Title: Stability of Frustration-Free Hamiltonians

Date: Oct 24, 2011 04:00 PM

URL: http://pirsa.org/11100106

Abstract: We generalize the result of Bravyi et al. on the stability of the spectral gap for frustration-free, commuting Hamiltonians, by removing the assumption of commutativity and weakening the assumptions needed for stability.

Pirsa: 11100106 Page 1/76

Counterexamples to stability: Opening the gap.

Splitting the groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

Pirsa: 11100106

Counterexamples to stability: Opening the gap.

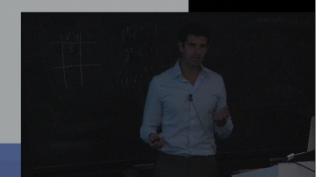
Splitting the groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

The **groundstate subspace** is spanned by $|000 \cdots 0\rangle$ and $|111 \cdots 1\rangle$, with **spectral gap** 1.



The future

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 4

Pirsa: 11100106 Page 3/76

Counterexamples to stability: Opening the gap.

Splitting the groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

- The **groundstate subspace** is spanned by $|000\cdots 0\rangle$ and $|111\cdots 1\rangle$, with **spectral gap** 1.
- 3 $H_N' = H_N \Delta_N$ has unique groundstate $|000 \cdots 0\rangle$, with $|111 \cdots 1\rangle$ having energy of order 1.

Spyridon Michalakis

Pirsa: 11100106

Stability of Frustration-Free Hamiltonians

4/3

Page 4/76

The question

The motivation

The assumptions

The theorem

Spectral Flow

The proof

The future

Counterexamples to stability: Opening the gap.

Splitting the groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

- The **groundstate subspace** is spanned by $|000\cdots 0\rangle$ and $|111\cdots 1\rangle$, with **spectral gap** 1.
- 3 $H'_N = H_N \Delta_N$ has unique groundstate $|000 \cdots 0\rangle$, with $|111 \cdots 1\rangle$ having energy of order 1.
- **Good classical memory, bad quantum memory:** Encoded state $|+\rangle = |000...0\rangle + |111...1\rangle$ flips to $|-\rangle = |000...0\rangle |111...1\rangle$, since $e^{itH'_N}|+\rangle \sim |000...0\rangle + e^{it}|111...1\rangle$.

Spyridon Michalakis

Caltech

Stability of Frustration-Free Hamiltonians

4/38

Pirsa: 11100106 Page 5/76

Counterexamples to stability: Closing the gap.

Localized excitations.

Example

1 Consider $N \times N$ Ising Hamiltonian with a defect at the origin:

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z - \sigma_0^z.$$

Spyridon Michalakis

Stability of Frustration-Free Hamiltonians

5/38

Pirsa: 11100106 Page 6/76

Counterexamples to stability: Closing the gap.

Localized excitations.

Example

1 Consider $N \times N$ Ising Hamiltonian with a defect at the origin:

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z - \sigma_0^z.$$

2 H_N has unique groundstate $|000\cdots 0\rangle$, with spectral gap 1.

The future

Spyridon Michalakis

Stability of Frustration-Free Hamiltonians

5/38

Pirsa: 11100106 Page 7/76

Counterexamples to stability: Closing the gap.

Localized excitations.

Example

1 Consider $N \times N$ Ising Hamiltonian with a defect at the origin:

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z - \sigma_0^z.$$

- **2** H_N has unique groundstate $|000\cdots 0\rangle$, with spectral gap 1.
- Use local order parameter, such as σ_p^z , to lower the energy of $|111...1\rangle$ relative to $|000...0\rangle$.

Pirsa: 11100106

Stability of Frustration-Free Hamiltonians

5/3

Page 8/76

Counterexamples to stability: Closing the gap.

Localized excitations.

Example

1 Consider $N \times N$ Ising Hamiltonian with a defect at the origin:

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z - \sigma_0^z.$$

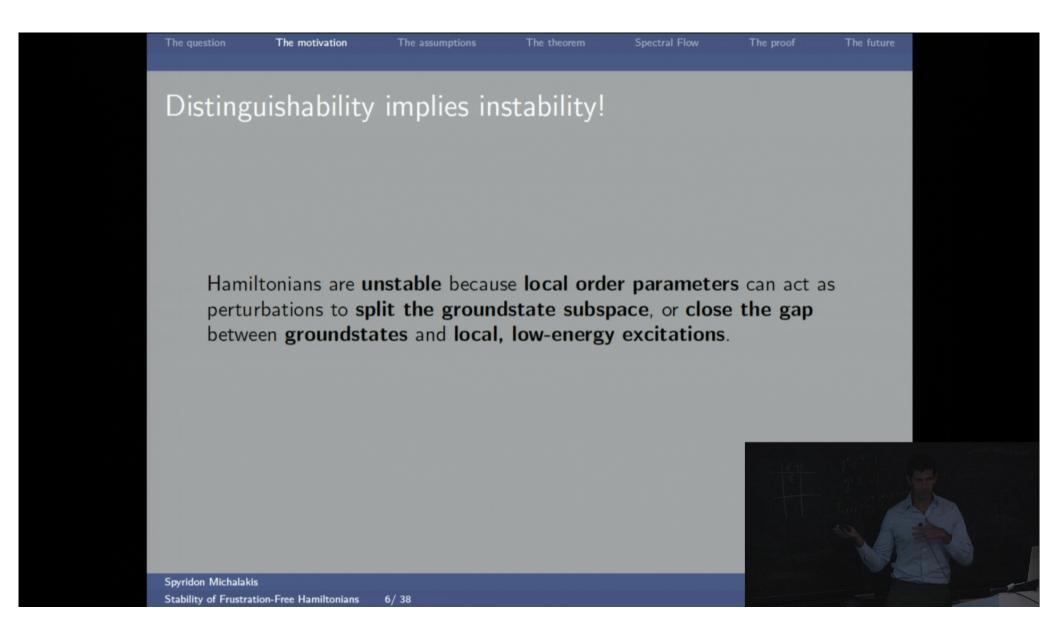
The future

- **2** H_N has unique groundstate $|000\cdots 0\rangle$, with spectral gap 1.
- Use local order parameter, such as σ_p^z , to lower the energy of $|111...1\rangle$ relative to $|000...0\rangle$.
- 4 $H_N' = H_N + \delta_N \sum_p \sigma_p^z$ has **degenerate groundstate** space spanned by $|000\cdots 0\rangle$ and $|111\cdots 1\rangle$, for **vanishing** $\delta_N \sim 1/N^2$.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 9/76



Pirsa: 11100106 Page 10/76

Caltech

Pirsa: 11100106 Page 11/76

9/38

Spyridon Michalakis

Stability of Frustration-Free Hamiltonians

The theorem Spectral

The proof

The future

Frustration-free Hamiltonians.

Definition

We say $\mathbf{H_0} = \sum_{\mathbf{u} \in \Lambda} \mathbf{Q_u}$ is **frustration-free**, if the groundstate subspace P_0 satisfies for all $u \in \Lambda \subset \mathbb{Z}^d$:

$$\mathbf{Q_uP_0} = \lambda_{\mathbf{u}}\mathbf{P_0},$$

where λ_u is the **smallest eigenvalue** of Q_u . Substitute Q_u with $Q_u - \lambda_u \mathbb{1} \geq 0$. This generates a **global energy shift**, which is **irrelevant for spectral gaps**.

2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE! Take 3 qubits on the vertices $\{u, v, w\}$ of a triangle, with Ising Hamiltonian $\mathbf{H}_{\triangle} = \sigma_{\mathbf{u}}^{\mathbf{z}} \otimes \sigma_{\mathbf{v}}^{\mathbf{z}} + \sigma_{\mathbf{v}}^{\mathbf{z}} \otimes \sigma_{\mathbf{w}}^{\mathbf{z}} + \sigma_{\mathbf{u}}^{\mathbf{z}} \otimes \sigma_{\mathbf{w}}^{\mathbf{z}}$. Since $\sigma_{u}^{\mathbf{z}} \otimes \sigma_{w}^{\mathbf{z}} = (\sigma_{u}^{\mathbf{z}} \otimes \sigma_{v}^{\mathbf{z}}) \cdot (\sigma_{v}^{\mathbf{z}} \otimes \sigma_{w}^{\mathbf{z}})$, it is impossible to have common groundstate for all three terms.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians

9/38

Pirsa: 11100106 Page 12/76

Frustration-free Hamiltonians.

Definition

We say $\mathbf{H_0} = \sum_{\mathbf{u} \in \Lambda} \mathbf{Q_u}$ is **frustration-free**, if the groundstate subspace P_0 satisfies for all $u \in \Lambda \subset \mathbb{Z}^d$:

$$\mathbf{Q_uP_0} = \lambda_{\mathbf{u}}\mathbf{P_0},$$

where λ_u is the **smallest eigenvalue** of Q_u . Substitute Q_u with $Q_u - \lambda_u \mathbb{1} \geq 0$. This generates a **global energy shift**, which is **irrelevant for spectral gaps**.

- 2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE! Take 3 qubits on the vertices $\{u, v, w\}$ of a triangle, with Ising Hamiltonian $\mathbf{H}_{\triangle} = \sigma^{\mathbf{z}}_{\mathbf{u}} \otimes \sigma^{\mathbf{z}}_{\mathbf{v}} + \sigma^{\mathbf{z}}_{\mathbf{v}} \otimes \sigma^{\mathbf{z}}_{\mathbf{w}} + \sigma^{\mathbf{z}}_{\mathbf{u}} \otimes \sigma^{\mathbf{z}}_{\mathbf{w}}$. Since $\sigma^{\mathbf{z}}_{u} \otimes \sigma^{\mathbf{z}}_{w} = (\sigma^{\mathbf{z}}_{u} \otimes \sigma^{\mathbf{z}}_{v}) \cdot (\sigma^{\mathbf{z}}_{v} \otimes \sigma^{\mathbf{z}}_{w})$, it is impossible to have common groundstate for all three terms.
- 3 NOT all FRUSTRATION-FREE Hamiltonians are COMMUTING!
 Generic parent Hamiltonian of a Matrix Product State (e.g. AKLT).

