédéric Moisy and Marc Rabaud (FAST Orsay)

Pirsa: 11100119 Page 24/111



I'he interface i1s disturbed by the repeated impacts of the droplet

What type of wave is generated by one single collision?
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Yy — _ : The wave-field produced
v 1 ' ' 1 by one single collision

(a I mm steel ball dropped in the
bath)

t=10 ms

")

t=300 ms

The Faraday waves decay
with a characteristic time:
-1

i
i wiondic ith a neriodic forci o Y
Without periodic With a periodic forcing near T Yo = ¥is
forcing the Faraday instability
threshold
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Spatio-temporal evolution of
the radial profile of the wave
emitted by one bounce

Without periodic forcing

With a periodic forcing near the
Faraday instability threshold
e
i1
Y H s g BRI
2 azaz 1 e gildae
i : T
: : ]
3 I ot 1 ety g
} je
)
I : 22|

Conclusion: near the Faraday threshold, a point which has been disturbed
remains the centre of a localized state of almost sustained Faraday waves
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The wave-field produced

v’ ’ ' % by one single collision

(a I mm steel ball dropped in the

bath)

t=10 ms

)

t=300 ms

The Faraday waves decay
with a characteristic time:
-1

I§
i wiodic Hith a neriodic forci o .
Without periodic With a periodic forcing near T Yoo ™ ¥
forcing the Faraday instability
threshold
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Spatio-temporal evolution of
the radial profile of the wave
emitted by one bounce

Without periodic forcing

......

L

With a periodic forcing near the
Faraday instability threshold

ra
% -
B WL EE LW R T
L4 |
KUH
=3 ra
) - .
i 4

kR

Conclusion: near the Faraday threshold, a point which has been disturbed
remains the centre of a localized state of almost sustained Faraday waves
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The numerical model of walkers

(Emmanuel Fort)
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The numerical model of walkers

(Emmanuel Fort)

f . . -p/

A/ Motion of the droplet : avay
“~

{1 Veelr oo Y I PR L b ot OO £9PD !
(1) ITake-o]] and landing limes are

ot . I hvs thho farn A

determined Dy [ Jorcing r

TIPT / o
OSCLILAIIONS ORLY. r)
b »

(2) fFhe w a‘.’}J."ll result ’.‘r.f'x'-‘f\‘.l‘ Successtve O

displacements or due to the . . . v
v B/ Computation of the wave-field

Ly L« F'o Adivoet |
KICKS. I he direction and

moautus o or, are determined I) At each bounce, a circular localized mode of
by the surface slope at the point Faraday waves is generated.
of landing.

(2) The points of the surface visited by the droplet
in the past remain the centres of such a

(3) This slope results of the
interfering waves due to the localized mode.
pi evious bounces
(3) The wave field results from the superposition
of all these waves, and thus contains a
memory of the path followed by the droplet
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B/ The computation of the wave-field

O

hir.t) = E Re

i=1 ‘I—l

r, position of the droplet at time p -

the damping time is related to the distance to Faraday instability onset: T %/, =7,
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First results of the numerical simulation

(1) The walking bifurcation is recovered
(2) A realistic structure of the wave field is obtained for a rectilinearly

moving walker

—
g
C —

———

/f\ simulation

I{/h‘ measured fi ."‘(r'l‘

The structure of the wave field exhibits Fresnel interference fringes
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In the limit of weak decay times:

Fresnel fringes

Fresnel diffraction behind an edge
(simu m John Talbot
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First results of the numerical simulation

(1) The walking bifurcation is recovered
(2) A realistic structure of the wave field is obtained for a rectilinearly
moving walker

——
| —
@
C —
_——

/f\ simulation

I{/.’l‘ measured [ ."‘I{r'l‘

The structure of the wave field exhibits Fresnel interference fringes
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Part 11

Walking in circles

Orbiting due to an external force

. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, and Y. Couder,
PNAS, 107, 17515-17520, (2010)
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How to obtain circular trajectories?

