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Brownian motion
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope. This
motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liquid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can sce the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramaucally increased in order 10 make them visible).

P /iwrerm 21Ul e hoo! ML ILAnte TEs broemnun moten huml
Albert Einstein (1905) explained this dancing by many, many collisions with melecules in fluid
dpldt=....+ nfy)-pl
P=(p by pi) N= (M. Ny M) vl

N(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0 Different collisions are assumed to be
statistically independent

<N Nifs)> =rd(t5)d, v.2

The relaxation time, T, describes friction slowing down as the particles moves through the
medium. In contrast " describes the extra momentum picked up via the collisions. Both
represent the same physical effect. little particles hitting our big one. However, they operate in
a somewhat different fashion. The individual kicks point in evary which direction and only in
the long run produce any concerted change in momentum. On the other hand the term in Tis

a friction tending to continually push our particle toward smaller speeds relative to the
medium.

Pirsa: 11100035 Page 2/144



Pirsa: 11100035 Page 3/144




Pirsa: 11100035 Page 4/144




Pirsa: 11100035 Page 5/144




Pirsa: 11100035 Page 6/144




Pirsa: 11100035 Page 7/144




Pirsa: 11100035 Page 8/144




Pirsa: 11100035 Page 9/144




Pirsa: 11100035 Page 10/144




Pirsa: 11100035 Page 11/144




Pirsa: 11100035 Page 12/144




Pirsa: 11100035 Page 13/144




Pirsa: 11100035 Page 14/144




Pirsa: 11100035 Page 15/144




Pirsa: 11100035 Page 16/144




Pirsa: 11100035

Liouville's Theorem and conservation of phase space
volume

This theorem is the statement that volume elements in phase space are
conserved in the course of a motion. That's the consequence of the
vanishing dilation term. So if you start off with a probability distribution
function p(p.q,0) at time zero and that function is non-zero in some region of
phase space. of volume Q(0), after a time, p(p.q.t) will progress to occupy a
different region of phase space of volume Q(t). According to Liouville's
theorem the volumes of the regions before and after will be unchanged,
Q(t)= Q(0). Imagine that the probability density was constant within the

region you picked, i.e. p(p,q.0)=1/Q(0). Then, by the same argument to any
tiny subvolume of the original region would also have its volume preserved
under the transformation, and therefore the value of p(p.q.t) within the new
region would be the same as as the one within the old. Within the new
region, P(p.q.t)=1/Q(0).
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Liouville's Theorem and conservation of functions of
the energy

diplpaogt) 4 S-:hl,.. ), — (d,, H)a, I plpogt) =0

If p(p.q.0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z*exp[~ BH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence.  p(p.q.0)=f(H(p.q)) implies that p(p.q.)=f(H(p.q)) for any f.

Further.if p is any function of a time-independent H and of any other conserved functions of

p and g, with no explicit time-dependence, then p will be a solution of our equation.  Thus.

not only is the Maxwell- Boltzmann distribution function a solution describing the equilibrium
time-dependence of a Hamiltonian system, there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something clse is needed in addition

Give some examples of functions of H with and without explicit time-dependence.
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Liouville's Theorem and conservation of functions of
the energy

dplpog.t) 4 S—-"_HIJ,_H )y (g M), Ap(pogt) =0

If p(p.q.0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z 'exp[- BH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. p(p.q.0)=f(H(p.q)) implies that p(p.q.t)={(H(p.q)) for any f.

Further.if p is any function of a time-independent H and of any other conserved functions of

p and q, with no explicit time-dependence, then p will be a solution of our equation.  Thus.

not only is the Maxwell- Boltzmann distribution function a solution describing the equilibrium
time-dependence of a Hamiltonian system, there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical systern. Something else is needed in addition

Give some examples of functions of H with and without explicit time-dependence.
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Any function of H will do

To achieve equilibrium we can have the probability density be any function of the
Hamiltonian and the other conserved quantities in the system. The following functions
are in broad use. We assume one type of particle, with number N.

