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Abstract: How can one model the behavior of materials that display radically different, dominant behaviors at different length scales. Although we
have good models for material behaviors at small and large scales, it is often hard to relate these scale-based models to one another. Macroscale
(effective) models represent the integrated effects of very subtle factors that are practically invisible at the smallest, atomic, scales. For this reason it
has been notorioudly difficult to model realistic materials with a simple bottom-up-from-the-atoms strategy. The widespread failure of that strategy
forced physicists interested in overall macro-behavior of materials toward completely top-down modeling strategies familiar from traditional
continuum mechanics. The problem of the ““tyranny of scales' asks whether we can exploit our rather rich knowledge of intermediate micro- (or
meso-) scale behaviors in a manner that would allow us to bridge between these two dominant methodologies. Macroscopic scale behaviors often
fall into large common classes of behaviors such as the class of isotropic elastic solids, characterized by two phenomenological
parameters---so-called elastic coefficients. Can we employ knowledge of lower scale behaviors to understand this universality---to determine the
coefficients and to group the systems into classes exhibiting similar behavior?
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Introduction

@ Many systems manifest radically different, dominant behavior
at different length (and time) scales.
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Introduction

@ Many systems manifest radically different, dominant behavior
at different length (and time) scales.

@ Consider a steel girder:

o At the scale of meters we are interested in its bending
properties, buckling strength, etc.

e At the scale of nanometers or smaller, we care about lattice
properties, ionic bonding strengths, etc.
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Introduction

@ Many systems manifest radically different, dominant behavior
at different length (and time) scales.
@ Consider a steel girder:

o At the scale of meters we are interested in its bending
properties, buckling strength, etc.

o At the scale of nanometers or smaller, we care about lattice
properties, ionic bonding strengths, etc.

@ To design materials like steel girders one must attempt to deal
with phenomena across 10+ orders of magnitude in spatial
scales.
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Figure: Steel—Widely Separated Scales
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Introduction

Simulation Based Engineering Science—An NSF Blue Ribbon
Report, (2006) [3]

Virtually all simulation methods known at the beginning
of the twenty-first century were valid only for limited
ranges of spatial and temporal scales. Those conventional
methods, however, cannot cope with physical phenomena
operating across large ranges of scale—12 orders of
magnitude in time scales, such as in the modeling of
protein folding ... or 10 orders of magnitude in spatial
scales, such as in the design of advanced materials. At
those ranges, the power of the tyranny of scales renders
useless virtually all conventional methods.

[www.nsf.gov/pubs/reports/sbes_final_report.pdf]
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Simulation Based Engineering Science—An NSF Blue Ribbon
Report, (2006) [3]

Virtually all simulation methods known at the beginning
of the twenty-first century were valid only for limited
ranges of spatial and temporal scales. Those conventional
methods, however, cannot cope with physical phenomena
operating across large ranges of scale—12 orders of
magnitude in time scales, such as in the modeling of
protein folding ... or 10 orders of magnitude in spatial
scales, such as in the design of advanced materials. At
those ranges, the power of the tyranny of scales renders
useless virtually all conventional methods.

[www.nsf.gov/pubs/reports/sbes_final_report.pdf]
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Introduction

@ Macroscopic scale behaviors often fall into large common
classes. The class of isotropic elastic solids, e.g.
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Introduction

@ Macroscopic scale behaviors often fall into large common
classes. The class of isotropic elastic solids, e.g.

@ Typically such classes are characterized by a small number of

phenomenological parameters—a pair of elastic moduli such
as Young's modulus E and the shear modulus G.

@ Thus, these parameters characterize classes of systems
exhibiting the same (universal) behaviors.
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Introduction

Universality Classes

Figure: Elastic Properties of Materials. [After Ashby, [1]]
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Introduction

Fundamental Question

@ How can we model and understand systems that exist across
extremely wide ranges of scale?
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Introduction

Many philosophers and physicists hold on to some sort of
reductionist picture about modeling strategies.

“Whatever the fundamental theory is at the smallest, basic
scale, it will be sufficient in principle to tell us about the
behavior of systems at all scales.”