Use either a magnetic field or a rotating system,
(an analogy used by Michael Berry
to obtain a fluid mechanics analog of the Aharonov-Bohm effect)

In a magnetic ficld B On a surface rotating with angular velocity €2
3 ={/(\f' A [,)) F.o=- Em(\” A !.2)
Orbital motion Orbital motion in the rotating frame
Larmor angular velocity Orbital motion angular velocity
w, =qgB/m 2€2
Orbit radius Orbit radius
p,=Vio, R=V/2Q
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The rotating Faraday experiment
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Measured trajectories

1 1
yimm) vimm) Mode n=1
] \ { 1
i AN
N
7 )
} { |
LY
“f
1 \
|
1 'L
| £
\
O\ /
A /
a N ] ,
/
} - / |
’
.
-
i} \ ‘
Amm} x({mm)
\ ‘ o’ ' 2 ( q ‘

. Irajectory in the rotating
Irajectory in the laboratory ‘ _
: frame of reference
frame of reterence
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Classical radius of the orbits

14 |
The “classical radius of the orbit  R(mm)
observed in the rotating frame and 12

due to Coriolis effect should be:
10 |

R=V/282

6 |

0

(};4
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Measured radius of the orbits
for walkers with weak path memory
(far from the Faraday threshold)

15 T T T T .|
The radius of the orbit observed n R(mm) |
the rotating frame has a “classical™
dependence, but slightly shifted
10 |-
R=a (V/28)
With
a=1.3
5
0 L | 1 I L |
0 02 0.4 0.6 08

! |
2 Q/IV
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| LI Iul}l .-”l\‘ ()1 -_m‘l'll |'.| ( 10 O]
path icar the Faraday threshold)
-3” % T T
R(mm) :l
15 it
\
|
10 | 3
Near the Faraday instability
threshold, the radius of the
orbit evolves by discrete 5|
Jumps when 82 is increased .
(0L I L I ! J
0 0.2 0.4 0.6 0.8 |
2Q/V
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Dimensionless radius of the orbits

3 -

The radii of the orbits obtained at various R/}v], [

. . ! : . 25 |

frequencies and for walkers of various ,

velocities are all rescaled by expressing: ~

) . , |

2 I

— as a function of the non - dimensionnal {

I"»’ [

15 |

Ir 1‘_.' I

parameter _ [~ [
\2QA,

2Q4A, .

1t

05 |

0 L

0

T 1 . [
Ky
o
;"?'
Jdif
o* l"".;""'

=
h
—
—
n

! 1/2
(V,/2QM,)
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The first two modes

d,orb=2 A d, o=,
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Landau levels:
the Bohr-Sommerfeld quantization in a magnetic field

I'he Bohr Sommerfeld condition imposes:

(ﬁ(p —eA)-dl=(n+y)h

The Larmor radius can only take discrete values

Pirsa: 11100119 Page 50/111



The radii of the Landau orbits in a magnetic field

The quantized Larmor radius:

o ( 1'] h
p=—F=ln+=-|—
T \' 2/qB

h
can be expressed as a function of the de Broglie wavelength

I

|
f)” =W Il(n+ l) iS4
o ' 2/¢B A,

m |
——

qB 202

Ay = Ay

R (1) Vv,
I'he analogy suggests: )..,‘- - \/]/ﬂ'\j(” + 2) 0 /-'\.!,
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Dimensionless radius of the orbits

R/A,

I'he analogy suggests:

4_\/1/1r (”+I) Vi

2Q 4,

25

V1 =0564

We find

R”=().89 (n+ l) i
A 2)20Q7,

1 ]
1 1
(V,/(2QA)"*

n

The diameters are quantized, not the perimeters
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The path memory effect in the case of circular trajectories

How to compute the local slope induced at the point
of impact by the superposition of the waves due to
“sources™ distributed on a circular orbit

S(¥,.1,) = VA(E,.1,)

: Short-term memory Ysir.)

N T >
Long-term memory B VSII‘.I )
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The first two modes
as observed and
simulated
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The radial slope S, at the point of bouncing generates an additional centripetal
(or centrifugal) force.
It is responsible for the formation of plateaus

s (@)

I

arbitrary
units

0 - \/

n=0
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The results of numerical simulations (Emmanuel Fort’s model)

3
R/A,
2
In black:
long-term memory
l
0
0 0.5 I [,5
b 1/2
(V,/(2Q2.))
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Chaotic trajectories in a square corral

g,

&

Has the probability of visit a relation to the eigenmodes of the cavity?