Canonical ensemble: p = exp(=BH)/Z(B) N is fixed

This is the right ensemble to use if a small system with a known
number of particles is weakly coupled to a larger system so that
it might exchange energy but not particles with the larger
system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. If you have a
system in motion, watch out for the momentum. If you have a
galaxy, watch out for angular momentum.

Microcanonical ensemble: p = §(E=H)/ X(E) N is fixed

This is the right ensemble to use if the energy and number of
particles in a small system are known. This is OK to use if there
are no other important conserved variables, beyond the ones

mentioned. However, small systems with fixed energy can often
have other hidden conserved things.
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Any function of H will do, continued

Grand Canonical ensemble: p = exp[=B(H-UN)I/Z(B.1)

This is the right ensemble to use if a small system is weakly coupled to a
larger system so that it might exchange energy and particles with the
larger system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. However watch out
for many different kinds of particles, each type has a conserved N.
Classical mechanics is provided with extra factors of 1/N! in p for each
different kind of particle. Particle statistics automatically does this in
quantum theory.

For large systems, and for most purposes, all these ensembles are equivalent to one
another. Why?

However, the canonical and grand canonical ensembles are particularly convenient. They
have the property that if the Hamiltonian is a sum of independent pieces, p, will describe

independent probabilities for these pieces. This result simplifies both thought and
calculations.

We still need a demonstration that the canonical ensemble is a good result for a small
system.
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Say it again

For the simplest case in which H=p#/(2M) + U(r), the result of Hamiltonian mechanics is
that the probability distribution p(p, r, t) has the time dependence

dp(pyr ) pMyVy plpyre) - (Ve UV, ppyre) 0

A time Independent solution of this equation would be that p could be any function
of F. This result stands in apparent contradiction to our knowledge of statistical
mechanics which tells us that the prabability distribution should be the Maxwell-
Bolzmann distribution, i.e. ane which is exponential in H. What additianal
infarmation should we bring to bear an this situation?

We already have a hint from the Brownian motion calculation that this calculation
might give the Maxwell-Baltzmann result. Let's go back to that and see what aquation
we get for p, The Einstein madel for Brownian motion is

dpldi=,....+ W(O=p/r

where ... might stand far additional terms coming fram Hamiltonian mechanics, |
plan to study successively the effect of the twa terms in this madel '
equation far pand then put it all together
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calculation of the effect of dp/dt=......+ n(t) contin_:.ted
rea
ppe+dt) = p(pr) = < p(p-dp.r) = p(p.x) > dp = / ds y(s)
]

The average (<...>) in this equation is over values of n(s) for s between t and t+dt. All other:
averaging is included in p(p.t).

Now expand in Bt. (the result i particularly simple bocause bp
Ot dy plpe) = <dp> dp p(pr)*+ <Bp> (ilp)?* p(pit)/2
The average of 8p is zero, and the rest gives

dy pp) = [ <Bp™>/(201) ] (7p)? p(pt)

The average has the value:

;i ol 1ot [t 1ot
[n'p]" = f du / ds < ylu)y(s) == / du [ ds U'o(u ~ x) = ot
{ 1 W1 Wi

recii e s o fhiey ) so that we end up with the result
dy p(p) =t (I72) (0p) g

This describes a diffusion i
(Notice that because it is d
Notice also that we had 1o
kicks because the second orde
lincar terms in O, )

cannot be followed backward in tme!
R In our calculation of the effect of the random
lincar in &t and we were holding on to all
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calculation of the effect of dp/dt=......+ n(t) continued
SR
plpetdy) = p(pr) = < p(p-dp) - plp.x) > op / s 1)

The average (<..) in this equation is over values of (s) for s between t and t+dt, All other
averaging is included in p(p.t).

Now expand in &t.

