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Abstract: A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix
transforming the probability distributionsin the former to the probability distributionsin the latter. The so-called Blackwell-Sherman-Stein Theorem
provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their &quot;information
values& quot; in a game-theoretical framework. In thistalk, | will extend some of these ideas to the quantum case.

| will begin by considering the comparison of ensembles of quantum states in terms of their & quot;information value& quot; in quantum statistical
decision problems. In this case, | will prove that one ensemble is & quot;more informative& quot; than another if and only if there exists a suitable
processing of the former into the latter.

| will then move on to the comparison of bipartite quantum states in terms of their & quot;nonlocality value& quot; in nonlocal games. In this case, |
will prove that one bipartite state is & quot;more nonlocal & quot; than another if and only if the former can be transformed into the latter by local
operations and shared randomness, arguing, moreover, that the framework provided by nonlocal games can be useful in understanding analogies and
differences between the notions of quantum entanglement and nonlocality.
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Introduction, motivation

Resource-theoretical framework:
© identify a resource ~» allowed processes: do not use such resource

© define resource measures ~~ monotonicity properties: resource-processing
inequalities
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Introduction, motivation

Resource-theoretical framework:

© identify a resource ~» allowed processes: do not use such resource

©@ define resource measures ~~ monotonicity properties: resource-processing
inequalities

Problem: how to characterize allowed trasformations? does there exist an allowed
process from one ‘“resource carrier’” to another?

Reversible resource theory: non-increase of resource measures is necessary and
sufficient for the existence of an allowed process between two resource carriers
Examples: equilibrium thermodynamics (with adiabatic processes) and
entanglement theory (with asymptotic SEPP operations)

In this talk:

@ Statistical decision theory (tasks = statistical decision problems; resource =
information; carriers = statistical models; allowed processes = statistical
morphisms; measures = information values)

© Nonlocality theory (tasks = nonlocal games; resource =
nonlocality /entanglement; carriers = bipartite quantum states; allowed

processes — local operations with shared randomness; measures — nonlocality
values)
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Introduction, motivation

Resource-theoretical framework:

© identify a resource ~» allowed processes: do not use such resource

©@ define resource measures ~~ monotonicity properties: resource-processing
inequalities

Problem: how to characterize allowed trasformations? does there exist an allowed
process from one ‘“resource carrier’” to another?

Reversible resource theory: non-increase of resource measures is necessary and
sufficient for the existence of an allowed process between two resource carriers
Examples: equilibrium thermodynamics (with adiabatic processes) and
entanglement theory (with asymptotic SEPP operations)

In this talk:

@ Statistical decision theory (tasks = statistical decision problems; resource =
information; carriers = statistical models; allowed processes = statistical
morphisms; measures = information values)

© Nonlocality theory (tasks = nonlocal games; resource =
nonlocality /entanglement; carriers = bipartite quantum states; allowed

processes — local operations with shared randomness; measures =— nonlocality
values)
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Part |: statistical decision theory

A (classical) statistical model is given by:
@ parameter set: © = {0}
© state space: A = {d§}; D?(A): set of probability distributions (p.d.) over A
© experiment: function p: © — Z?(A); equiv. a family of p.d. (pg;0 € O)
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Part |: statistical decision theory

A (classical) statistical model is given by:

© parameter set: © = {0}

© state space: A = {d§}; D?(A): set of probability distributions (p.d.) over A

© experiment: function p: © — Z?(A),; equiv. a family of p.d. (pg;0 € O)
To define a statistical game (equiv. statistical decision problem) we need
three more ingredients:

©Q action set: X = {z}

© decision/observation: affine function n : 22(A) — 22(X)

Q payoff function:  : O X X — R

exper, -, decision rayoff
0 25 po(8) geceon, 7(xz|0) = (7o po)(x) =2 po(p, ) 1= E m(xz|0) (0, x)
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Part |: statistical decision theory

A (classical) statistical model is given by:

@ parameter set: © = {0}

© state space: A = {d§}; D?(A): set of probability distributions (p.d.) over A

© experiment: function p: © — Z?(A),; equiv. a family of p.d. (pg;0 € O)
To define a statistical game (equiv. statistical decision problem) we need
three more ingredients:

Q@ action set: X = {z}

© decision/observation: affine function n : 22(A) — 22(X)

©Q payoff function:  : O X X — R

0 exper. '[)()((5) (h:(.‘.i:—sion) 7T(_1|0) _ (71_ B I)())(LIJ) payoff ©e6 (}'), '71') - Z W(le())g)(() .’L‘)

Def. The information value of a statistical model E = (pg; 0 € ©) with respect to
a statistical game G = (O, X, p) is given by @ (F) := maXsy.decision Qg 0 (P, 7).
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A ( -a\*-v': statistical moldel s given by:

©Q [parameter set: © = {6}

© Istate space: A = {8}; 4P(A): set of probability distributions (p.d.) over A
@ lxperiment: function p |© — Z(A); equiv. a family of p.d. (pg; 0 € ©)

To dhfine 2 statistical gamd (equiv. statistical decision problem) we need

three more ingredients:
© action set: X = {z}
© decision/observation: affine function 7 : 2(4) = Z(X)
© payoff function: p: 0 XX = R

g =P o (5) 2550 2 (oidf) = (m 0 o) (2) 22X po(p, ) = ) w(zl0)p(6, 2)

Def. The information value of 2 statistical model E = (pg; 0 € ©) with respect toJ

2 statistical game G = (8, X, p) is given by pg(E) := ma decision D_g 06(P, ).
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The Blackwell-Sherman-Stein theorem

For a fixed parameter set O, let us consider two statistical models E = (py; 0 € ©O)
and F' = (gp;0 € ©), with state spaces A = {4} and I' = {~}, resp.

Def. F is said to be statistically more informative than F', written E Dg. F', if
and only if p&(E) = pg(F), for all statistical games G = (0O, X, p).
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The Blackwell-Sherman-Stein theorem

For a fixed parameter set O, let us consider two statistical models E = (py; 0 € ©O)
and F' = (gg; 0 € ©), with state spaces A = {4} and I' = {~}, resp.

Def. F' is said to be statistically more informative than F', written E Dg. F, if
and only if p&(E) = pg(F'), for all statistical games G = (O, X, p).

stochastic transformation: linear map X : Z2(A) — £ (I")

Data-processing inequality. For any statistical model . = (pg; 0 € ©) and any
stochastic transformation 3 : Z2(A) — P ("), F Dgtar 2(FE), where
S(FE) := (Xpg; 0 € O).
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The Blackwell-Sherman-Stein theorem
For a fixed parameter set ©, let us consider two statistical models F = (pg; 0 € O)
and F' = (gg;0 € ©), with state spaces A = {6} and I' = {~}, resp.

Def. F' is said to be statistically more informative than F', written E Dg. F, if
and only if p&(E) = pg(F'), for all statistical games G = (0, X, p).

stochastic transformation: linear map X : ZZ(A) — £ (I")
Data-processing inequality. For any statistical model £ = (pg; 0 € ©) and any

stochastic transformation 3 : Z2(A) — P ("), F Dgtar 2(FE), where
S(F) := (Xpg; 0 € O).

Theorem (Blackwell 1949~1953, Sherman 1951, Stein 1951)

Fix a parameter set ©. Let EE = (pp;0 € ©) and F' = (qp;0 € O) be two
statistical models on state spaces A and I, respectively. Then, IX D, I if and
only if F' >(F), for some stochastic transformation 3 : 22(A) — 22(1").
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Quantum statistical models

A quantum statistical model is given by:
parameter set: © = {6}
Hilbert space: JH; S(J{(): set of density matrices acting on I
quantum experiment: function g : ® — S(H); equiv. a family of density
matrices (pg; 0 € ©O)
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Quantum statistical models

