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Abstract: In 1987, Feynman devoted one of his last lectures to highlighting three serious objections against the usefulness of the variational principle
in the theory of relativistic quantum fields. In that same year, in a different branch of physics, Affleck, Kennedy, Lieb and Tasaki devised a quantum
state that resulted in the development of a handful of different variational ans& Atilde;& curren;tze for lattice models over the last two decennia.
These quantum states are known as tensor network states and invalidate at least two of Feynman's arguments. They could thus be used in a
variational study of relativistic quantum field theories on a lattice. However, two classes of tensor network states, namely the matrix product state
and the multi-scale entanglement renormalization ansatz, have recently been ported to the continuous setting, so that we now have direct access to
variational wave functions for quantum field theories and are no longer restricted to a lattice regularization.
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Quantum Field Theory

e Non-relativistic ground state:
collection of entangled particles

— very dull and empty for

distances « interparticle distance o~ '/¢

e Relativistic ground state:
quantum fluctuations at all momentum
scales due to Lorentz invariance

= divergences: need for regularization
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Variational Principle

e Advantages:
» Non-perturbative effects
» No sign problems

e (Successful) Examples:
» Single-particle QM: e.g. quartic potential
» Quantum chemistry: Hartree-Fock, DFT, ...
» Quantum lattices: DMRG, tensor networks
» Non-relativistic QFTSs: cf. previous talk

e What about relativistic QFTs ?

Page 4/34




Pirsa: 11100085

Variational Principle

e Advantages:
» Non-perturbative effects
» No sign problems

e (Successful) Examples:
» Single-particle QM: e.g. quartic potential
» Quantum chemistry: Hartree-Fock, DFT, ...
» Quantum lattices: DMRG, tensor networks
» Non-relativistic QFTSs: cf. previous talk

e What about relativistic QFTs ?

Page 5/34




Pirsa: 11100085

Variational Principle
for relativistic QFTs

Lacking success of the
variational method for
relativistic QFTs was
investigated by Feynman
in 1S

“It’s no damn good at all!”

* R. P. Feynman in Proceedings of the International Workshop
on Variational Calculations in Quantum Field Theory

(L. Polley and D. E. L. Pottinger, eds.),

World Scientific Publishing, Singapore, pp. 28-40 (1987).
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Variational Principle

for relativistic QFTs
Major difficulties:

1. Sensitivity to high frequencies

e Variational prineciple only cares about
ground state energy, which is dominated
by zero-point fluctuations of degrees of
freedom living at the shortest length scale

Problem: Observable physics is generated
by long-distance behavior and is often ill-
described by the variational method
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Variational Principle

for relativistic QFTs
Major difficulties:

2. Only Gaussians

. Typica.l scheme: (cf. configuration interaction)
— Take ground state of free theory
— Add 1,2,3,...-particle excitations

Problem: all non-extensive states
(n-particle excitations) do not contribute
to the ground state

= Nno improvement over Gaussian ansatz
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Variational Principle
for relativistic QFTs

Second and third argument are generally
applicable to extended systems:

\

Lattice systems: DMRG — tensor networks
Non-relativistic field theories: cMPS

» extensive states
» efficient and accurate evaluation
of expectation values
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Variational Principle
for relativistic QFTs

Second and third argument are generally
applicable to extended systems:

\

Lattice systems: RG — tensor networks
Non-relativistic field theories: cMPS

density matrix = entanglement!

Page 12/34




Variational Principle

for relativistic QFTs

“... Ithink it should be
possible some day to describe
field theory in some other
way than with the wave
functions and amplitudes. It

_ might be something like the

density matrices where you
concentrate on quantities in
a given locality ...”
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Variational Principle
for relativistic QFTs

Feynman’s first concern:
applies to all theories with degrees of
freedom over a wide range of length scales

0 UV:ia=A"" IR:E =M1

catastrophic when log(& /a) — oo

» critical theories
» relativistic theories

= (¢ )MERA (tomorrow)

10/24
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cMPS description

Regularization of quantum states:

» only regularization of spatial components
» unavoidable breaking of Lorentz invariance *

—¥ Lattice regularization:
MPS or other tensor networks

-3 How about cMPS?