Continuum modeling, on this view, represents an
idealization—"A smoothed out imitation of a really much
more complicated microscopic world” [Feynman, The
Feynman Lectures on Physics|

Further, the suggestion is that such models are in principle
eliminable.
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Introduction

A Puzzle

Continuum model equations such as N-S and the equations
for elastic solids work despite the fact that they almost
completely ignore small scale or atomistic details of the
systems (fluids or steel bars). The “almost” is crucial.

The recipe by which continuum models are constructed (I'll
call it Cauchy's recipe) is safe: If we follow it, we will most
always be led to empirically adequate equations characterizing
macroscale behavior.

WHY? Why is this recipe safe? What sort of explanation can
we give of this?

Surely, it must have something to do with the physics o ‘-|
modeled systems at smaller scales. '
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Reduction, Limits, Continuum Models

Recent philosophical literature has focused on reductive/emergence
relations between SM and TD.
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Reduction, Limits, Continuum Models

Recent philosophical literature has focused on reductive/emergence
relations between SM and TD.

@ One key component of this is the role of the thermodynamic
limit in connecting these theories and in providing an
understanding of phase transitions and critical phenomena.

e Kadanoff: “The existence of a phase transition requires an
infinite system. No phase transtions occur in systems with a
finite number of degrees of freedom.” [5, p. 238]
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Reduction, Limits, Continuum Models

Here | consider the role of the thermodynamic limit in a more
general context:

@ How can one connect (upscale) from the finite statistical
micro-theory to the continuum macro-theory.

@ One prominent view (largely driven by this philosophical

confusion, | think) is that the use of the continuum limit is to
be justified solely on pragmatic grounds—it is a matter of
convenience.
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Reduction, Limits, Continuum Models
[ Jelelele]

Justification

“Straightforward Justification”

One is justified in the use of infinite limits in modeling systems

with finite degrees of freedom for two broadly instrumental reasons
[Butterfield]:
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Reduction, Limits, Continuum Models
[ Jelelele]

Justification

“Straightforward Justification”

One is justified in the use of infinite limits in modeling systems

with finite degrees of freedom for two broadly instrumental reasons
[Butterfield]:

@ Mathematical convenience.

e Empirical adequacy (up to a required accuracy).

e Abstract from finitary effects—transients and edge/boundary
effects.
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Reduction, Limits, Continuum Models
#0000

Justification

“Straightforward Justification”

One is justified in the use of infinite limits in modeling systems

with finite degrees of freedom for two broadly instrumental reasons
[Butterfield]:

@ Mathematical convenience.

@ Empirical adequacy (up to a required accuracy).

o Abstract from finitary effects—transients and edge/boundary
effects.

o Mathematics of infinity—calculus—is more convenient than
mathematics of the large finite.
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Reduction, Limits, Continuum Models
(o] lelele]

Justification
Consider the mass density of a rod or a fluid:

For an atomistic model of the rod or fluid, that
postulates N atoms per unit volume, the average
mass-density might be written as a function of both
position x within the rod or fluid, and the side-length L of
the volume L* centred on x, over which the mass density
is computed: f(N.x.L). Now the point is that for fixed
N, this function is liable to be intractably sensitive to x
and L. But by taking a continuum limit N — oo, with

L — 0 (and atomic masses going to zero appropriately so
that quantities like density do not “blow up"), we can
define a continuous, maybe even differentiable,
mass-density function p(x) as a function of position—and
then enjoy all the convenience of the calculus.

So much by way of showing in general terms how the use
of an infinite limit N = oo can be justified—but not
mysterious!
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Reduction, Limits, Continuum Models
00080

Justification

REV

This quote describes what we can call REV (Representative
Elementary Volume) averaging.
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Reduction, Limits, Continuum Models
00080

Justification

REV

This quote describes what we can call REV (Representative
Elementary Volume) averaging.

@ It is a legitimate means for upscaling. One identifies a
macroscopic value for a function such as the density of a

material with the continuum limit of the REV.

o /f all uses of limits fit this methodology, then | think
Butterfield's “Straightforward Justification” for the use of
continuum idealizations would be reasonable.