A quantum statistical model is given by:
parameter set: © = {6}
Hilbert space: JH; S(J{): set of density matrices acting on I
quantum experiment: function g : ® — S(H); equiv. a family of density
matrices (pgp;0 € ©O)

A quantum statistical game:
action set: X = {x};, Z?(X): set of probability distributions over X
decision: affine function 7 : S(JH) — 22(X); equivalently, POVM
= ("2 € X), with 7% = 0 and >__ 7% = 1y
payoff function:  : ® X X — R

: 2T, > - E T
Ry Do = p(x|0) = Tr[n® ge] = i wol(o, ™) = E p(x|0)p(0, x)
€xr
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Comparison of quantum statistical models

For a fixed parameter set ©®, let us consider two quantum statistical models
R = (pp;0 € ©) and S = (0p;0 € ©), on Hilbert spaces H{ and X, resp.

Def. R is said to be statistically more informative than S, written R Dgiat S, if
and only if p&(R) = p&(S), for all quantum statistical games G = (O, X, p).
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Comparison of quantum statistical models
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Comparison of quantum statistical models

For a fixed parameter set ©®, let us consider two quantum statistical models
R = (pp;0 € ©) and S = (0p;0 € ©), on Hilbert spaces H and X, resp.

Def. R is said to be statistically more informative than S, written R Dgiat S, if
and only if p&(R) = p&(S), for all quantum statistical games G = (O, X, p).
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S = (0g;0 € O) such that R Dgiur S, but A& CPTP such that S = ®(R).
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Comparison of quantum statistical models

For a fixed parameter set ©®, let us consider two quantum statistical models
R = (pp;0 € ©) and S = (0p;0 € ©), on Hilbert spaces H and X, resp.

Def. R is said to be statistically more informative than S, written R Dgiat S, if
and only if p&(R) = p&(S), for all quantum statistical games G = (O, X, p).

Quantum data-processing inequality. For any statistical model
R = (0g;0 € ©) and any CPTP map ® : L(H) — £(K), R Dgtar P(R), where
P(R) := (Ppp; 0 € O).

Fact. There exist quantum statistical models R = (pp;0 € ©) and
S = (0g;0 € O) such that R Dgur S, but A& CPTP such that S = ®(R).

Fact. There exist quantum statistical models R = (pg; 0 € ©) and
S = (0g;0 € O) such that R Dgiar S, but A PTP (!) such that S = ®(R).
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Statistical morphisms and a noncommutative BSS theorem

For 3{ and K Hilbert spaces, denote by £(J{) and £(XK) the set of linear operators
acting on them.

Def. Let R = (pg;0 € ©) be a quantum statistical model on J(. A linear map
A L(H) — £(K) is said to induce a statistical morphism of R if and only if:
Q Aoy € S(K), for all 6 € O;

@ for any POVM (w*;xz € X) on K, there exists a corresponding POVM
(w*;z € X) on H, such that: Tr[Agy w*]| = Tr[ge 7], VO € O and Vz € X.
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For #i and X Hilbert spaces,
actir|g on them

Def) Let R = (ps:6 € O) be

A:B(H) - (X) ssad to
@ Mos € S(X), forall § €
@ for any POVM (uw*;z

(x=;z € X) on J, such

R
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Statistical morphism; and a noncommutative E

theorem

denote by £(3) and £(X) the set of linear operators

2 gquantum statistical model on J{. A linear map
nduce 2 statistical morphism of R if and only if:

O,
N

X) on X, there exists d
that: Tr[Ape w*| = Trosy

Nresponding POVM
\ Ve© andVz € X. |

—
—
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Statistical morphisms and a noncommutative BSS theorem

For 3{ and K Hilbert spaces, denote by £(J{) and £(XK) the set of linear operators
acting on them.