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians

9/38

Pirsa: 11100106 Page 13/76

Frustration-free Hamiltonians.

Definition

We say $\mathbf{H_0} = \sum_{\mathbf{u} \in \Lambda} \mathbf{Q_u}$ is **frustration-free**, if the groundstate subspace P_0 satisfies for all $u \in \Lambda \subset \mathbb{Z}^d$:

$$\mathbf{Q_uP_0} = \lambda_{\mathbf{u}}\mathbf{P_0}$$

where λ_u is the **smallest eigenvalue** of Q_u . Substitute Q_u with $Q_u - \lambda_u \mathbb{1} \geq 0$. This generates a **global energy shift**, which is **irrelevant for spectral gaps**.

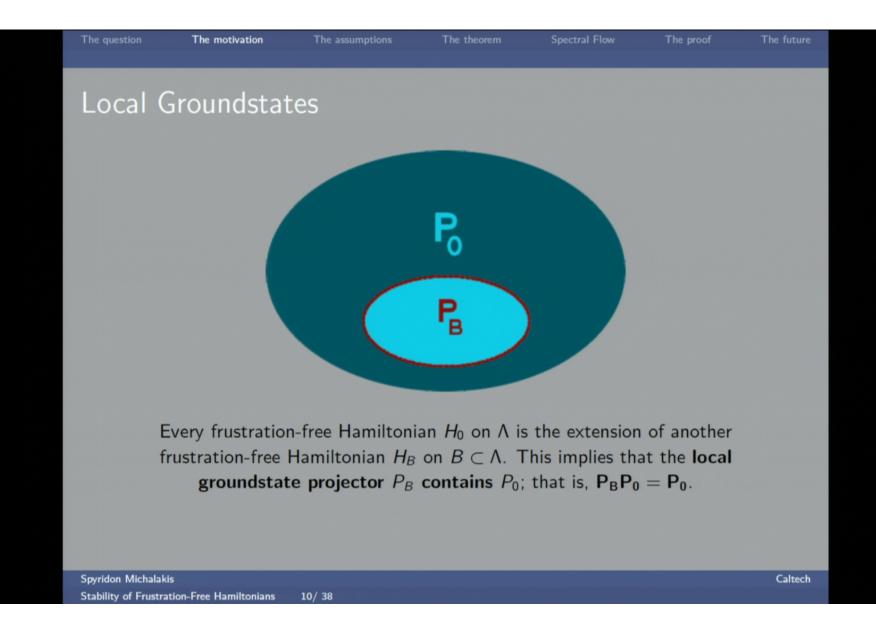
- 2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE! Take 3 qubits on the vertices $\{u, v, w\}$ of a triangle, with Ising Hamiltonian $\mathbf{H}_{\triangle} = \sigma^{\mathbf{z}}_{\mathbf{u}} \otimes \sigma^{\mathbf{z}}_{\mathbf{v}} + \sigma^{\mathbf{z}}_{\mathbf{v}} \otimes \sigma^{\mathbf{z}}_{\mathbf{w}} + \sigma^{\mathbf{z}}_{\mathbf{u}} \otimes \sigma^{\mathbf{z}}_{\mathbf{w}}$. Since $\sigma^{\mathbf{z}}_{u} \otimes \sigma^{\mathbf{z}}_{w} = (\sigma^{\mathbf{z}}_{u} \otimes \sigma^{\mathbf{z}}_{v}) \cdot (\sigma^{\mathbf{z}}_{v} \otimes \sigma^{\mathbf{z}}_{w})$, it is impossible to have common groundstate for all three terms.
- 3 NOT all FRUSTRATION-FREE Hamiltonians are COMMUTING!
 Generic parent Hamiltonian of a Matrix Product State (e.g. AKLT).

Spyridon Michalakis Caltech

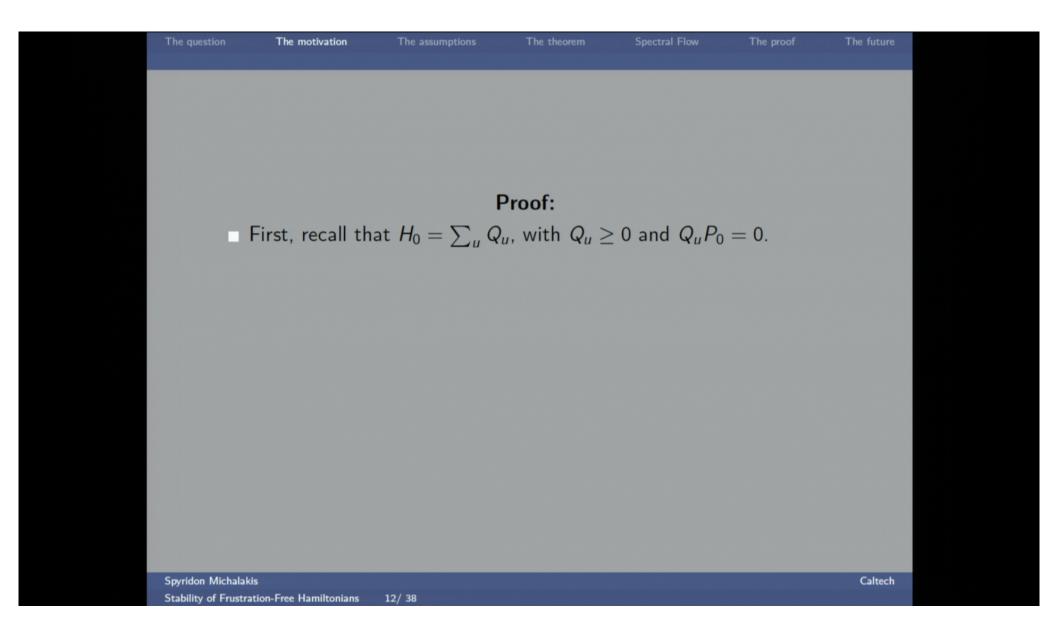
Stability of Frustration-Free Hamiltonians