@ Then we would be able to justify a broadly reductionist
approach to relations between models and theories at largely

separated scales.
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Reduction, Limits, Continuum Models
Q000Ce®

Justification

Can REV averaging explain the safety of Cauchy's recipe for
constructing adequate continuum models that invariably yield
empirically adequate equations governing macroscopic behaviors?
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Reduction, Limits, Continuum Models
Q000e®

Justification

Can REV averaging explain the safety of Cauchy's recipe for
constructing adequate continuum models that invariably yield
empirically adequate equations governing macroscopic behaviors?

@ To answer this | need to describe Cauchy's recipe for
continuum modeling and Euler's recipe for molecular/atomic
modeling.
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Reduction, Limits, Continuum Models
0000

Euler's and Cauchy's Recipes

Euler

@ Newton's second law (F = ma) is insufficient, to tell us how
some body will behave over time. It is a general dynamical
principle that is, itself, independent of the kind of body under
investigation.
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Reduction, Limits, Continuum Models
€000

Euler's and Cauchy's Recipes

Euler

@ Newton's second law (F = ma) is insufficient, to tell us how
some body will behave over time. It is a general dynamical

principle that is, itself, independent of the kind of body under
investigation.

@ For discrete systems (point particles) we need, in addition, to
specify the nature of the forces acting between the particles.

o Are the particles massive? Then we need to consider the
. . m;m
gravitational force law: Fg = G b

Y
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Reduction, Limits, Continuum Models
0800

Euler's and Cauchy's Recipes

Euler

These special forces or “constitutive laws" are crucial to the
modeling process.
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Reduction, Limits, Continuum Models
0800

Euler's and Cauchy's Recipes

Euler

These special forces or “constitutive laws" are crucial to the
modeling process.
@ Once we have them we proceed as follows:

©Q Choose Cartesian coordinates along which we can decompose
the special forces.
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Reduction, Limits, Continuum Models
(o] lele]

Euler's and Cauchy's Recipes

Euler

These special forces or “constitutive laws" are crucial to the
modeling process.
@ Once we have them we proceed as follows:

©Q Choose Cartesian coordinates along which we can decompose
the special forces.

© Sum the forces acting on each particle along the appropriate
axis. )

© Set the sum for each particle i equal to m; ‘(’”5 to yield the
total force on the particle.

@ This give us our differential equation, which for a few particles
(N < 3)! or certain symmetries, is relatively easily
manipulated.
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Reduction, Limits, Continuum Models
0800

Euler's and Cauchy's Recipes

Euler

These special forces or “constitutive laws" are crucial to the
modeling process.
@ Once we have them we proceed as follows:

©Q Choose Cartesian coordinates along which we can decompose
the special forces.

© Sum the forces acting on each particle along the appropriate
axis. )

© Set the sum for each particle i equal to m; ‘(’”? to yield the
total force on the particle.

@ This give us our differential equation, which for a few particles
(N < 3)! or certain symmetries, is relatively easily
manipulated.
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Reduction, Limits, Continuum Models
00@0

Euler's and Cauchy's Recipes

Cauchy

As for discrete particles, there exists a recipe for finding continuum
equations.

@ One starts with continuum analog of F = ma. The Cauchy
momentum equation:

)
/)((,erv-Vv) —V.o+Ff.
ot

@ Next determine the constitutive equations:

e For a solid, is its stress linearly related to strain—does it obey
Hooke's law?
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Reduction, Limits, Continuum Models
0080

Euler's and Cauchy's Recipes

Cauchy

As for discrete particles, there exists a recipe for finding continuum
equations.
@ One starts with continuum analog of F = ma. The Cauchy
momentum equation:

()
/’((.)\:‘I—V'VV) =V.o+f.

@ Next determine the constitutive equations:
e For a solid, is its stress linearly related to strain—does it obey

Hooke's law?

e For a fluid, is it viscous, compressible? What are the nature of
its surface pressures?

e Scaling at macro and near macro scales plays an crucial role in
the successful implementation of this recipe.
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Reduction, Limits, Continuum Models
000®

Euler's and Cauchy's Recipes

Cauchy

Answers to these questions allow us to derive (for elastic solids)
the Navier-Cauchy equations:
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Reduction, Limits, Continuum Models
000®

Euler's and Cauchy's Recipes

Cauchy

Answers to these questions allow us to derive (for elastic solids)
the Navier-Cauchy equations:

(A + 1)V(V - u) +/JV2U+f:0. (1)

The parameters, A and ;. are the “Lamé” parameters and are
related to Young's modulus. p is the material density and f are the
body forces acting on the material.