Def. Let R = (pg;0 € ©) be a quantum statistical model on J(. A linear map
A L(H) — £(K) is said to induce a statistical morphism of R if and only if:

Q Aoy € S(K), for all 6 € O;

@ for any POVM (w*;xz € X) on K, there exists a corresponding POVM
(w*;xz € X) on H, such that: Tr[Agy w*| = Tr[ge 7*], VO € © and Vz € X.

Generalized data-processing inequality. Given a statistical model
R = (pg;0 € ©O), let A : L(FH) — L(K) induce a statistical morphism of R. Then,

R Dgtar A(R).

Noncommutative BSS theorem. Fix a parameter set ©. Let R = (pp;0 € O)
and S = (0g;0 € ©) be two quantum statistical models on Hilbert spaces H and
I, respectively. Then, R DOgiat S if and only if S A(R), for some statistical

morphism A : £(J) — L(XK).
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From statistical morphisms to CPTP maps

First extension theorem. Let R = (pg;0 € ©) and S = (0y;0 € ©) be two
quantum statistical models on Hilbert spaces 3 and IC, respectively. Let

o, oo ] 0, VO,0" ¢ ©. Then, S = A(R), with A statistical morphism, if and
only if S = ®(R), with ® CPTP map.
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From statistical morphisms to CPTP maps

First extension theorem. Let R = (pg;0 € ©O) and S = (0y;0 € ©) be two
quantum statistical models on Hilbert spaces H and IJC, respectively. Let

log, 00| 0, VO,0" ¢ ©. Then, S = A(R), with A statistical morphism, if and
only if S = ®(R), with ® CPTP map.

Second dilation theorem. Let R = (pp;0 € ©O), S = (09;0 € ©O), and
T = (1¢; € € =), be three quantum statistical models on Hilbert spaces 3(, K, and
L, respectively. Let the composition T @ R be defined as the statistical model
(Te R p; £ € Z,0€ ©) on LRI, Let T @ S be defined analogously. Moreover,
suppose that £L = K and span{7¢ } = L(IK). Then, TFAE:
Q7T RIS =ATRR), with A:L(LRH) > L(L ®K) statistical morphism;
Q7T RXRS=PTRR), with D : L(LRXRH) > L(LRX®K) CPTP map;
Q@ S = P(R), for some CPTP map ® : L(H) — L(XK).
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Quantum BSS theorems

Semi-classical BSS theorem. Let R = (pp;0 € ©) and S = (09;0 € ©) be two

quantum statistical models on Hilbert spaces H and X, respectively. Let moreover
0,00/ ] =0, V0,0 € ©. Then, R Dy.. S if and only if S

P(R), for some
CPTP map ® : £(JH) — £(X).

Identifying commutative quantum statistical models with classical statistical
models, we recover the BSS theorem.
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Quantum BSS theorems

Semi-classical BSS theorem. Let R = (pp;0 € ©) and S = (0g;0 € ©) be two
quantum statistical models on Hilbert spaces JH{ and X, respectively. Let moreover
0,00/ ] =0, V0,0 € ©. Then, R D... S if and only if S D(R), for some
CPTP map ® : L£(H) — L(X).

Identifying commutative quantum statistical models with classical statistical
models, we recover the BSS theorem.

Quantum BSS theorem. Let R = (pe;0 € ©) and S = (0p;0 € ©) be two
quantum statistical models on Hilbert spaces JH and JC, respectively. Then TFAE:

Q TR R Dgtar T'® S, for any auxiliary quantum statistical model T';

Q T ® R Dgtat 1'® S, for some auxiliary quantum statistical model
T = (1¢;€§ € Z) on K, such that span{7¢} = £(XK);

©Q S =P(R), for some CPTP map ¢ : L(IH) — £L(XK).