9/38

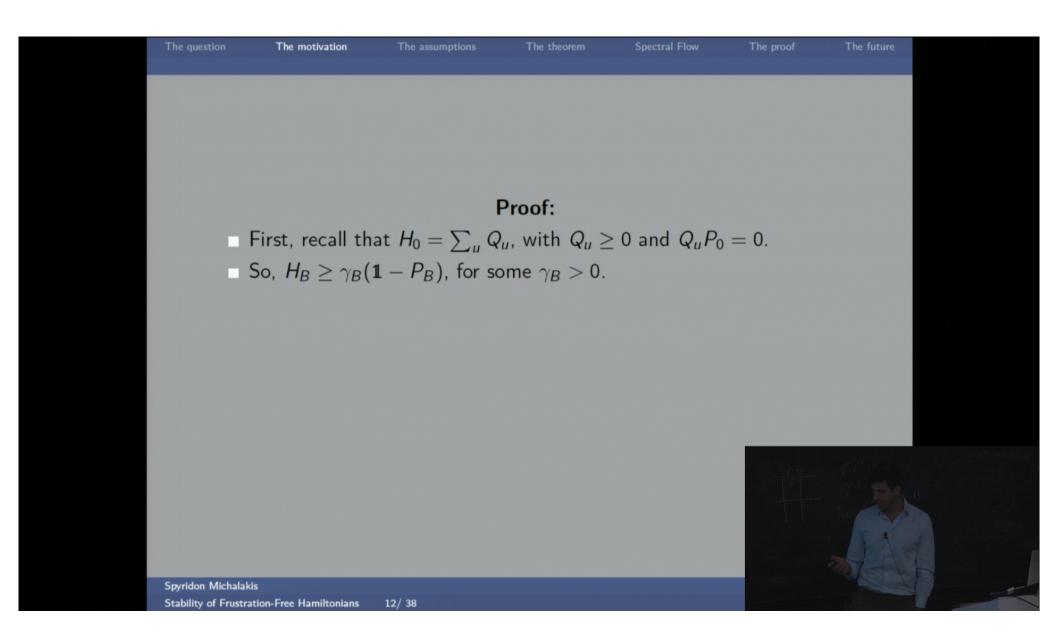
Pirsa: 11100106 Page 14/76



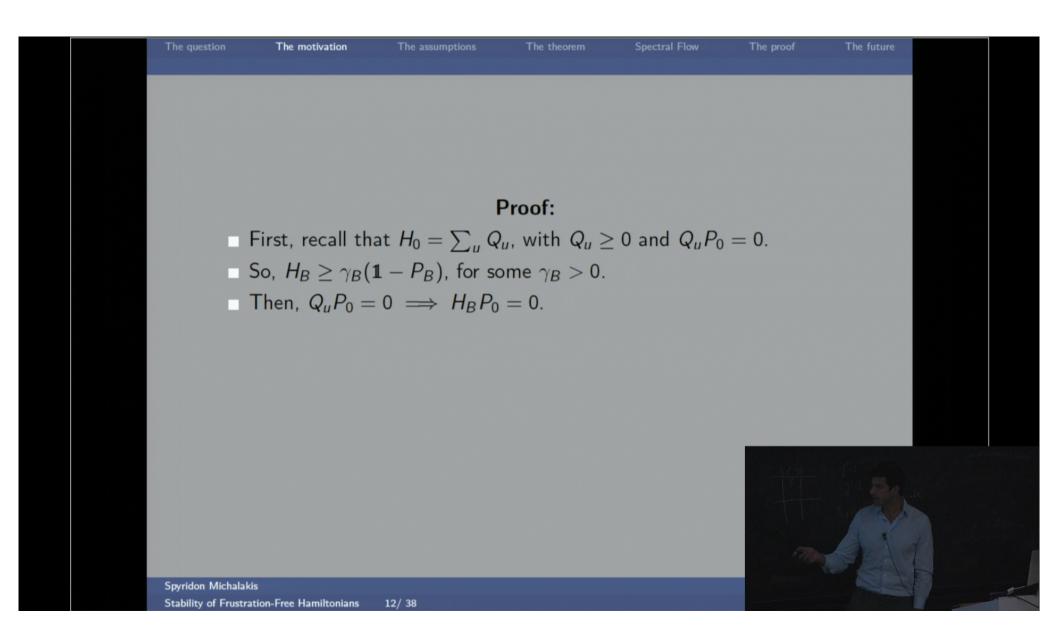
Pirsa: 11100106 Page 15/76



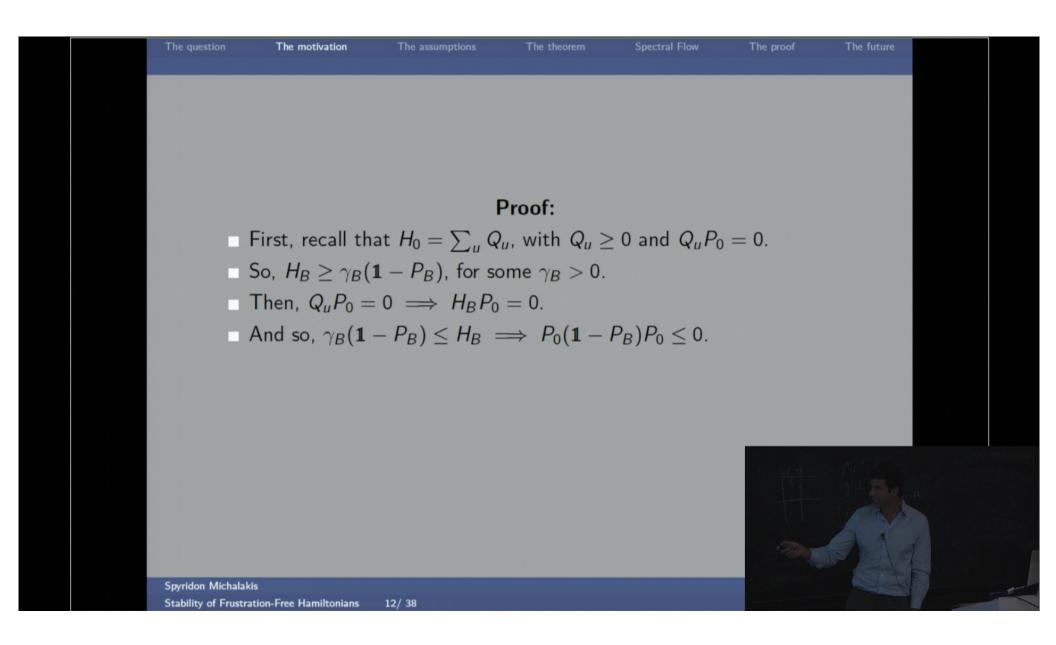
Pirsa: 11100106 Page 16/76



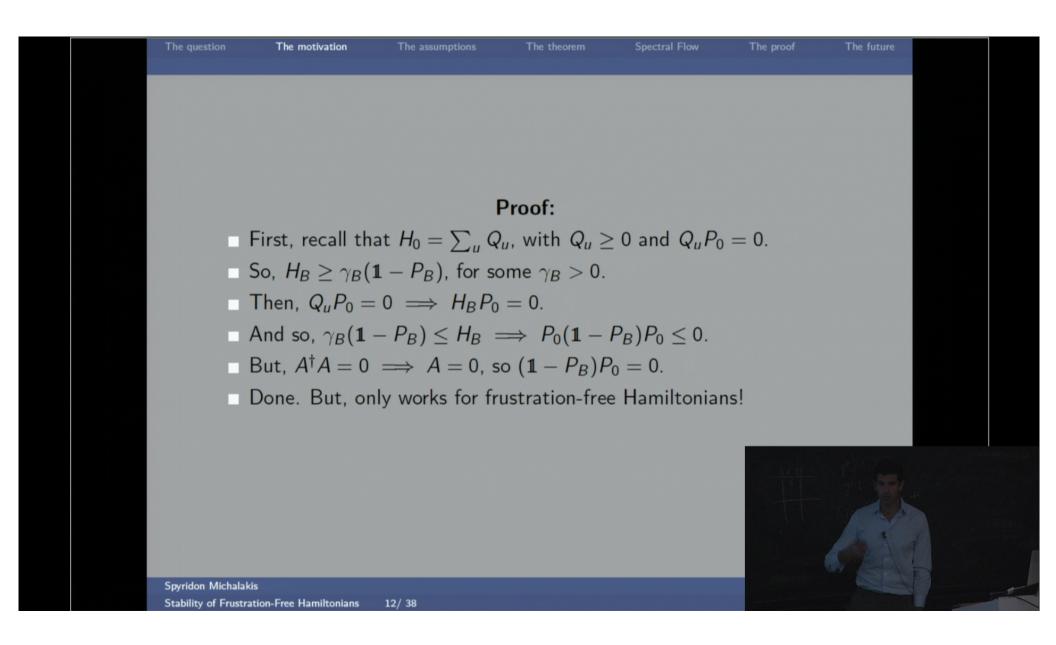
Pirsa: 11100106 Page 17/76



Pirsa: 11100106 Page 18/76



Pirsa: 11100106 Page 19/76



Pirsa: 11100106 Page 20/76

Topological Quantum Order

Stability of Frustration-Free Hamiltonians

Macroscopic indistinguishability of groundstates.

TQO: P_0 satisfies **Topological Quantum Order**, if for all O_A :

$$P_0 O_A P_0 = c(O_A) P_0, \quad c(O_A) = \text{Tr}(O_A P_0) / \text{Tr} P_0, \quad (1)$$

where $A = b_u(r), \mathbf{r} \leq \mathbf{L}^* \sim \mathbf{L}^{\alpha}, \alpha \in (0, 1].$

Spyridon Michalakis Caltech

Pirsa: 11100106 Page 21/76

Topological Quantum Order

You win some, you lose some.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 $\mathbf{P_0O_AP_0} = \mathbf{c}(\mathbf{O_A})\mathbf{P_0} \implies \langle \psi_0 | \mathbf{O_A} | \psi_0 \rangle = \langle \phi_0 | \mathbf{O_A} | \phi_0 \rangle = c(O_A)$, for any groundstates $|\psi_0\rangle$, $|\phi_0\rangle$. But, $\langle 000 \cdots 0 | \sigma_p^z | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_p^z | 111 \cdots 1 \rangle = -1$.

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 15/38

Pirsa: 11100106 Page 22/76

Topological Quantum Order

You win some, you lose some.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 $\mathbf{P_0O_AP_0} = \mathbf{c}(\mathbf{O_A})\mathbf{P_0} \implies \langle \psi_0 | \mathbf{O_A} | \psi_0 \rangle = \langle \phi_0 | \mathbf{O_A} | \phi_0 \rangle = c(O_A)$, for any groundstates $|\psi_0\rangle$, $|\phi_0\rangle$. But, $\langle 000 \cdots 0 | \sigma_p^z | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_p^z | 111 \cdots 1 \rangle = -1$.
- 3 It is no coincidence that $\sum_p \sigma_p^z$ is used to split the groundstates.
- 4 Kitaev's Toric Code, a four-fold degenerate groundstate subspace, satisfies the TQO condition with $\alpha=1$, so $L^*\sim L$.

Stability of Frustration-Free Hamiltonians

15/3

Pirsa: 11100106

The theorem

Spectral Flow

The proof

The future

Topological Quantum Order

You win some, you lose some.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 $\mathbf{P_0O_AP_0} = \mathbf{c}(\mathbf{O_A})\mathbf{P_0} \implies \langle \psi_0 | \mathbf{O_A} | \psi_0 \rangle = \langle \phi_0 | \mathbf{O_A} | \phi_0 \rangle = c(O_A)$, for any groundstates $|\psi_0\rangle$, $|\phi_0\rangle$. But, $\langle 000 \cdots 0 | \sigma_p^z | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_p^z | 111 \cdots 1 \rangle = -1$.
- 3 It is no coincidence that $\sum_p \sigma_p^z$ is used to split the groundstates.
- **Kitaev's Toric Code**, a four-fold degenerate groundstate subspace, satisfies the TQO condition with $\alpha = 1$, so $L^* \sim L$.
- of course, so does every Hamiltonian with a unique groundstate.