We chose to study rectangular cavities tuned with one dominant resonant mode,

Dan Harris and John Bush (MIT) chose circular cavities (,](lhll*S talk)
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[n a rectangular cavity

with Julien Moukhtai

The Faraday eigenmode of the

rectangular cavity
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[n a rectangular cavity

with Julien Moukhtai

The Faraday eigenmode of the

rectangular cavity

The probability of presence
of a walker along the main
axis of the cavity

Page 62/111



Part 111 (b)

Single particles diffraction and interference

CouderY. & Fort E. PRL,. 97,15101, (2006)
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The numerical model of walkers in the vicinity of boundaries

The echolocation of the walker: interaction with boundaries.
reflected waves are also taken into account

. st EL AR o o
"“";7;‘—-0.“\‘ .-'._4—
]

Wall
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Part 111 (b)

Single particles diffraction and interference

CouderY. & Fort E. PRL,. 97,15101, (2006)
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The experimental set up for diffraction and interference experiments

In the grey regions the
fTuid layer thickness is >
reduced to hy=Imm :
(h,=4mm elsewhere)

In these regions the
Faraday threshold being
shifted, the walkers do

not propagale

_\ \ o | ' l_‘ Cross section
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Four

photographs of

the
wave pattern
during the
diffraction
of a walker

Page 69/111



The relevant parameters:

L : the width of the slit,

0, : angle of incidence (chosen 0= n/2),

'
L

a : the angle of deviation

Y, =y/L: the impact parameter

(With -05 <Y < 0.5)
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[s there a link between the deviation o
and the impact parameter Y, ?

The measured deviation in experiments performed with the same walker,
the same angle of incidence, but various impact parameters

L/n=3.1 (L=14.7mm and A= 4.75 mm).
9 | ; . : 1

(a) ['hree independent trajectories with the same initial
d
a ¢ conditions (within experimental accuracy)
L]
.
60 . *
. (e)
» .
30 . . .
-
L] . .
.
. . L™ :
0 . K * . . . -
3 ° |
.
.
30 . o of '
L ]
° L ]
> . . L]
L] ™Y . .
-6l
90 | 1 )
-0,5 0,25 0 0,25 Yy 05

What about statistical properties?
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Cumulative histograms of the observed deviations in N independent crossings

40 — — 40 - .
‘ (¢) | (d) |
N((r_]: Nia) 1

3o 3

20 20

10 10

0 e 8 |
90 60 30 0 30 o0 ( 90 90 60 30 0 30 60 ¢ N
|,/7\|,-= 2.1 L/A=3.1
(L=14.7mm, A;= 6.9 mm) L=14.7mm, A= 4.7 mm

The curve is the modulus of the amplitude of a plane wave of the same wavelength
diffracted through a slit of the same width

f(a)= ,-\}hi“("fr Lsin a )“l")
| | Lsina/ A
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90

In the presence of path memory the deviation becomes a complex

The numerical simulation of the diffraction

function of the impact parameter

And the pdfs of deviations are similar to those observed

experimentally

60

-0 4

0.0

40 -~
a) M)

304

200 ~

10 4
2 0 -Jlﬂ-l.4+-

- ) -6l)

\ s
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Diffraction of waves...
[t i1s not a surprise that a wave passing through a slit 1s diffracted. This 1s

the standard result from Fourier transform. The wave truncation results in
its spreading in the transverse direction.

. or diffraction of particules?

f/f re, however, we do not measure the wave-field but the trajectories of SUccessive
7 7 ’ ' 1 ’ ’ 7 T 3

paricies. Lhetr individual deviations are unpredictable, exhibiting an uncertainty

finl { voith th nrecddinoe fth \ / .

HnKred witn rne spredading o) ine wavi

The Fourier spreading of the wave generates an uncertainty for
the direction of the velocity of the particle and thus for its momentum

Pirsa: 11100119 Page 74/111



The Young double-slit interference
with single particles

A phenomenon which is assumed to have no
equivalent in classical physics

R. Fevnman's, Lectures on Physics, vol. 3, Quantum
Mechanics, (First chapter)

.. In this chapter we shall tackle immediately the basic
element of the mysterious behavior in its most strange
form. We choose to examin a phenomenon which is
impossible, absolutely impossible, to explain in any
classical way and which is at the heart of quantum
mechanics. In reality it contains the only mystery. We
cannot make the mystery go away by explaining how it

works . We will just tell you how it works...