Complete positivity is always related with the possibility of extending quantum
systems by tensoring.
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bere beginneth tbe fecond part: nonlocality theory

O QAB /B:b\
€T Yy
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bere beginneth tbe fecond part: nonlocality theory

OAB /B—b\

The rules of a nonlocal game G,,; consist
of:

f © four (finite) index sets & = {s},
Y T ={t}, X ={x}, and Y = {y};
© a payoff function
the referee P:8xT xXxY > R,
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bere beginneth tbe fecond part: nonlocality theory

Y OARB
@ /B;b\ The rules of a nonlocal game G,,; consist
of:
S / © four (finite) index sets 8 = {s},
Y T ={t}, X ={x}, and Y = {y};

© a payoff function
the referee P:8xT XX xY > R,

Notation: questions are encoded on orthonormal quantum states
I“’-><S| € g(:’}_{:/‘“) and |f’><{’| € g(g_{jf}u)'

Def. The nonlocality value of a bipartite state pap € S(J a4 ® Hp) with respect

to a nonlocal game G, = (8,7,2X, Y, g) is given by

KJ*(QAUQ Gnl) . =

max E g‘-)("’.7 t? €T, :U) E[‘r I:(])/{{‘[]A ® (2?;}[3[]) (l".‘;)("’.lfq(] 6'0 CAB Q{) |t> (tIB(])]J "

P,Q:POVM’s
s,t, T,y Bt
p(z,y|s,t)
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Comparison of bipartite states (1/2)

Def. A bipartite state pap € S(H a4 ® Hp) is said to be more nonlocal than
another oa/ g € S(H 4 @ Hyg:), written gap 2n cargs, iIf and only if
e (0aB; Gn) = ©*(ca p; Gn ), for all nonlocal games G,,.
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Comparison of bipartite states (1/2)

Def. A bipartite state pap € S(Ha ® Hp) is said to be more nonlocal than
another TA B € g(:}{:/‘r Q’C’:}Cljf), written 0AB 2“1 T A B, if and only if
©*(0aB; Gn) = ©*(ca p; Gn ), for all nonlocal games G,.

Local operations with shared randomness (LOSR): bipartite CPTP maps

D L(HasRHp) > L(Ha ® Hp ) that can be written as ® = > u(i)€* @ F7,
for some . probability distribution, and some CPTP maps €% : £(3(4) — £(F 4/)
and J° :2(9‘(;;) —> 2,(.(}(';31).
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Comparison of bipartite states (1/2)

Def. A bipartite state pap € S(Ha ® Hp) is said to be more nonlocal than
another TA B € g(:}CAr Q’C':}C[jr), written 0AB 2“1 T A B, if and only if
©*(0aB; Gn) = ©*(ca p; Gh ), for all nonlocal games G,,;.

Local operations with shared randomness (LOSR): bipartite CPTP maps

D :L(HaRHp) > L(Ha ® Hp ) that can be written as ® = > u(i)€* @ F°,
for some . probability distribution, and some CPTP maps €% : £(34) — £(F 4/)
and J* :2(9{13) —> Q(f}c”!).

Nonlocality-processing inequality. For any bipartite state pap and any LOSR
D acting on L(Ha R Hp), ca 2n Pl(oan)-
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Semi-quantum nonlocal games

The rules of a semi-quantum nonlocal
game G, consist of:
© four (finite) index sets 8§ = {s},
T ={t}, X = {x}, and Y = {y};

©Q two families of density matrices

' 7:= (7% 8 € 8) and w := (w¥;t € T) on
the rafarss Ap and By, re:spectlvely;
© a payoff function

P : 88X T xXAXxY —> R.
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Semi-quantum nonlocal games

The rules of a semi-quantum nonlocal
game G, consist of:
© four (finite) index sets 8§ = {s},
T ={t}, X ={x}, and Y = {y};

©Q two families of density matrices

' T:=(7%;8€ 8) and w := (w¥;t € T) on
*ha rafaide Ap and By, rerspectlvely;
© a payoff function

O :8SXT xXxY —> R.