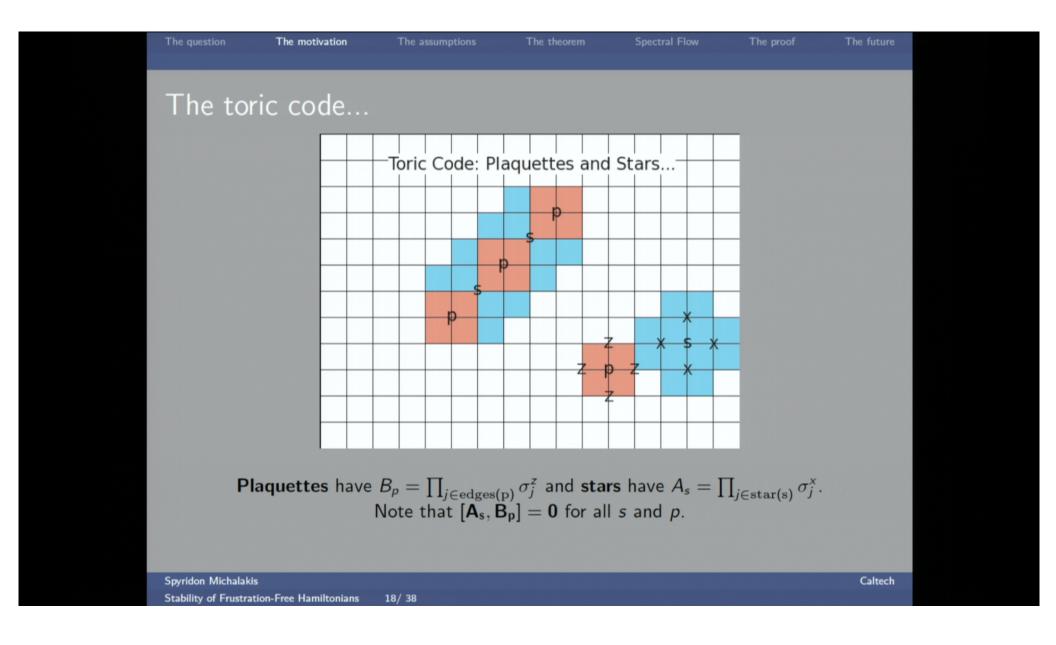
Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians

15/38

Pirsa: 11100106 Page 24/76

Pirsa: 11100106 Page 25/76



Pirsa: 11100106 Page 26/76

Kitaev's Toric Code

The toric code model

Example

The standard toric code model is defined by the Hamiltonian:

$$H_{tc} = -\sum_{p} B_{p} - \sum_{s} A_{s},$$

where qubits live on the edges of a lattice on a torus.

■ Lowest-energy subspace P_0 (toric code) has $B_p = 1$, $A_s = 1$ for all p and s. That is, for any ground state $|\Psi_0\rangle$ we have:

$$B_p |\Psi_0\rangle = A_s |\Psi_0\rangle = |\Psi_0\rangle$$
. stabilizing property (2)

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 19/

Pirsa: 11100106 Page 27/76

Kitaev's Toric Code

The toric code model

Example

The standard toric code model is defined by the Hamiltonian:

$$H_{tc} = -\sum_{p} B_{p} - \sum_{s} A_{s},$$

where qubits live on the edges of a lattice on a torus.

■ Lowest-energy subspace P_0 (toric code) has $B_p = 1$, $A_s = 1$ for all p and s. That is, for any ground state $|\Psi_0\rangle$ we have:

$$B_{\rho} |\Psi_0\rangle = A_s |\Psi_0\rangle = |\Psi_0\rangle$$
. stabilizing property (2)

■ Since $\prod_s A_s = \prod_p B_p = 1$, there are 4 such ground states on the torus, distinguished only through **macroscopic string operators**.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 19/

Pirsa: 11100106 Page 28/76

Breaking the Toric Code

The "Ising toric code with a defect" model.

Example

$$H_0 = -\sum_{p\sim p'} B_p \otimes B_{p'} - B_0 - \sum_s A_s.$$

■ Groundstate subspace P_0 is still the toric code.

Spyridon Michalakis Caltech
Stability of Frustration-Free Hamiltonians 20/38

Pirsa: 11100106

Breaking the Toric Code

The "Ising toric code with a defect" model.

Example

$$H_0 = -\sum_{p \sim p'} B_p \otimes B_{p'} - B_0 - \sum_s A_s.$$

- **Groundstate subspace** P_0 is still the toric code.
- Is this gapped Hamiltonian stable?
- **Perturb** H_0 by adding the vanishing **B-field**: $\delta_{\Lambda} \sum_{p} B_{p}$, with $\delta_{\Lambda} \sim 1/|\Lambda|$ and Λ the lattice (torus) on which H_0 is defined.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 20/

Pirsa: 11100106 Page 30/76

Breaking the Toric Code

The "Ising toric code with a defect" model.

Example

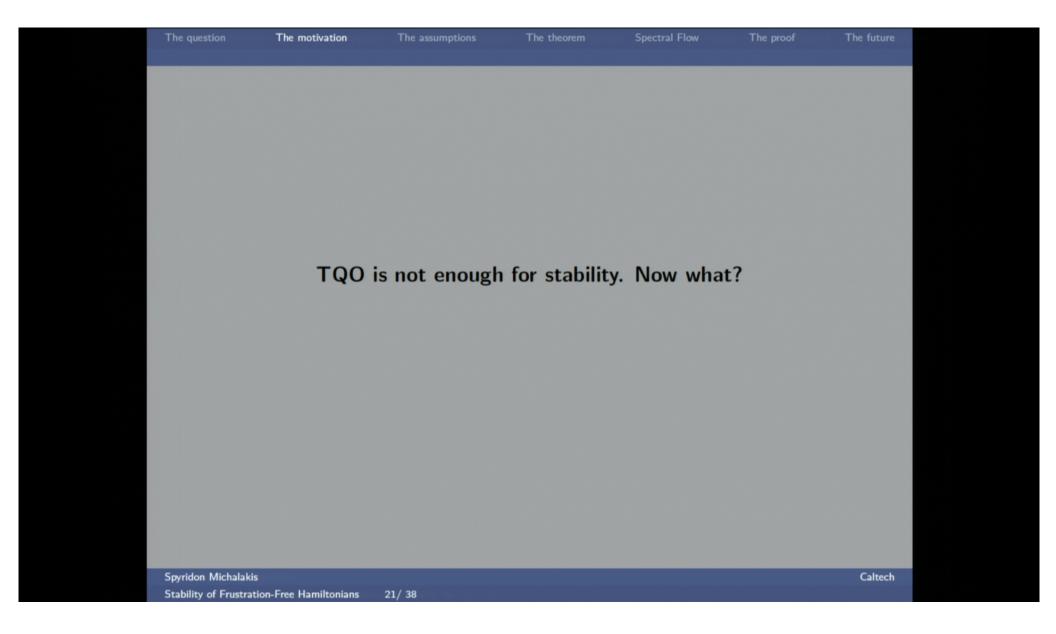
$$H_0 = -\sum_{p \sim p'} B_p \otimes B_{p'} - B_0 - \sum_s A_s.$$

- **Groundstate subspace** P_0 is still the toric code.
- Is this gapped Hamiltonian stable?
- **Perturb** H_0 by adding the vanishing **B-field**: $\delta_{\Lambda} \sum_{p} B_{p}$, with $\delta_{\Lambda} \sim 1/|\Lambda|$ and Λ the lattice (torus) on which H_0 is defined.
- The subspace $A_s = 1, B_p = -1$, becomes the **new groundstate**.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 20/

Pirsa: 11100106 Page 31/76



Pirsa: 11100106 Page 32/76

Stability needs...

Stability of Frustration-Free Hamiltonians

Local Groundstate Indistinguishability.

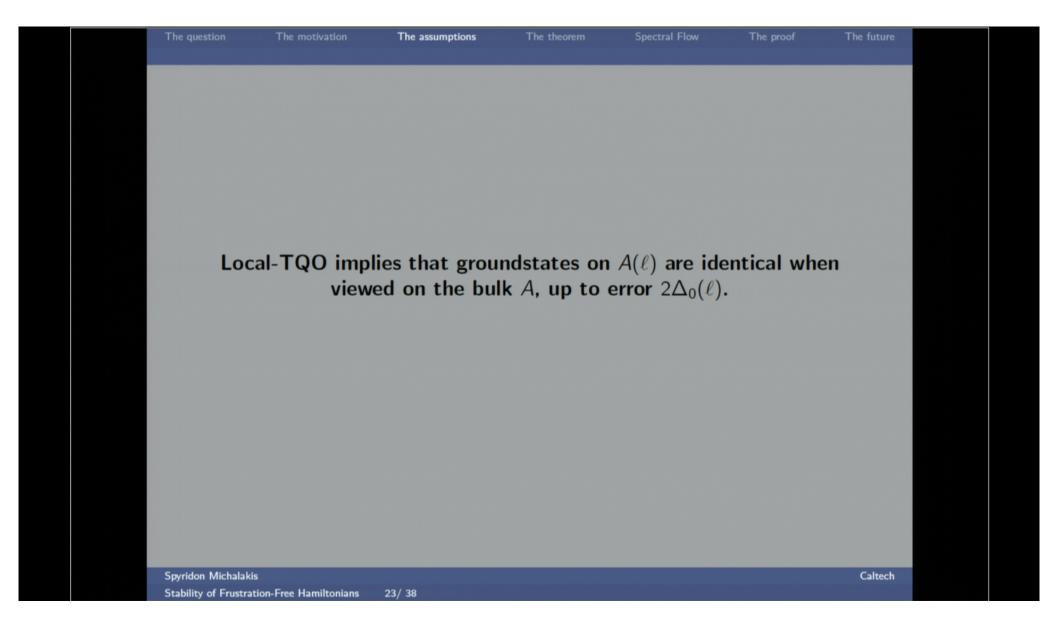
Local-TQO: H₀ satisfies **Local-TQO**, if there exists a **rapidly-decaying** function $\Delta_0(\ell)$, such that:

$$||P_{A(\ell)}O_AP_{A(\ell)} - c(O_A)P_{A(\ell)}|| \le ||O_A|| \Delta_0(\ell).$$
 (3)

Here, $A = b_u(r), r \leq L^*$ and $A(\ell) := b_u(r + \ell)$.