And (for incompressible fluids) the Navier-Stokes equations

) i
0 ((,)‘; + V- Vv) = —-Vp+ vV +§, (2)
(

where 1 is the viscosity and p is the pressure. The parameters
A. jt. v arise through the different constitutive equations.
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Reduction, Limits, Continuum Models
000®

Euler's and Cauchy's Recipes

Cauchy

Answers to these questions allow us to derive (for elastic solids)
the Navier-Cauchy equations:

(A + 1)V(V - u) +/JV2U+f:0. (1)

The parameters, A and ;. are the “Lamé” parameters and are
related to Young's modulus. p is the material density and f are the
body forces acting on the material.

And (for incompressible fluids) the Navier-Stokes equations

v 2
,J<“t +V-Vv) = —-Vp+ vV +§ (2)

where 1/ is the viscosity and p is the pressure. The parameters
A. jt. v arise through the different constitutive equations.
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Reduction, Limits, Continuum Models
L Ie}

Euler vs. Cauchy

Cauchy's recipe is a key component of the applied mathematician's
methodology. But now the problem of scale separation comes to
the fore:
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Reduction, Limits, Continuum Models
0

Euler vs. Cauchy

Cauchy's recipe is a key component of the applied mathematician's
methodology. But now the problem of scale separation comes to
the fore:

@ We know that fluids, e.g., are not really continua.
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Reduction, Limits, Continuum Models
0

Euler vs. Cauchy

Cauchy's recipe is a key component of the applied mathematician's
methodology. But now the problem of scale separation comes to
the fore:

@ We know that fluids, e.g., are not really continua.

@ What is the relation between molecular dynamical models that
track individual molecular behavior at the scale of
nanometers, and equations like those of Navier-Stokes that
apply at the scale of millimeters?
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Reduction, Limits, Continuum Models
(o] }

Euler vs. Cauchy

Our puzzle again:
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Reduction, Limits, Continuum Models
oe

Euler vs. Cauchy

Our puzzle again:

@ Why does Cauchy's recipe work on a macroscale?

@ Why is it safe to use the Cauchy momentum equation in the
sense that it yields correct equations with the appropriate few
parameters for broadly different classes of systems?
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Reduction, Limits, Continuum Models
(o] }

Euler vs. Cauchy

Our puzzle again:

@ Why does Cauchy's recipe work on a macroscale?

@ Why is it safe to use the Cauchy momentum equation in the

sense that it yields correct equations with the appropriate few
parameters for broadly different classes of systems?

e The answers to these questions involve telling a story about
how properly to connect a statistical atomic theory to a
continuum theory—how to connect statistical mechanics to
hydrodynamics.

o This is the story of the so-called renormalization group and
related homogenization strategies.
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Reduction, Limits, Continuum Models
®0

Generalized Conception of a Fixed Point

@ From the point of view of Cauchy's recipe, one derives the
N-S and Navier-Cauchy equations independently of any views
about the molecular or atomic makeup of the medium.

@ In the nineteenth century there were doubts about whether
matter was atomistic! Interesting controversy pitting Navier
and Cauchy against Green and Stokes—rari-constancy vs.

multi-constancy theories.
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Reduction, Limits, Continuum Models
*0

Generalized Conception of a Fixed Point

@ From the point of view of Cauchy's recipe, one derives the
N-S and Navier-Cauchy equations independently of any views
about the molecular or atomic makeup of the medium.

In the nineteenth century there were doubts about whether
matter was atomistic! Interesting controversy pitting Navier
and Cauchy against Green and Stokes—rari-constancy vs.

multi-constancy theories.