Def. The nonlocality value of a bipartite state pap € S(JH a4 ® ) with respect

to a semi-quantum nonlocal game G |* = (8,7,X,Y, 7,w, g) is given by

K . 8-qy . __
K2 (QABaGnl .=

1’,(3:If}g)\(/M’H q;ij KJ(S’ t’ i .U) Tr I:(I);’ill/l R (Q%Bn) (T;l(l R QAB o2 wifn)] -
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Comparison of bipartite states (2/2)

Def. Given two bipartite states pap € S(Ha ® Hpg) and
T A B € e(j‘f/y 2 G‘CU'), we write oARB QH_(] T A B’ if and only if

s8-q

0 (0aB; G = p*(ca B ;G ?), for all semi-quantum nonlocal games G

s-q
nl -
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Comparison of bipartite states (2/2)

Def. Given two bipartite states pap € S(Ha ® Hpg) and
T A B € e(j‘f/y 29) g‘ful), we write CAB QH_(] oa g if and only if

ok R 8- * R s8-q - 8-
@ " (oan; G, ") = " (ca ;G "), for all semi-quantum nonlocal games G_*.

Nonlocality-processing inequality. For any bipartite state pap and any LOSR
P acting on L(H A @ Hp), 0aB 2sq P(0aB).

Equivalence theorem. For any two bipartite states pap € S(H 4 ® Hp) and
cap € S(Ha RHp), 0AB 2s-q Ta'p’ if and only if ca P(oap), for some
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Comparison of bipartite states (2/2)

Def. Given two bipartite states pap € S(Ha ® Hp) and
T A B € e(j‘f/y X g{jjl), we write CAB Q,.;_q oa g if and only if
0 (0aB; G = p*(ca ;G ?), for all semi-quantum nonlocal games G

s-q
nl -

Nonlocality-processing inequality. For any bipartite state pap and any LOSR
P acting on L(H A @ Hp), 0aB 2sq P(0aB).

Equivalence theorem. For any two bipartite states pap € S(H 4 ® Hp) and
cap € S(Ha RHp), 0AB 2s-q Ta'p’ if and only if ca g P(oap), for some
LOSRD : L(Ha R Hg) > L(Ha K Hgr).

Consequences. Separable states are the endpoints of the relation Dy . All
separable states have the same nonlocality values, i.e.

*(ean; G") = ©ip(GL "), for all separable states pap and all semi-quantum

s-q
nonlocal games G_|".
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Comparison of bipartite states (2/2)

Def. Given two bipartite states pap € S(Ha ® Hpg) and
T A B € B(j‘f/y 29) g‘ful), we write CAB Qﬁ_q oa g if and only if
0 (0aB; G = p*(ca B ;G 1), for all semi-quantum nonlocal games G

s-q
nl -

Nonlocality-processing inequality. For any bipartite state pap and any LOSR
P acting on L(H A @ Hp), 0aB 2sq P(0aB)-

Equivalence theorem. For any two bipartite states pap € S(H a4 ® Hp) and
cap € S(Ha RHpr), 0AB 2s-q Ta'p’ if and only if ca g D(pap), for some

Consequences. Separable states are the endpoints of the relation Dy . All
separable states have the same nonlocality values, i.e.

0 (0ap; G = g?:l,l,(Gi’l"‘), for all separable states pap and all semi-quantum
nonlocal games G] . A state psp is entangled if and only if 3G]? such that

nl
8-q * s-q

K)*(QAU; i.] ) = g‘.)H(‘:p(Gill
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Semi-quantum nonlocal games

The rules of a semi-quantum nonlocal
game G, consist of:
© four (finite) index sets 8§ = {s},
T ={t}, X = {x}, and Y = {y};

©Q two families of density matrices

' T:=(7%;8€ 8) and w := (w¥;t € T) on
the vafarad Ag and By, rerspectlvely;
© a payoff function

P : 88X T xXAxY > R.
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Cornparison of bipariite states (2/2

Def| Given two bipartite stales pa5 € S(Ha ® Hp) and :
carg € S{Ha ® Hg ). wewrite pap Dyq 0ap if and only if

A al

processing inequality. For any bipartite state gap and any LOSR
ing on £(H 4 ® H3p). das 2sq P(0aB)-

48:GY) 2 p"(oars: dL5). for all semi-quantum nonlocal games G,)".

i

Equivalence theorem. For $ny two bipartite states gap € S(Hs ® Hg) and

cap €S(Ha @Hp). 04

LOSR® : E(H 4 RHp) = {H 4 R Hg).