The build-up of the interference pattern
(with electrons, after Tonomura)
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The Young double-slit interference
with single particles

A phenomenon which is assumed to have no
equivalent in classical physics

R. Fevnman's, Lectures on Physics, vol. 3, Quantum
Mechanics, (First chapter)
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element of the mysterious behavior in its most strange
form. We choose to examin a phenomenon which is
impossible, absolutely impossible, to explain in any
classical way and which is at the heart of quantum
mechanics. In reality it contains the only mystery. We
cannot make the mystery go away by explaining how it

works . We will just tell you how it works...

The build-up of the interference pattern
(with electrons, after Tonomura)
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Young’s two slits experiment
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[nterference: histogram
for 75 realizations Y N ——— — N —

The curve is the modulus of the
amplitude of the interference of a
plane wave through two slits with

L/).,,: 0.9 and (//A,_: 1.7.

-9 60 -30 0 Jo 60

o 90
. sin(z Lsina/'Ay) _ -
fla)= A : cos( T d sin a/ Ay )

aLsin a/ A, '
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Part II (b)

Tunneling through a barrier

With Antonin Eddi

A LEddi, F. Moisy, . Fort & Y.Couder
" Unpredictable tunneling of a classical wave-particle association™
Phys, Rev, Lett, 102, 240401, (2009)
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First experimental set-up

(c)

€

Escape out of a closed cavity
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First experimental set-up

(c)

€

Escape out of a closed cavity
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The origin of the
probabilistic behaviour:
the trajectories inside

the frame

For thick walls the walker
reaches a stable limit cycle

With thin walls the reflections
are imperfect, leading to
different types of collisions
with the wall and to a
probability of escape
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A probability of

e¢tmm)

Semi-log plot of the probability of

crossing as a function of the barrier’s

tickness
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Accumulation of events
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Accumulation of events
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Second experimental set-up

(c)

g

The particle 1s guided by the divergent walls so that it impiges perpendicularly on the

barrier of thickness e.
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The relation to the incident trajectory

Far from the barriers, all walkers have a normal incidence.
They deviate because of the reflected waves
Only those walkers which have had a weak deviation have a probability of crossing

The walker deviates have a weaker probability of being deviated when the reflected waves
are weaker (thin barriers), hence a larger probability of crossing
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Propagation in a random medium
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Discussion:
IS there a relation to quantum mechanics?
In our system we clearly have a particle driven by a wave it generates. It is

therefore interesting to revisit the unorthodox “pilot wave” models of

quantum mechanics.
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The *““pilot wave’ models
The association of particles to waves was initially proposed by de Broglie
L.. de Broglie, Ondes et mouvements, (Gautier Villars Paris) (1926).

In 1952 D. Bohm obtain trajectories by deriving an equation of motion out of
the Schrodinger equation

D. Bohm, Phys. Rev. 85: 166-179, and 180-193, (1952),
Phys. Rev. 89: 458-466 (1953).

These two approaches are often identified to each other and called
the de Broglie-Bohm pilot-wave models.

They are in fact very different from each other and should be
dissociated.

Pirsa: 11100119 Page 97/111



The *““pilot wave’ models
The association of particles to waves was initially proposed by de Broglie
L.. de Broglie, Ondes et mouvements, (Gautier Villars Paris) (1926).

In 1952 D. Bohm obtain trajectories by deriving an equation of motion out of
the Schrodinger equation

D. Bohm, Phys. Rev. 85: 166-179, and 180-193, (1952),
Phys. Rev. 89: 458-466 (1953).

These two approaches are often identified to each other and called
the de Broglie-Bohm pilot-wave models.

They are in fact very different from each other and should be
dissociated.

Pirsa: 11100119 Page 98/111



Pirsa: 11100119

re I'IF;’;ar'Jﬂl' / { “Ihfl,n () J |':!IL“ R s
A 4 o,
ih—=-— VWY + VWY
ot 2m
ll‘ - l) ()HH.\' h
. Dp
Continuity : f +pVau=0
Dt
‘ ! dS |, /!l y
Quantum Hamilton - Jacobi —+ —U" - =V 4P+
dr 2 2m” Alp
where :
p=¥ is the probability density
u=VS§ 1s the quantum velocity of the probability
J=pu 1s the quantum probability flux

=()
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The quantum Hamilton-Jacobi can be written:

N T ) V
95 1. L YV

at 2 m m

Where Q is the quantum potential

Taking the gradient

mx,=-VQ-VV

Bohmian mechanics consists in solving Schrodinger equation for W, from

which Q is then computed, before solving the trajectory equation.
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The Iimit of Bohmian mechanics

The trajectory equation:

mx, =-VQ-VV

does not define the trajectory of the particle but the trajectory of the probability

density.