Ot iy p(p.t) = <Bp> iy p(p.)*+ <Bp?> (ilp)* p(pit)/2
The average of p is zero, and the rest gives

dy p(pe) = [ <dp?>/(201) ] (p)° p(pir)

The average has the value:

4Gl ot it ol f At
[t'ﬁpJ: / n’u/ s < nlu)y(s) = / rl'u/ ds U'o(u — s) = 'ot
o1 1 oI o1

so that we end up with the result
e P(pT) =t (I72) (9p) p(pi)

This describes a diffusion in momentum space.

{Notice that because it is diffusive, this result cannot be follow ol baeckward

tO £O (O SCCO

Notice also that we had t -alculation o

linear in &t and we were hold

kicks because the second order offect

linear terms in O, )
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calculation of the effect of dp/dt=......+ 1(t) continued
of 0t
plpetde) = ppr) = < p(p-dp.y) = plp.t) > op / s ()

The average (<...>) in this equation is over values of 1(s) for s between t and t+dt. All other
averaging is included in p(p.t).

Now expand in dt. -

Oty p(p.e) = <Bp> iy p(p.)*+ <Bp?> (i1p)* p(pit)/2
The average of p is zero, and the rest gives
dyp(pe) = [<Bp>/(201) ] (7p)* p(p.x)

The average has the value:

‘ 1ol SR ol ot
[n |7 = / du / ds < nlu)y(s) = / du / ds U'olu — &)
Ji it Jr Ji

_ so that we end up with the result
&) St (I72) (9p) p(par)

k describes a diffusion in momentum space.

otice that because it is diffusive. this result cannot be foll
iNotice also that we had to go to second
kicks because the second order

linear terms in O, )
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Effect of Brownian motion: toward a unique probability distribution

We put together our two different picces of the Brownian time derivative
equation and get:

e PpXD) =t (I72) (9)* p(oxt) + dp [€ (Tp £ ) PpAD)]

The ..'s refer to terms which might come from usual Hamiltonian mechanics. We shall
put them aside for a moment. An equation, like the one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation.

We look for a time-independent zero of this part of the equation to tell us about the
equilibrium behavior. Write p(p.x.t)=exp[-Q(p.x)+C] and find that zeroing this part gives

0 = ip {exp[-Q(P]L (T2)(-1pQ) + Tpe(pict) ] } v.12

which has a solution Q= ¢(p.rt) c. To get the right resusult pick ¢=1/(ka T) and pick
the other constant of integration so that exp(C)=1/z,

which then gives us the right normalization, with p = [exp(-E(p.rt)/(ka T))/z

stein’s calculation shows that, in order to get the Maxwell-Boltzmann equilibrium

It,as a unique result. we have to go beyond Hamiltonian mechanics and include some
jastic behavior. This is a surprise.
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Effect of Brownian motion; toward a unique probability distribution

We put together our two different picces of the Brownian time derivative
equation and get:

dy p(pxt) =t (I72) (dp)* ppxt) + dp [c (Ipg) p(pxt)]

The ...'s refer to terms which might come from usual Hamiltonian mechanics. We shall

put them aside for a moment. An equation, like the one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation.

We look for a time-independent zero of this part of the equation to tell us about the
equilibrium behavior. Write p(p.x.t)=exp[-Q(p.x)*C] and find that zeroing this part gives

0 = dp {exp[-Q(pX)][ ([72)(-0pQ) + dpt(pit) €] } v.12

which has a solution Q= ¢(p,r2) c. To get the right resusult pick ¢=1/(ks T) and pick
the other constant of integration so that exp(C)=1/z,

which then gives us the right normalization, with p = [exp(-E(p.rt)/(ka T))/z

Einstein's calculation shows that. in order to get the Maxwell-Boltzmann equilibrium

result,as a unique result. we have to go beyond Hamiltonian mechanics and include some
stochastic behavior. This is a surprise.
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Effect of Brownian motion: toward a unique probability distribution

We put together our two different picces of the Brownian time derivative
equation and get:

iy ppxt) =t (I72) () plpxt) + dp [c (pg) ppxt)]