The key physical fact is that the bulk behavior of fluids is
almost completely insensitive to the actual nature of the
physics at much shorter distance scales.
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Reduction, Limits, Continuum Models
0

Generalized Conception of a Fixed Point

From the point of view of Cauchy's recipe, one derives the
N-S and Navier-Cauchy equations independently of any views
about the molecular or atomic makeup of the medium.

In the nineteenth century there were doubts about whether
matter was atomistic! Interesting controversy pitting Navier
and Cauchy against Green and Stokes—rari-constancy vs.
multi-constancy theories.

The key physical fact is that the bulk behavior of fluids is
almost completely insensitive to the actual nature of the
physics at much shorter distance scales.

“Almost” because the the details of what we don't know
about the microscopic structures are encoded in the small
number of phenomenological parameters appearing in the
equation—e.g., the viscosity, elastic moduli, etc.
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Reduction, Limits, Continuum Models
oe

Generalized Conception of a Fixed Point

David Nelson (based on Wilson [10]) on Generalized Fixed Points:

“It turns out that not just critical points but entire phases of
matter are described by a ‘universal,’ coarse-grained,
long-wavelength theory. ... One can make similar statements
about the hydrodynamic laws derived for fluids in the nineteenth
century. “Upon systematically integrating out the high-frequency,
short-wavelength modes associated with atoms and molecules, one
should be able to arrive at, say, the Navier-Stokes equations.

... lgnorance about microscopic details is typically packaged into a
few phenomenological parameters characterizing the ‘fixed point,’
such as the density and viscosity of an incompressible fluid like
water in the case of the Navier-Stokes equations.”" [6, p. 3.]

@ The key is to understand properly what he means by
“systematically integrating out the short wavelength modes.”

Pirsa: 11100059 Page 47/82



Goal: Get numerical values for bulk parameters in terms of
“fundamental” scale properties.
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Goal: Get numerical values for bulk parameters in terms of
“fundamental” scale properties.

e REV: Identify bulk parameter values (such as density) with

the limiting average over a representative volume element, as
above.
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Goal: Get numerical values for bulk parameters in terms of
“fundamental” scale properties.

e REV: Identify bulk parameter values (such as density) with

the limiting average over a representative volume element, as

above.

@ This often fails completely.
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Consider a composite material consisting of a disconnected phase
and a connected phase in a 50-50 mixture. Suppose the red phase
is a conductor and the white phase is an insulator.

Figure: 50-50 Composites
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@ Despite having the same volume fraction, the effective bulk
behavior of the left system will be dramatically more
conductive than that of the right.

REV averaging treats only the volume fraction and thereby
misses ‘microstructural”’ detail that is relevant to bulk
behavior.

In this simple example, it is the connectedness of the one
region and the boundaries between phases, that carry
information about bulk behavior. In other, more complicated
cases, further microstructural features are important, e.g.,
surface areas of interfaces, shapes, spatial distributions of
phase domains, dislocations . ...
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Despite having the same volume fraction, the effective bulk
behavior of the left system will be dramatically more
conductive than that of the right.

REV averaging treats only the volume fraction and thereby
misses ‘microstructural”’ detail that is relevant to bulk
behavior.

In this simple example, it is the connectedness of the one
region and the boundaries between phases, that carry
information about bulk behavior. In other, more complicated
cases, further microstructural features are important, e.g.,
surface areas of interfaces, shapes, spatial distributions of
phase domains, dislocations . ...

Invaders from higher scales.
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Compare the picture of composites with a picture of a system near
criticality.

Figure: Connecting Scales: Bubbles within bubbles within bubbles
. [After Kadanoff, [4]]

Pirsa: 11100059 Page 54/82



For near critical systems, REV averaging is not going to work.
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Following Wilson “Critical Phenomena in 3.99 Dimensions” [10]:

@ RG allows one to go from a statistical theory to a
hydrodynamical theory:

@ In hydrodynamics (N-S) there is a density function p(x) that
is defined over a continuous variable x—no atomic structure.

@ For a statistical theory, say a set of spins, the order parameter
is a function M(x) that is the average magnetization in a
region surrounding x that contains many lattices sites or
atoms.
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Following Wilson “Critical Phenomena in 3.99 Dimensions” [10]:

@ RG allows one to go from a statistical theory to a
hydrodynamical theory:

In hydrodynamics (N-S) there is a density function p(x) that
is defined over a continuous variable x—no atomic structure.