For this reason de Broglie wrote in 1953 :

“A year and a half ago, David Bohm took up the pilot-wave theory again. His work is very
interesting in many ways (...) But since Bohm’s theory regards the wave W as a physical
reality, it seems to me to be unacceptable in its present form™.
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OLLECTION DE PHYSIOUE MATHEMATIQUI

de Broglie original model

ONDES ET MOUVEMENTS
L.. de Broglie, Ondes et Mouvements,
(Gautier-Villars Paris) (1926).
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The pre-Shrodinger de Broglie model (1926)

de Broglie assumes that there are well defined particles that he considers as point
sources.
This material point is considered as having an internal oscillation and emitting in the
surrounding medium a wave of frequency :

L
= — M

h

‘The phase of the particle oscillation and that of the wave are locked to each other

/
‘[1

The particle is surrounded by a stationary spherical wave, the superposition
of a divergent and a convergent wave.

A I r I 1
. . _ . 1] () . . . ‘ §] .
@(r,.1,) = Cos _:rv“(f‘. - —=|+c, [=cos 2:{\’“(1‘, + ] + ( J
¢

Zr,

He writes :

« But there is also the convergent wave, the interpretation of which could raise
interesting philosophical issues, but that appears necessary to insure the stability

of the material point »
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[n our system a standing wave is also associated to the particle.
How 1s it generated?

Measured spatio-temporal evolution of the radial profile of the wave emitted by one bounce

diverping wave
(retarded effects)

-

H M R TR
AT T e
R faiatagiin e
HAE T T EE
1 erging wave

% (advanced effects) Sl

cony

o

§ Light cone

17 pws 1Y
mamhd
o

ShdfEezazzadini

standing | wave

space
time

A travelling Y
droplet. Because of the excitability of

Each point of the wave front emits
the medium, it leaves behind a

a wave moving backwards
Faraday standing wave
. 5 towards the source.
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Broglie proposed what he called a ‘“‘double solution”

First solution

The particle has an oscillation at a frequency v,=m,c’/h and is
surrounded by a standing wave with a singularity (or non linear
region) at its core. This structure forms the individual particle and
has well-defined trajectories in space-time.

The second solution
A linear and smooth wave, solution of the Schrodinger equation that
corresponds to the averaged behaviours.
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The first solution can be written

2mi
u=fe"

Where f has very large values in a singular region

q

The second solution can be written
it
_;J' ,,{
Yy=ae"

Where a and @ are continuous.
W is the solution of the Shrodinger equation

The velocity of the particle is given by
: | =
v=—-—Vgp
m
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In our experiment we have a double solution situation of the type
proposed by de Broglie.

There is a particle: the droplet.
It is guided by a wave of
wavelength A, but this wave is
not a plane wave

Analogous to de Broglie’s first
solution

The probabilities of the various

angles of deviation T 1T
correspond to a diffracted plane |
wave of wavelength A, ———t

Analogous to a Schrodinger
wave, de Broglie’s second
solution
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First solution

The double solution in cavities

First solution

Second solution

Second solution

Courtesy Dan Harris
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Returning to our experiment.
Its main drawback:
it is very far from quantum mechanics

Macroscopic scale : no relation with Planck constant.

- The system is two-dimensional.

- The system is dissipative and sustained by external forcing.
- This forcing imposes a fixed frequency: the “energy” is fixed

The waves live on a material medium: there is an ‘“‘ether”’.
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[ts main interest:
it is very far from quantum mechanics,

-At quantum scale the Planck limitation imposes itself to all phenomena. It is
not possible to do a non-intrusive measurement.
-Intrusive measurements generate a projection onto states, so that only the

probabilities of those states can be measured.

-Here we can do either intrusive or non intrusive measurements.

- If we try to know the position of a walker by confining it in a cavity or by
having it pass through slits we find probabilistic behaviours.

The observation with light is non intrusive so that the undisturbed
trajectory of the particle and the wave can be observed directly.

Non intrusive observations done during an intrusive measurement show
that the latter generates chaotic trajectories that are responsible for the

observed statistical properties.
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All the observed quantum-like properties emerge from what
we have called the “wave-mediated path-memory”’.

This ““path memory” generates a particular type of space
and time non locality.

For this reason we believe the debate on hidden variables is
not closed
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