Spyridon Michalakis Caltech

Pirsa: 11100106 Page 33/76



Pirsa: 11100106 Page 34/76

Topological Quantum Order

You win some, you lose some.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 $\mathbf{P_0O_AP_0} = \mathbf{c}(\mathbf{O_A})\mathbf{P_0} \implies \langle \psi_0 | \mathbf{O_A} | \psi_0 \rangle = \langle \phi_0 | \mathbf{O_A} | \phi_0 \rangle = c(O_A)$, for any groundstates $|\psi_0\rangle$, $|\phi_0\rangle$. But, $\langle 000 \cdots 0 | \sigma_p^z | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_p^z | 111 \cdots 1 \rangle = -1$.

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 15/ 38

Pirsa: 11100106 Page 35/76

The assumptions The theorem The future **Proof:** By definition of the trace norm and $\rho_A = \operatorname{Tr}_{A(\ell)\backslash A} |\psi_{A(\ell)}\rangle\langle\psi_{A(\ell)}|$: $\|\rho_A^1 - \rho_A^2\|_1 = \sup_{\|O_A\| = 1} \left| \left\langle \psi_{A(\ell)}^1 \right| O_A \left| \psi_{A(\ell)}^1 \right\rangle - \left\langle \psi_{A(\ell)}^2 \right| O_A \left| \psi_{A(\ell)}^2 \right\rangle \right|.$ **Local-TQO** implies $|\langle \psi_{A(\ell)} | O_A | \psi_{A(\ell)} \rangle - c(O_A)| \leq \Delta_0(\ell)$. Use the triangle inequality: $\|\rho_A^1 - \rho_A^2\|_1 \le 2\Delta_0(\ell).$ Spyridon Michalakis Caltech Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 36/76

Local-TQO implies Entanglement bound.

Corollary

Any groundstate $|\Psi_0\rangle$ of H_0 satisfying Local-TQO, also satisfies a bound for the entanglement entropy of $\rho_A := \operatorname{Tr}_{A^c} |\Psi_0\rangle \langle \Psi_0|$, with $A = b_u(r), \ r \leq L^*$:

$$S(\rho_{A}) \le (c_{d} \ln D) (1+r)^{d-1} \cdot \ell_{0}, \tag{4}$$

where c_d and D are constants and $\ell_0 = \min\{\ell : \Delta_0(\ell) \leq \ell/(1+r)\}$.

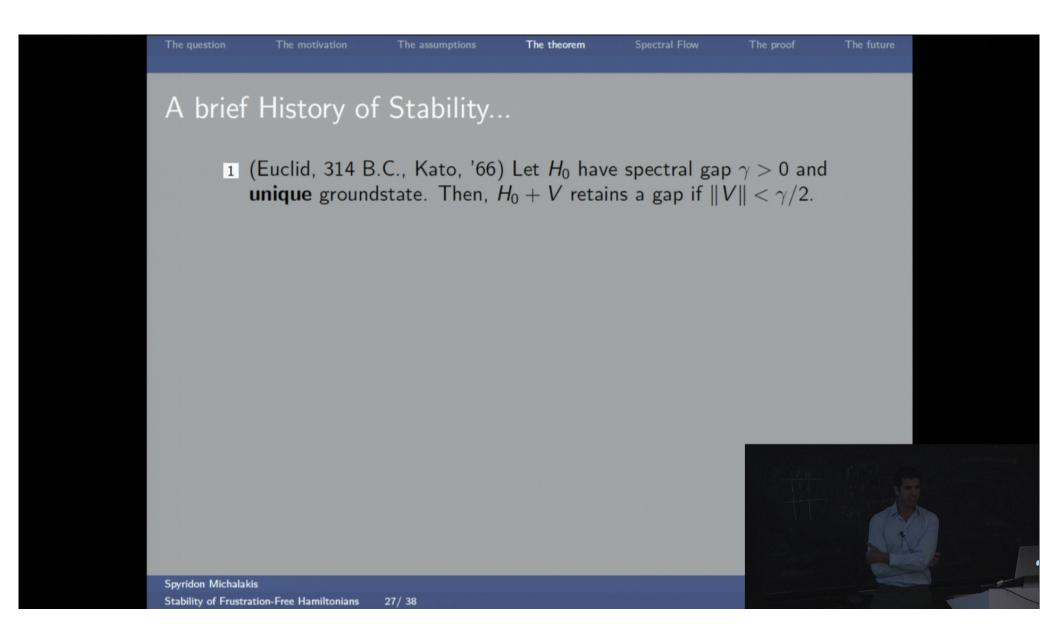
Spyridon Michalakis
Stability of Frustration-Free Hamiltonians

2E / 20

Pirsa: 11100106 Page 37/76

The question The assumptions The theorem The proof Local Gaps. Definition **Local-Gap:** We define H_0 to be **locally gapped** w.r.t. a function $\gamma(r)$, if $\mathbf{H}_{B} \geq \gamma(\mathbf{r})(\mathbf{1} - \mathbf{P}_{B})$, where $B = b_{u}(r)$. If $\gamma(r)$ decays at most **polynomially**, we say that H_0 satisfies the **Local-Gap** condition. **Open Problem:** Is the **Local-Gap** condition always satisfied if H_0 is a sum of local projections with frustration-free groundstate and a spectral gap? **Open Problem:** Is **Local-TQO** important for **Local-Gap** in this setting? Spyridon Michalakis Caltech Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 38/76



Pirsa: 11100106 Page 39/76

A brief History of Stability...

- 1 (Euclid, 314 B.C., Kato, '66) Let H_0 have spectral gap $\gamma > 0$ and **unique** groundstate. Then, $H_0 + V$ retains a gap if $||V|| < \gamma/2$.
- 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of classical terms, with gap γ and unique, frustration-free groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \Longrightarrow$ stable gap. (common product eigenbasis)

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 27/ 38

Pirsa: 11100106 Page 40/76

A brief History of Stability...

- 1 (Euclid, 314 B.C., Kato, '66) Let H_0 have spectral gap $\gamma > 0$ and **unique** groundstate. Then, $H_0 + V$ retains a gap if $||V|| < \gamma/2$.
- 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of **classical terms**, with gap γ and **unique**, **frustration-free** groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \implies$ **stable gap**. (common product eigenbasis)
- (Bravyi, Hastings, M., '10) H_0 is sum of **commuting projections**, with spectral gap γ and **frustration-free** groundstate subspace, satisfying a form of **Local Topological Order**. Then, for V a sum of **rapidly decaying terms** V_u , there exists a J_0 such that for $||V_u|| \leq J_0 \implies$ **stable gap**. (common eigenbasis)

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 27/3

Pirsa: 11100106 Page 41/76

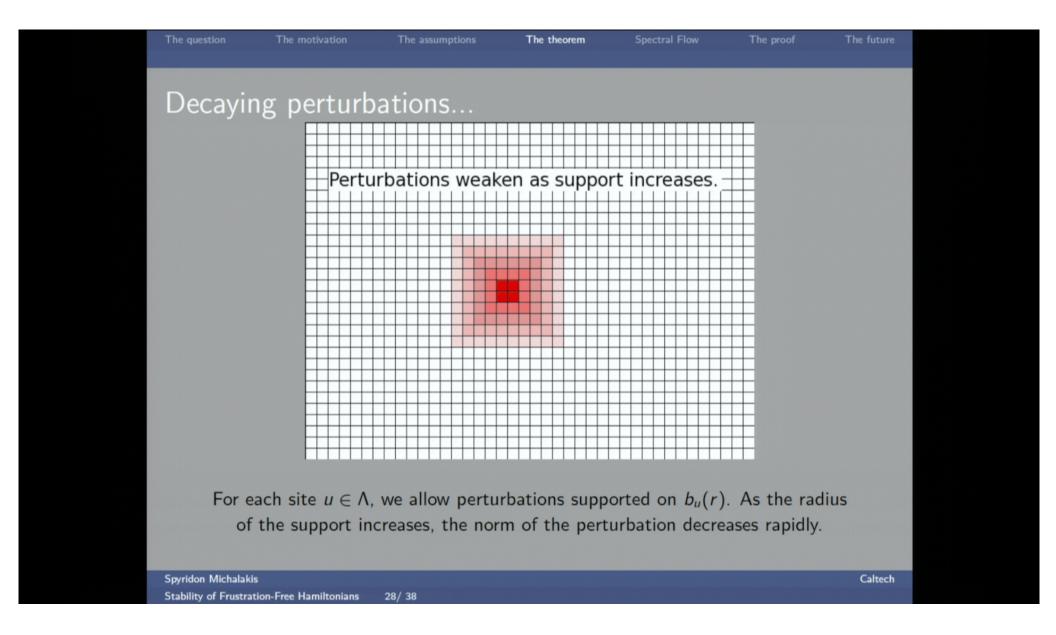
A brief History of Stability...

- 1 (Euclid, 314 B.C., Kato, '66) Let H_0 have spectral gap $\gamma > 0$ and **unique** groundstate. Then, $H_0 + V$ retains a gap if $||V|| < \gamma/2$.
- 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of classical terms, with gap γ and unique, frustration-free groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \implies$ stable gap. (common product eigenbasis)
- (Bravyi, Hastings, M., '10) H_0 is sum of **commuting projections**, with spectral gap γ and **frustration-free** groundstate subspace, satisfying a form of **Local Topological Order**. Then, for V a sum of **rapidly decaying terms** V_u , there exists a J_0 such that for $||V_u|| \leq J_0 \implies$ **stable gap**. (common eigenbasis)
- 4 (M., Pytel, '11) Let H_0 have gap γ and frustration-free groundstate subspace, satisfying **Local-TQO** and **Local-Gap**. Then, stability holds for all perturbations V, as above. (common groundstate)

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 27

Pirsa: 11100106 Page 42/76



Pirsa: 11100106 Page 43/76

The Perturbations: Local decomposition and strength.