, Deq Oarp’ if and only if carp = $(pap), for some

!

Conseguences. Separable stptes are the endpoints of the relation 2. All
nonlocality values, i.e.
- . = gl d all semi-quantum
a0 o) = Pous(Gra) all separable states pap an
Al gomes G4, A state pap is entangled if and only if 3G3 such that
g loas:G) > P (Goy')- The relation 2n) alone does not imply the existence

of an LOSR (this proves the previous claim).

J,
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Concluding remarks

So, can we actually find the dynamical equivalent of 25,7
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Concluding remarks

So, can we actually find the dynamical equivalent of 2,7 Mere analogy would
suggest the following conjecture:

Conjecture. Let us consider the set of bipartite CPTP maps ®,,, whose action

on a bipartite state pap can be written as (Ea,4 ® Fpp,)(0aB @ aa,8,), Wwhere
xaA,B, Is an LHVPOV state (Barrett). Then, oap 2n oa p if and only if
T A B P (0ap), for some Py, so constructed.

Pirsa: 11100065 Page 44/47



Concluding remarks

So, can we actually find the dynamical equivalent of 2,7 Mere analogy would
suggest the following conjecture:

Conjecture. Let us consider the set of bipartite CPTP maps ®,,, whose action
on a bipartite state pap can be written as (E 4,4 @ Fpp,)(0aB @ s, B,), where
@xA,B, Isan LHVPOV state (Barrett). Then, oap 2n oa p if and only if

T A B’ D (0ap), for some Py, so constructed.

Summary:

@ statistical decision theory as a reversible, partial-ordering resource theory
(operational tasks = statistical decision problems; resource carriers =
statistical models; allowed processes — statistical morphisms; resource
measures = information values)
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Concluding remarks

So, can we actually find the dynamical equivalent of 2,7 Mere analogy would
suggest the following conjecture:

Conjecture. Let us consider the set of bipartite CPTP maps ®,,, whose action
on a bipartite state pap can be written as (E 4,4 @ Fpp,)(0aB @ aa,B,), where
@xA,B, Isan LHVPOV state (Barrett). Then, oap 2n oa p if and only if

T A B Diww(0ap), for some Py, so constructed.

Summary:

@ statistical decision theory as a reversible, partial-ordering resource theory
(operational tasks = statistical decision problems; resource carriers =
statistical models; allowed processes — statistical morphisms; resource
measures = information values)

nonlocality theory as a reversible, partial-ordering resource theory (operational
tasks = semi-quantum nonlocal games; resource carriers = bipartite states;
allowed processes = LOSR; resource measures = nonlocality values)
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Concluding remarks

So, can we actually find the dynamical equivalent of 2,7 Mere analogy would
suggest the following conjecture:

Conjecture. Let us consider the set of bipartite CPTP maps ®,,, whose action
on a bipartite state pap can be written as (E s, 4 @ Fpp,)(0AaB @ aa,B,), where
@xaA,B, Isan LHVPOV state (Barrett). Then, oap 2n oa p if and only if

T A B Diww(0ap), for some Py, so constructed.

Summary:

@ statistical decision theory as a reversible, partial-ordering resource theory
(operational tasks = statistical decision problems; resource carriers =
statistical models; allowed processes — statistical morphisms; resource
measures = information values)

nonlocality theory as a reversible, partial-ordering resource theory (operational
tasks = semi-quantum nonlocal games; resource carriers = bipartite states;
allowed processes — LOSR; resource measures = nonlocality values)

tbe end.
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