For a statistical theory, say a set of spins, the order parameter
is a function M(x) that is the average magnetization in a
region surrounding x that contains many lattices sites or
atoms.

The diameter, L, of the region is intermediate between the

atomic spacing a and the correlation length &: a < L < &.
So, in effect M, is dependent upon the length L.
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@ Since M(x) is an average, unlike a density in a hydrodynamic
theory, one can take into account all fluctuations in M(x) for
A < L including those at the scale of the atomic spacing a.

However, because of the L-dependence of M(x), fluctuations

with lengths of order L or greater are ignored.

But those fluctuations are of great importance near criticality
where we have bubbles within bubbles within bubbles.

@ Witness the observable critical opalescence.
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Now one needs to include the contributions to the order parameter
for scales/wavelengths A > L. One does this piecewise:

@ Given the average M(x) for averaging size L we must
determine its value for L + oL.
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Now one needs to include the contributions to the order parameter
for scales/wavelengths A > L. One does this piecewise:

@ Given the average M(x) for averaging size L we must
determine its value for L + oL.

@ This requires examining a volume £9 > V > L9 (d, the

spatial dimension).
@ Divide M(x) in V into two parts:

M(x) = My(x) + mMy. (3)

My (a hydrodynamic part with wavelengths of order &); Mg
(a fluctuating part with wavelength between L and L + dL).
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By performing a single integral over m—the scale factor in
(3)—we get an interative expression for the free energy for the
averaging size L + oL, F; .51, in terms of the free energy for the

averaging size L:

e Filyse — / e F‘dm. (4)

X

Pirsa: 11100059 Page 61/82



Pirsa: 11100059

By performing a single integral over m—the scale factor in
(3)—we get an interative expression for the free energy for the
averaging size L + oL, F; .51, in terms of the free energy for the
averaging size L:
l\'.
e FLeoL — / e FLdm. (4)

C

One gets a step by step way to include all the fluctuations—all the

physics—that plays a role near criticality. One moves from a
statistical theory defined over finite N to a hydrodynamic theory of
the continuum behavior at criticality.
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By performing a single integral over m—the scale factor in
(3)—we get an interative expression for the free energy for the
averaging size L + oL, F; .51, in terms of the free energy for the
averaging size L:
IX.
e FLeoL — / e FLdm. (4)

C

One gets a step by step way to include all the fluctuations—all the

physics—that plays a role near criticality. One moves from a
statistical theory defined over finite N to a hydrodynamic theory of
the continuum behavior at criticality.

@ These infinitesimal steps enable one to derive a dynamical
equation (RG) that determines how a system (fluid, say)
behaves as it gets moved around in the abstract space of

possible systems.

@ We can get an explanation for the macroscopic universality of
distinct systems in terms of the appropriate critical exponent.
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Homogenization and Upscaling

A General Perspective

Another, related, way to think about the relations between models
at the nanoscale and those at the scale of millimeters.
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Homogenization and Upscaling

@ There are different ways one might try to “upscale” a
statistical /discrete theory to a continuum theory.

Q@ Standard averaging methods where one finds a Representative
Elementary Volume (REV).

@ Homogenization methods where one, in effect, lets the
microscale go to zero.

@ The RG account of universal critical behavior can be seen as
an instance of the second approach.

Pirsa: 11100059 Page 65/82



Homogenization and Upscaling
000000

Homogenization Methods

Consider a corporation that owns many many casinos. The CEO
needs to report to her board on expected profits for the
corporation. Her report will undoubtedly refer to a gaussian
distribution showing the probabilities of profits and losses with
standard deviations allowing for statistical predictions.
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Homogenization and Upscaling
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Homogenization Methods

Consider a corporation that owns many many casinos. The CEO
needs to report to her board on expected profits for the
corporation. Her report will undoubtedly refer to a gaussian
distribution showing the probabilities of profits and losses with
standard deviations allowing for statistical predictions.