Definition

We say that V has strength J and rapid decay f, if we can write

$$V = \sum_{u \in \Lambda} V_u, \quad V_u := \sum_{r \geq 0} V_u(r),$$

such that $V_u(r)$ has support on $b_u(r)$ and $||V_u(r)|| \leq Jf(r), r \geq 0$.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 29/

Pirsa: 11100106 Page 44/76

Pirsa: 11100106 Page 45/76



Pirsa: 11100106 Page 46/76

The theorem The proof The future The main result. Theorem ■ Let H₀ be a frustration-free Hamiltonian satisfying Local-TQO and **Local-Gap** with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively. Assume periodic-boundary conditions and a spectral gap $\gamma > 0$. Let V be a **strength** J perturbation, with **decay** f(r). Spyridon Michalakis Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 47/76

The main result.

Theorem

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a **strength** J perturbation, with **decay** f(r).
- Then, $H_0 + V$ has spectral gap bounded below by

$$(1-c_0J)\gamma-c_1JL^d\Big(\sqrt{\Delta_0(L^*)}+w(L^*)\Big),$$

where $c_0 = \sum_{r=1}^{L} r^d \cdot [w(r)/\gamma(r)]$ and w(r) has rapid decay related to the decay rate of f(r).

Spyridon Michalakis Stability of Frustration-Free Hamiltonians

30 / 38

Pirsa: 11100106 Page 48/76

The main result.

Theorem

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a **strength** J perturbation, with **decay** f(r).
- Then, $H_0 + V$ has spectral gap bounded below by

$$(1-c_0J)\gamma-c_1JL^d\Big(\sqrt{\Delta_0(L^*)}+w(L^*)\Big),$$

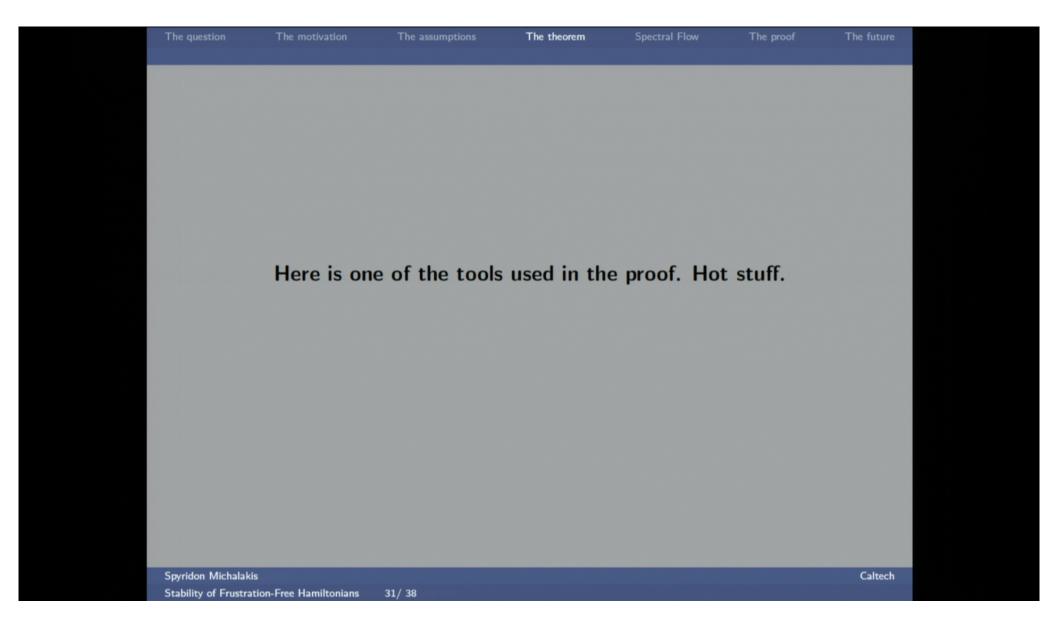
where $c_0 = \sum_{r=1}^{L} r^d \cdot [w(r)/\gamma(r)]$ and w(r) has rapid decay related to the decay rate of f(r).

Groundstate splitting is bounded by $JL^d\left(\sqrt{\Delta_0(L^*)} + w(L^*)\right)$. Since $L^* \sim L^{\alpha}$, this implies exponentially small splitting for rapidly decaying Δ_0 and w.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 30/

Pirsa: 11100106 Page 49/76



Pirsa: 11100106 Page 50/76

Spectral Flow - Hastings' Quasi-Adiabatic Evolution

Definition

Define the unitary operator U_s (**Spectral Flow**), by:

$$\partial_s U_s \equiv i \mathcal{D}_s U_s, \quad U_0 = 1,$$
 (5)

where \mathcal{D}_s simulates the generator of the adiabatic evolution for a family of gapped Hamiltonians H_s . (Next slide.)

Pirsa: 11100106 Page 51/76

Generators of quasi-adiabatic evolution.

Definition

For $H_s = H_0 + sV$, **define the generator** \mathcal{D}_s by:

$$\mathcal{D}_s \equiv \int_{-\infty}^{\infty} \mathrm{d}t \, s_{\gamma}(t) \int_0^t \mathrm{d}u \, e^{iuH_s}(V) e^{-iuH_s}, \tag{6}$$

where the function $s_{\gamma}(t)$ (called a **filter function**) is chosen to satisfy the following properties:

1 The Fourier transform of $s_{\gamma}(t)$, denoted by $\hat{s}_{\gamma}(\omega)$, obeys:

$$|\omega| \ge \gamma/2 \quad \to \quad \hat{s}_{\gamma}(\omega) = 0 \quad \text{(compact support)}.$$
 (7)

Spyridon Michalakis

Stability of Frustration-Free Hamiltonians

33/38

Pirsa: 11100106 Page 52/76

The question The mo

The assumptions

The theorem

Spectral Flow

The proof

The future

Generators of quasi-adiabatic evolution.

Definition

For $H_s = H_0 + sV$, define the generator \mathcal{D}_s by:

$$\mathcal{D}_s \equiv \int_{-\infty}^{\infty} \mathrm{d}t \, s_{\gamma}(t) \int_0^t \mathrm{d}u \, e^{iuH_s}(V) e^{-iuH_s}, \tag{6}$$

where the function $s_{\gamma}(t)$ (called a **filter function**) is chosen to satisfy the following properties:

1 The Fourier transform of $s_{\gamma}(t)$, denoted by $\hat{s}_{\gamma}(\omega)$, obeys:

$$|\omega| \ge \gamma/2 \quad \to \quad \hat{s}_{\gamma}(\omega) = 0 \quad \text{(compact support)}.$$
 (7)

2 $s_{\gamma}(t)$ decays like $\exp\{-\frac{\gamma|t|}{4\log^2\gamma|t|}\}$ (sub-exponential decay).

Spyridon Michalakis

Caltech

Stability of Frustration-Free Hamiltonians

33/38

Pirsa: 11100106 Page 53/76

Generators of quasi-adiabatic evolution.

Definition

For $H_s = H_0 + sV$, define the generator \mathcal{D}_s by:

$$\mathcal{D}_s \equiv \int_{-\infty}^{\infty} \mathrm{d}t \, s_{\gamma}(t) \int_0^t \mathrm{d}u \, e^{iuH_s}(V) e^{-iuH_s}, \tag{6}$$

where the function $s_{\gamma}(t)$ (called a **filter function**) is chosen to satisfy the following properties:

1 The Fourier transform of $s_{\gamma}(t)$, denoted by $\hat{s}_{\gamma}(\omega)$, obeys:

$$|\omega| \ge \gamma/2 \quad \to \quad \hat{s}_{\gamma}(\omega) = 0 \quad \text{(compact support)}.$$
 (7)

- 2 $s_{\gamma}(t)$ decays like $\exp\{-\frac{\gamma|t|}{4\log^2\gamma|t|}\}$ (sub-exponential decay).
- $\hat{s}_{\gamma}(0)=1$ and $s_{\gamma}(t)\geq 0$, so that \mathcal{D}_{s} is Hermitian.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 33/

Pirsa: 11100106 Page 54/76

The question The I

The assumptions

The theorem

Spectral Flow

The proof

The future

Generators of quasi-adiabatic evolution.

Definition

For $H_s = H_0 + sV$, define the generator \mathcal{D}_s by:

$$\mathcal{D}_s \equiv \int_{-\infty}^{\infty} \mathrm{d}t \, s_{\gamma}(t) \int_0^t \mathrm{d}u \, e^{iuH_s}(V) e^{-iuH_s}, \tag{6}$$

where the function $s_{\gamma}(t)$ (called a **filter function**) is chosen to satisfy the following properties:

The Fourier transform of $s_{\gamma}(t)$, denoted by $\hat{s}_{\gamma}(\omega)$, obeys:

$$|\omega| \ge \gamma/2 \quad \to \quad \hat{s}_{\gamma}(\omega) = 0 \quad \text{(compact support)}.$$
 (7)

- 2 $s_{\gamma}(t)$ decays like $\exp\{-\frac{\gamma|t|}{4\log^2\gamma|t|}\}$ (sub-exponential decay).
- $\hat{s}_{\gamma}(0)=1$ and $s_{\gamma}(t)\geq 0$, so that \mathcal{D}_{s} is Hermitian.
- 4 Note: This magical function $s_{\gamma}(t)$ exists and can be quite the ice-breaker on a first date.