The ...'s refer to terms which might come from usual Hamiltonian mechanics. We shall

put them aside for a moment. An equation, like the one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation,

We look for a time-independent zero of this part of the equation to tell us about the
equilibrium behavior. Write p(p.x,t)=exp[-Q(p.x)*+C] and find that zeroing this part gives

0= dp {exp[-Q(pPX)][ (/2)(-pQ) + dpe(p.rt) €] } v.12

which has a solution Q= ¢(p,nt) ¢. To get the right resusult pick ¢=1/(ka T) and pick
the other constant of integration so that exp(C)=1/z,

which then gives us the right normalization, with p = [ exp(-E(p.rt)/(ka T)]/z

Einstein's calculation shows that, in order to get the Maxwell-Boltzmann equilibrium

result,as a unique result. we have to go beyond Hamiltonian mechanics and include some
stochastic behavior. This is a surprise.
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Summary of Einstein's dynamics

Our fullest time-dependent equation, including both Brownian motion and Hamiltonian
mechanics is

at D(P,r.l) + (vp E{Plrrr}) Ve p(p,r.t) - (Ve E(p,nit) * vP p(p,nt) v.13a
= (I72) (Vp): p(psrt) + Vp* [c(Vp & )p(p,nit)]

AL DL Fokker, Die mistlere Encreie ratierender elehtrosehier Dipode s Steadilsssfeld. Anm, Plivs, 3%
(144 M, Planck, Siz ber, Prenti. Abad 1191

Equation v.13a works equally well if we use as our basic variable the density of
particles in phase space, f(p,rt) =Np(p,r.t). We then have
0. fipsrit) + Vp €(p,00 Ve fip,1it) = Ve £(p,00) « Vi fpyrt)

v.13b
= (/2) (Vp)* f(psrit) + Vp - [c(Vp g) f(p,r0)]

This all looks very pretty. Itis quite general, including Newtonian gravity.
electrodynamics, and relativity in the possibilities of £ .
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Summary of Einstein's dynamics

Our fullest time-dependent equation, including both Brownian motion and Hamiltonian
mechanics is

0c p(psrt) + (Vo E(p,150)* Ve p(py1it) = (Ve €(py151) * Vi PP, v.13a
= (I72) (Vo) ppsrt) + Vp - [c (Vp g )p(psrit)]

AL D Bokker, Iie mittlere Energie vaticrender elebsviseier Dipede i Stealdungsteld. Ann. I'hvs
uld M Planck, Sitz ber, Prenfi. Mad (1917

Equation v.13a works equally well if we use as our basic variable the density of
particles in phase space, f(p,rt) =Np(p,r.t). We then have

O f(psrit) + Vp €(p,00 Ve fip,1it) = Ve €(py10) * Vo fip,r.t)
= (72) (Vp)* f(psrit) + Vp -« [c (Vp g ) f(p,rt)]

This all looks very pretty. It is quite general, including Newtonian gr
electrodynamics, and relativity in the possibilities of € .
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Summary of Einstein's dynamics

Our fullest time-dependent equation, including both Brownian motion and Hamiltonian
mechanics is

0: P(psrt) + (Vp E(p,10)* Ve p(D,1t) = (Ve E(py1st) * Vo p(Py1Y) v.13a
= (I72) (Vo) p(psrt) + Vp -« [c (Vp £ )p(pyrit)]

p - y )
A Bobker, Iie muttlere Encree votierender elebtrise ier Dipode s Stealilumesteld, Anm, FFlivs, 8% 63, Folee 33 X10-X20

R ET M. ek, Sutz Do, Prenfd,. Adad 11917

Equation v.13a works equally well if we use as our basic variable the density of
particles in phase space, f(p,r.t) =Np(p,r.t). We then have
0 fipsrt) + Vp €(p,00) - Ve fip,rt) - Ve &(psnt) * Vo fip,r)

v.13b
= ([72) (Vo) f(pyrit) + Vo« [c (Vp g ) f(pyrt)]