(* Is Lorentz-invariance restored
in continuum limit? )
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cMPS description

Continuous Matrix Product State:

+00 I
|¥) :vﬁi‘.chp |:J dx (Q®ﬁ+ZRa®¢1(x)):| vy [€2)

» matrices Q and R: bond dimension D
» thermodynamic limit
» translation invariant

» formulated using creation/annihilation
operators:

(41 (), g g =8, 38(x—y) (2,8=1,2)

= most straightforward for fermions
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cMPS description

Continuous Matrix Product State:

+00 A
|W) = qyi‘i‘.]’cxp U dx (Q @1 +2Ra ® gﬁi(x))] vy [€2)

» matrices Q and R: bond dimension D
» thermodynamic limit
» translation invariant

» formulated using creation/annihilation
operators:

(41 (), g g =8, 38(x—y) (a,8=1,2)

= most straightforward for fermions
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cMPS description

Continuous Matrix Product State:

+o0 i
|P) = v::chxp |:f_ dx (Q@1 +ZR0! ® ¢l(x))] vg [©2)

» extensive: finite density
» non-gaussian

» efficient evaluation of expectation values
» regularized if {R,, Rz} =0

A 4
,}lgﬂmna,ﬁ(f?) (;)

with (V4! (k') (k)W) =278 (k' = k)n, (k)
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cMPS description

Continuous Matrix Product State:

+00 f
W) = v::fpcxp [f dx (Q ®1i +ZRG ® ¢l(x))] R |€2)

» scale transformation: Q —cQ,R, — v/cR,

= 1, 5(p) = 1y s(p[€) = A cA

= origin of the manifestation of
Feynman’s sensitivity to high
frequencies for cMPS
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cMPS description

Sensitivity to high frequencies in cMPS:

» real-space interpretation:
if (7) <0, the (kinetic) energy can unboundedly
be lowered through ¢ — oo , since ¢ — ¢ t
(together with other renorma.hza.ble terms)

» momentum-space interpretation:
since [(2) does not contain the correct physics at
large momenta, the cMPS can most quickly
lower the energy by first fixing the degrees of
freedom at large momentum
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cMPS description

Sensitivity to high frequencies in cMPS:

» Problem:

* a cMPS is able to accurately describe a
ground state if D = O(e®) with § ~ log(A/A)
and A the gap of the Hamiltonian

* if D is too small (A too large), compromises
will be made in the description of the low
energy behavior (IR scale)

* if the variational algorithm pushes ¢ — oo :
physical expectation values at any
observational scale will be totally wrong!

16/24
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Sensitivity to high frequencies in cMPS:
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cMPS description
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of negative energy levels

O
momentum p
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cMPS description

Sensitivity to high frequencies in cMPS:

» Solution:
* prevent ¢ from running to oo
* ‘regularize’ the field theory by modifying
the Hamiltonian with an irrelevant term,
such that
- the low-energy dynamics are unchanged
- the high-energy dynamics are such that
the asymptotic solution for |p| — co is the
empty vacuum [(2)
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cMPS description

Sensitivity to high frequencies in cMPS:
» Solution:

He—H+ % f:jdx (ddiz(x)> ( d;:(:«:))

* breaks relativistic invariance
* dispersion relation changes to

W=y pPPHm 4 p N =/ pP+m? +0(p* [A?)

* no fermion doublers
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Examples

Relativistic free fermions

miA = 1110 miA=0

= ground state
energy is not
interesting

= for a, gapped
system, low
energy
behavior is
very well
reproduced
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Examples

Relativistic free fermions

» Casimir: energy density between two plates

M| ||

| Lo VI s .

= Friedel oscillations due to cutoff
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Examples

Relativistic free fermions

» Casimir: total energy as function of separation
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= Friedel oscillations lead to resonances
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Examples

Relativistic free fermions

» Casimir: total energy as function of separation
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= Friedel oscillations lead to resonances
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Examples

Gross-Neveu model:

» N flavors of massless fermions interacting with
each other through a quartic potential

» dynamic mass generation related to
spontaneous breaking of chiral symmetry

T v T - T
0.8 1.0 1.2
AA) = [(N - 1)g(A)A!
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Conclusions

» Variational approach towards relativistic
quantum field theories might not be so bad
after all!

» Continuous matrix product states are well
suited to capture the low-energy dynamics
of relativistic theories too

» When we restore A — oo, Feynman’s
‘sensitivity to high frequencies’ reappears

= (¢ )MERA (tomorrow)
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Thank you!

Questions?
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