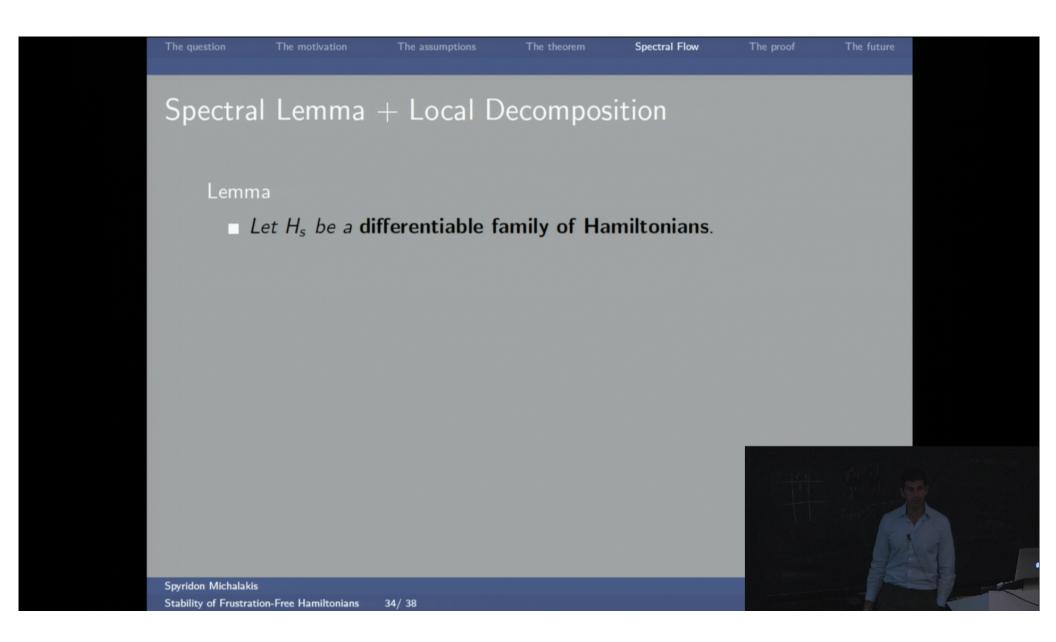
Spyridon Michalakis

Caltech

Stability of Frustration-Free Hamiltonians

33/38

Pirsa: 11100106 Page 55/76



Pirsa: 11100106 Page 56/76

Spectral Lemma + Local Decomposition

Lemma

- \blacksquare Let H_s be a differentiable family of Hamiltonians.
- Let P(s) denote the **projection onto the eigenstates of** H_s **with energies in** $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s.

Pirsa: 11100106

Spectral Lemma + Local Decomposition

Lemma

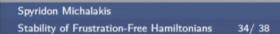
- Let H_s be a differentiable family of Hamiltonians.
- Let P(s) denote the **projection onto the eigenstates of** H_s **with energies in** $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s.
- Assume that $[E_{min}(s), E_{max}(s)]$ is separated by at least $\gamma/2$ from the rest of the spectrum, for $0 \le s \le s^*$.

Pirsa: 11100106 Page 58/76

Spectral Lemma + Local Decomposition

Lemma

- Let H_s be a differentiable family of Hamiltonians.
- Let P(s) denote the **projection onto the eigenstates of** H_s **with energies in** $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s.
- Assume that $[E_{min}(s), E_{max}(s)]$ is separated by at least $\gamma/2$ from the rest of the spectrum, for $0 \le s \le s^*$.
- Then, for all $s \in [0, s^*]$, we have $P(s) = U_s P(0) U_s^{\dagger}$.



Pirsa: 11100106 Page 59/76

Spectral Lemma + Local Decomposition

Lemma

- Let H_s be a differentiable family of Hamiltonians.
- Let P(s) denote the projection onto the eigenstates of H_s with energies in $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s.
- Assume that $[E_{min}(s), E_{max}(s)]$ is separated by at least $\gamma/2$ from the rest of the spectrum, for $0 \le s \le s^*$.
- Then, for all $s \in [0, s^*]$, we have $\mathsf{P}(\mathsf{s}) = \mathsf{U}_\mathsf{s} \mathsf{P}(\mathsf{0}) \mathsf{U}_\mathsf{s}^\dagger$.
- We can prove that U_s is generated by the quasi-local operator \mathcal{D}_s .
- The spectral flow satisfies $\|\mathbf{U}_{s} \mathbf{U}_{A} \otimes \mathbf{U}_{\Lambda \setminus A} \mathbf{U}_{\partial A(\ell)}\| \leq \Delta(\ell)$, where the function Δ decays sub-exponentially.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 3

34/38

Pirsa: 11100106 Page 60/76

The proof Overview of the proof... Assume that s^* is the largest number in [0,1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap) Spyridon Michalakis Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 61/76

Overview of the proof...

- Assume that s^* is the largest number in [0,1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use **energy filtering** transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is **quasi-local**.(energy-filtering)

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 35/38

Pirsa: 11100106 Page 62/76

Overview of the proof...

- Assume that s^* is the largest number in [0,1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use **energy filtering** transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is **quasi-local**.(energy-filtering)
- Use the **spectral flow** to **unitarily transform** the gapped family of Hamiltonians H_s into

$$U_s^\dagger H_s U_s = H_0 + \sum_u V_u',$$

so that $[V'_u, P_0] = 0$ and V'_u is quasi-local. (unitary-transformation)

2E / 20

Pirsa: 11100106 Page 63/76

Overview of the proof...

- Assume that s^* is the largest number in [0,1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use **energy filtering** transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is **quasi-local**.(energy-filtering)
- Use the **spectral flow** to **unitarily transform** the gapped family of Hamiltonians H_s into

$$U_s^\dagger H_s U_s = H_0 + \sum_u V_u',$$

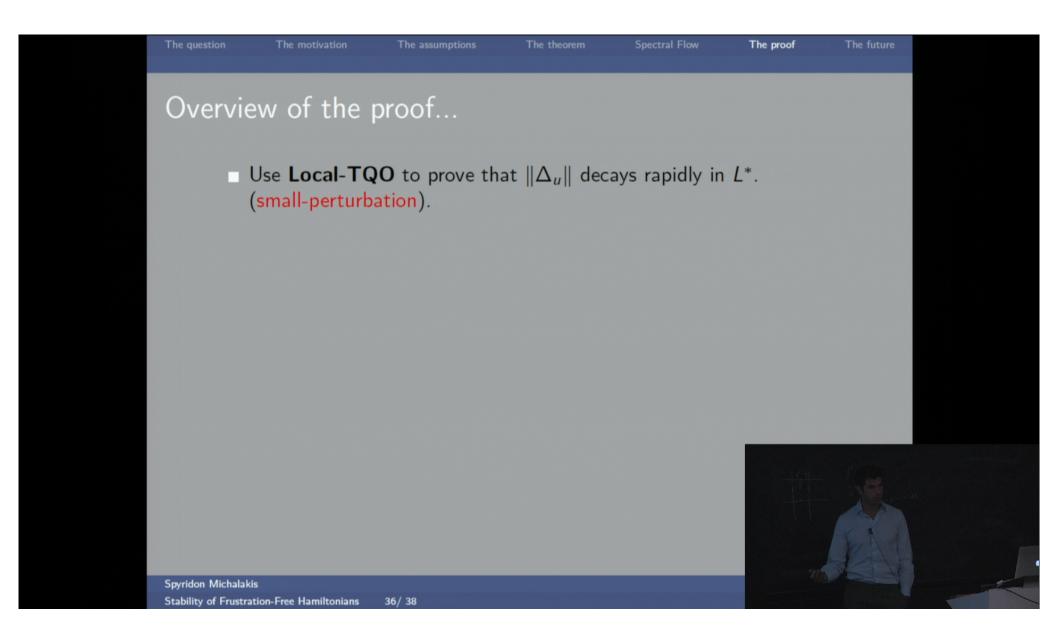
so that $[V'_u, P_0] = 0$ and V'_u is quasi-local. (unitary-transformation)

- **Decompose** $V'_u = W_u + \Delta_u + E_u \mathbf{1}$, where:
 - $\Delta_u = (V_u' E_u)P_0,$
 - $W_u = (V'_u E_u)(1 P_0)$ and
 - E_u is a constant energy. (energy-shift)

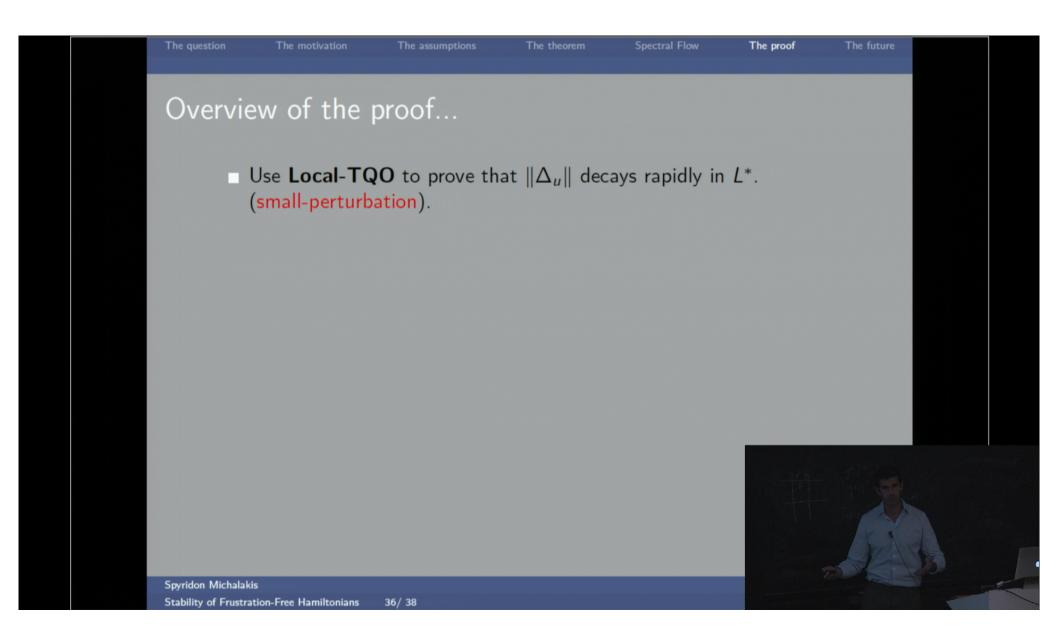
Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 35/

Pirsa: 11100106 Page 64/76



Pirsa: 11100106 Page 65/76



Pirsa: 11100106 Page 66/76

The proof Overview of the proof... ■ Use **Local-TQO** to prove that $\|\Delta_u\|$ decays rapidly in L^* . (small-perturbation). Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $\mathbf{W}_{\mathbf{u}}(\mathbf{r})\mathbf{P}_{\mathbf{b}_{\mathbf{u}}(\mathbf{r})} = \mathbf{0}$. (local-annihilation) Spyridon Michalakis Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 67/76

Overview of the proof...