This all looks very pretty. Itis quite general, including Newtonian gravity,
clectrodynamics, and relativity in the possibilities of £ .
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Summary of Einstein's dynamics
Our fullest time-dependent equation, including both Brownian motion and Hamiltonian
mechanics is
0 p(psrt) *+ (Vo E(py130) - Ve p(Py11) = (Ve E(py130) Vi P(PS1Y) v.13a
= (I72) (Vo) p(psrit) + Vp* [c(Vp £ )p(psrit)]

AL Bokker, Die mittlere Encrgie voticrender elekseiseier Dipesde i Steadilmnosteld i PPhivs, MK G Folee 43

SUIET ML PMancd, Sutz ber, Prewlt. Abad 11917

Equation v.13a works equally well if we use as our basic variable the density of
particles in phase space, f(p,rt) =Np(p,r.t). We then have

al ﬂpu"-t) + VP EfPsf"!J ‘Vrf(Pnf-I) -V, £(Prrl” % vp !'{P,r'.t)

3 : v.13b
= ([72) (Vp)* f(porit) + Vo« [c(Vp ) f(p,rt)]

This all looks very pretty. Itis quite general, including Newtonian gravity,
clectrodynamics, and relativity in the possibilities of £ .
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The Boltzmann Equation
Long before Einstein's work, Boltzmann had derived the Maxwell-Boltzmann
distribution by using a more brute force approach than the one applied by
Einstein. Like Einstein, Boltzmann looked at collisions of particles mostly
described as moving independently. Therefore these particles could be well-
characterized by the free particle Hamiltonian, p2/(2m) +U(r) . In addition,
however, Boltzmann imagined that these particles would, occasionally, come
close to one another and collide, thereby substantially changing their
momentum. So he started from an equation describing first the free particle
motion, and then included the effect of collisions. The basic variable in this
approach was f(p,r.t), which would then obey an equation of the form

Oc fipsrit) + (plm) - Ve f(p,rit) = Ve U(nt) * Ve fip,r.t) = effects of collisions

The collisional effects are best shown in a pair of pictures. The number of particles
described by (p,r) will diminish because particles with momentum P scatter against

particles with momentum q, producing particles with respective momentum p " and

and q°. That scattering looks like .
p P

parucles scatter out of p.
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The Boltzmann Equation

Long before Einstein's work, Boltzmann had derived the Maxwell-Boltzmann
distribution by using a more brute force approach than the one applied by
Einstein, Like Einstein, Boltzmann looked at collisions of particles mostly
described as moving independently. Therefore these particles could be well-
characterized by the free particle Hamiltonian, p2/(2m) +U(r) . In addition,
however, Boltzmann imagined that these particles would, occasionally, come
close to one another and collide, thereby substantially changing their
momentum. So he started from an equation describing first the free particle
motion, and then included the cffect of collisions. The basic variable in this
approach was f(p,r.t). which would then obey an equation of the form

O« flp,r.t) + (p/m)- V. f(psrt) = Ve U(nt) - Vu f(p,rit) = effects of collisions

The collisional effects are best shown in a pair of pictures. The number of particles
described by (p,r) will diminish because particles with momentum P scatter against

particles with momentum q. producing particles with respective momentum P and
and q". That scattering looks like

P

parucles scatter out of p,
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Pirsa: 11100035

(4]
P
The scattering:
q
q

particles scatter out of p,
Given that there are particles available with the appropriate initial momentum, the sc1tter|ng rate
into a volume element of final momentum dp” dq” can be writtenas dp” dq” Q(p,q * P9’ )
The probability that we could get the particles we need for the scattering produce a hctor

fip,r.t) dq f(q,r.t), so that the total scattering rate for this process is
fesr) [dq figure) dp” da” Q(pyq *p5a’)

The process reduces the number described by p,r.

In 'lddltlon there is an inverse process, and a corresponding rate of increase of fip,r.0):

M i e

_f dq dp’ fip’,rt) 49" (g rt) Q(PHT" *pq)
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