@ Where does she get the mean and variance for the probability
distribution?
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Homogenization and Upscaling
#000000

Homogenization Methods

Consider a corporation that owns many many casinos. The CEO
needs to report to her board on expected profits for the
corporation. Her report will undoubtedly refer to a gaussian
distribution showing the probabilities of profits and losses with
standard deviations allowing for statistical predictions.

@ Where does she get the mean and variance for the probability
distribution?
e Should she look to individual games within all of the casinos?
e Should she look to individual casinos, or even to regional
groups of casinos (Vegas vs. Atlantic City)?
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Homogenization and Upscaling
(o] lelelele]e]

Homogenization Methods

Gaussian distribution
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She should look to large collections of casinos where there is
evident scaling and self-similarity:

@ Apparent scaling at large scales is an indication of
homogeneity.
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What is the argument that the parameters s and o are the
correct ones—why values for those parameters?

@ Essentially it is an RG argument showing that central limiting

behavior is universal. [2, 8]
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Homogenization Methods

What is the argument that the parameters s« and o2 are the
correct ones—why values for those parameters?

@ Essentially it is an RG argument showing that central limiting

behavior is universal. [2, 8]

@ The gaussian distribution is a fixed point for a wide class of
probability distributions under an RG transformation.
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@ One considers a system at two scales—a macroscale £ and a
microscale a.
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@ One considers a system at two scales—a macroscale £ and a
microscale a.

If a < £ then introduce a parameter ¢ = ¢ associated with

(

the fluctuations at the microscale of the heterogeneities—the

local structure.

In effect one looks at a family of functions parameterized by ¢,
u,, and searches for a limit v = lim, _,o u, that provides the
effective properties of the material at the macroscale.

Not a means for smoothing and averaging.
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Figure: Homogenization Limit. [K;-Different tensor quantities
characterizing the different phases, K.—effective tensor characterizing
homogeneous bulk property. After Torquato [9]]
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Figure: Homogenization Limit. [K;-Different tensor quantities
characterizing the different phases, K.—effective tensor characterizing
homogeneous bulk property. After Torquato [9]]
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Can one solve the problem of the tyranny of scales?

@ Yes, if one can bridge between the two dominant and
apparently incompatible modeling strategies.

| take it that the Renormalization Group can be understood as
a way of bridging between statistical atomic theories and
continuum hydrodynamic theories. It is an instance of the
general program of upscaling called homogenization theory—a
program that necessarily pays attention to structures that
exist at intermediate scales.
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one solve the problem of the tyranny of scales?

Yes, if one can bridge between the two dominant and
apparently incompatible modeling strategies.

| take it that the Renormalization Group can be understood as
a way of bridging between statistical atomic theories and
continuum hydrodynamic theories. It is an instance of the
general program of upscaling called homogenization theory—a
program that necessarily pays attention to structures that
exist at intermediate scales.

One seeks means for determining effective moduli
characterizing systems as universal in behavior at the
macroscale.
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Conclusions

@ In so doing the different recipes—Euler's and Cauchy’'s—have
been subject to a systematic and reasonably rigorous
mathematical connection.

@ It is hard to see how a fully reductionist picture, where only

lowest scale atomistic (# microstructural) features are
considered, will be able to yield the proper, empirically
determined, continuum parameters.

@ Different physics, at widely separated length scales,
contributes to the behavior of materials at the macrolevel.
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Rob Phillips in Crystals, Defects, and Microstructures [7]:

“Despite the power of the idea of a material parameter, it must be
greeted with caution. For many features of materials, certain ‘properties’
are not intrinsic. For example, both the yield strength and fracture
toughness of a material depend upon its internal constitution. That is,
the measured material response can depend upon microstructural
features such as the grain size, the porosity, etc. Depending upon the
extent to which the material has been subjected to prior working and
annealing, these properties can vary considerably. Even a seemingly
elementary property such as the density can depend significantly upon
that material’s life history. The significance of the types of observations
given above is the realization that many material properties depend
upon more that just the identity of the particular atomic constituents
that make up that material. ... [M]icrostructural features such as point
defects, dislocations, and grain boundaries can each alter the measured
macroscopic ‘properties’ of a material.”
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Thank You!
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