- Use **Local-TQO** to prove that $\|\Delta_u\|$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a **strength** J **perturbation with rapid decay** w(r), satisfying $\mathbf{W_u}(\mathbf{r})\mathbf{P_{b_u(r)}} = \mathbf{0}$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_u W_u | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 36/38

Pirsa: 11100106 Page 68/76

Overview of the proof...

- Use **Local-TQO** to prove that $\|\Delta_u\|$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a **strength** J **perturbation with rapid decay** w(r), satisfying $\mathbf{W}_{\mathbf{u}}(\mathbf{r})\mathbf{P}_{\mathbf{b}_{\mathbf{u}}(\mathbf{r})} = \mathbf{0}$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_u W_u | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- Relative-bound and small-perturbation imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq J_0$.



Pirsa: 11100106 Page 69/76

Overview of the proof...

- Use **Local-TQO** to prove that $\|\Delta_u\|$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a **strength** J **perturbation with rapid decay** w(r), satisfying $\mathbf{W}_{\mathbf{u}}(\mathbf{r})\mathbf{P}_{\mathbf{b}_{\mathbf{u}}(\mathbf{r})} = \mathbf{0}$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_u W_u | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- Relative-bound and small-perturbation imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq J_0$.
- But, $H_0 + \sum_u V'_u E \cdot \mathbf{1}$ and $H_0 + sV$ have **equal spectral gap!** (unitary transformation + energy-shift)

Spyridon Michalakis
Stability of Frustration-Free Hamiltonians 36/

Pirsa: 11100106 Page 70/76

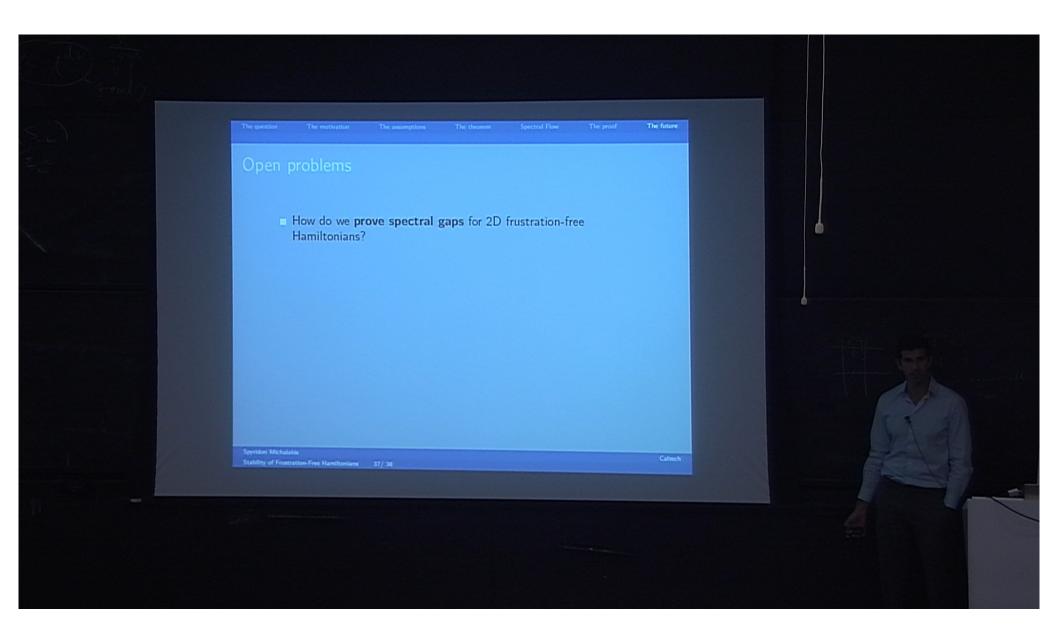
Overview of the proof...

- Use **Local-TQO** to prove that $\|\Delta_u\|$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a **strength** J **perturbation with rapid decay** w(r), satisfying $\mathbf{W_u}(\mathbf{r})\mathbf{P_{b_u(r)}} = \mathbf{0}$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_u W_u | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- Relative-bound and small-perturbation imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq J_0$.
- But, $H_0 + \sum_u V'_u E \cdot \mathbf{1}$ and $H_0 + sV$ have **equal spectral gap!** (unitary transformation + energy-shift)
- **Contradiction!** $H_0 + s^*V$ has gap at most $\gamma/2$, by assumption! So, $s^* = 1$, for $J \leq J_0$.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 36/

Pirsa: 11100106 Page 71/76



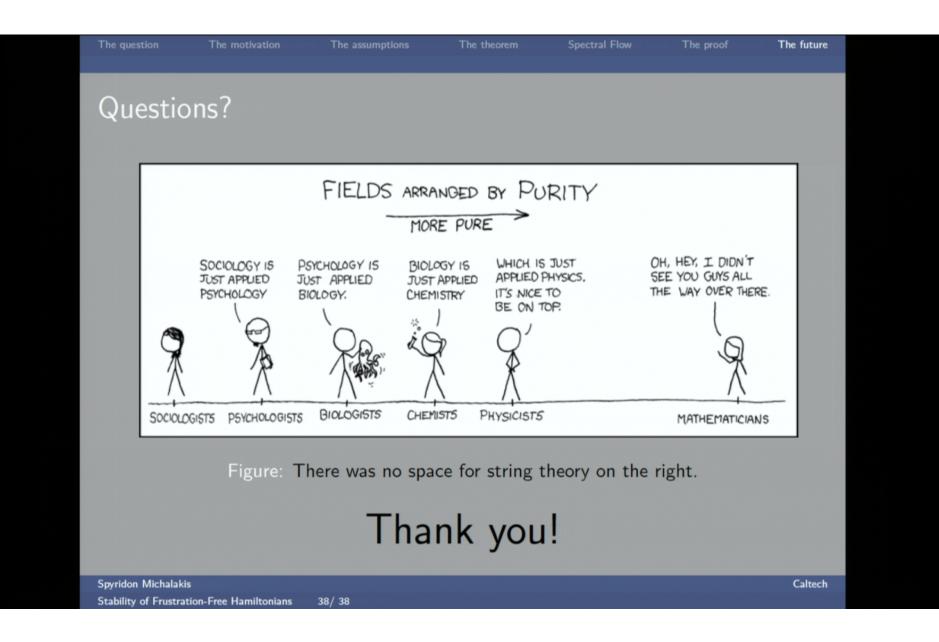
Pirsa: 11100106 Page 72/76

The question The assumptions The theorem The proof The future Open problems How do we **prove spectral gaps** for 2D frustration-free Hamiltonians? What **symmetries** of the Hamiltonian **imply Local-TQO**? Can we prove Local-Gap for all frustration-free Hamiltonians that are sums of local projections? 1 Local-TQO ⇒ Area Law. 2 Local-TQO ⇒ Stability of gap. 3 Stability of Gap \implies Area Law preserved. 4 Area Law \implies Local-TQO? Spyridon Michalakis Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 73/76

The question The theorem The proof The future Open problems How do we **prove spectral gaps** for 2D frustration-free Hamiltonians? ■ What **symmetries** of the Hamiltonian **imply Local-TQO**? Can we prove Local-Gap for all frustration-free Hamiltonians that are sums of local projections? 1 Local-TQO ⇒ Area Law. 2 Local-TQO ⇒ Stability of gap. 3 Stability of Gap \implies Area Law preserved. 4 Area Law \implies Local-TQO? Is there a notion of frustration-free parent Hamiltonians? Do they have **optimal Local-TQO decay** for given P_0 ? Spyridon Michalakis Caltech Stability of Frustration-Free Hamiltonians

Pirsa: 11100106 Page 74/76



Pirsa: 11100106 Page 75/76

Spectral Lemma + Local Decomposition

Lemma

- Let H_s be a differentiable family of Hamiltonians.
- Let P(s) denote the **projection onto the eigenstates of** H_s **with energies in** $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s.
- Assume that $[E_{min}(s), E_{max}(s)]$ is separated by at least $\gamma/2$ from the rest of the spectrum, for $0 \le s \le s^*$.
- Then, for all $s \in [0, s^*]$, we have $P(s) = U_s P(0) U_s^{\dagger}$.
- We can prove that U_s is generated by the quasi-local operator \mathcal{D}_s .
- The spectral flow satisfies $\|\mathbf{U}_{s} \mathbf{U}_{A} \otimes \mathbf{U}_{\Lambda \setminus A} \mathbf{U}_{\partial A(\ell)}\| \leq \Delta$ the function Δ decays sub-exponentially.

Spyridon Michalakis

Stability of Frustration-Free Hamiltonians

34/38

Pirsa: 11100106 Page 76/76