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Brownian motion: ' ;
Robert Brown (1773-1858) saw particles of pollen “dance around" in fluid under microscope. This

motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liquid. They were oo small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can sce the molecules of liquid hitting the bigger particle
in the amimation on the left. (The size of the molecules has been
dramaucally increased in order to make them visible).

bty Jiwwwowatiltyichool nevitente fles brownan/moton huml

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dpldt=....+ n(t)-ph
P=(pu Py, p2) N= (N« Ny N vl

N(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since

the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<n(t) Nfs)> =Md(t-5)5,: v.2

The relaxation time, 7, describes friction slowing down as the particles moves through the
medium. In contrast " describes the extra momentum picked up via the collisions, Both
represent the same physical effect. little particles hitting our big one. However, they operate in
a somewhat different fashion. The individual kicks point in every which direction and only in
the long run produce any concerted change in momentum. On the other hand the term in t is

a friction tending to continually push our particle toward smaller speeds relative to the
medium.
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Brownian motion: ! '
Robert Brown (1773-1858) saw particles of pollen “dance around" in fluid under microscope. This

motion was caused by many tiny particles hitting the grains of pollen.

F o ®% 1| The many moving tiny particles arc of course molecules of the
Q‘rmm i L 3 b ) ~ . p ;
. & e 5| liquid. They were oo small to see under a microscope when
- o e | . . “ ; .
28,900 o, | Brownian motion was discovered, but it was obvious they were
Nl * 2 'l there. You can sce the molecules of liquid hitting the bigger particle
- e

in the animation on the left. (The size of the molecules has been
dramaucally increased in order 1o make them visible).
http liwww warnilenthool nevitente Tieatrownun' moven him!

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dpldt=....+ n(t)-pl

P=(Pe.py. p2) N= (N« Ny N2) v.1

N(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<n,(t) Nu(s)> =Md(t-s)ds v.2

gation time, 7, describes friction slowing down as the particles moves through the
ontrast " describes the extra momentum picked up via the collisions. Both
me physical effect, little particles hitting our big one. Howaever, they operate in
nt fashion. The individual kicks point in every which direction and only in
any concerted change in momentum. On the other hand the term in T is
ptinually push our particle toward smaller speeds relative to the
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Calculate momentum from dp/di=....+ y(t)-p/t
We have previously calculated the solution to this kind of Langevin equation
tor position. Now we do it for momentum
) ! !f
Solution to equation v.1: )= / dt’ (") exp( ), v.3
Because P(t) is a sum of many random variables, according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M being the mass of the Brownian particle. In
equilibrium it will have the Maxwell-Boltzmann probability distribution

3
p(p) = (5=

-_...'\;')“"NPI Ap*/(201)]

Notice that if this works out for us, it will be our first “proof" that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.
So we would have a proof that this “law" works, at least in this situation.
Previously, we used this result without having any evidence that it was correct.

In phys & often use laws long before there s Ny substantial proof that they
are cg e little bits of evidence, intuition. and gucssworlk ar 1dually
cony at idea X "must be” right. If X is attractive, we he n to
that § overwhelming evidence to the contrary

Pirsa: 11100034 Page 32/88



Pirsa: 11100034

Calculate Average

< p,(O)pp(s) >= 'l" du _]" de < (g (e) > exp[-(t-uts-v)/T]

< p,(t)p,(s) >= f' duf dvro, o(u-v)exp[-(t-u)/ v -(s-v)/ 7] &

if t> s the integral over v always gets a contribution from the delta-function integral in u so
that this expression then becomes

<P,(t)p(s) >= [ dv s, exp[~(t+s-2v)/ 7]

g
= ‘g‘ Frexp(-lt-sl/t] v.5

so we see that p/(2M), where M is the mass of the Brownian particle, is on one hand given by
2

< P, >= ['t / (4M)
2M

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain the
relation between the two parameters in the Einstein model.

I't = 2MkT
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Calculate momentum from dp/di=.....+ n(t)-p/t
We have previously calculated the solution to this kind of Langevin equation
for position. Now we do it for momentum

! ! I.l'
Solution to equation v.1: P(t) = [ diE (Y cxp(s—==) v.3
. & 4

Because P(t) is a sum of many random variables, according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M being the mass of the Brownian particle. In
equilibrium it will have the Maxwell-Boltzmann probability distribution

2 e Ap*/(21)

0]
.(t(p) s (;): \ll

Notice that if this works out for us. it will be our first “proof" that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.
So we would have a proof that this “law" works, at least in this situation.
Previously, we used this result without having any evidence that it was correct.

In physics. we often use laws long before there is any sul roof that they
are correct. We use little bits of evidence. intuition. and o
convince oursclves that idea X “must be' rigcht. If X is

that view until there is overwhelming evidence to the
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Probability distribution
't = 2MkT

Whenever this relation is satisfied, p has the right variance, MKkT, and the correct Maxwell-
Boltzmann probability distribution.

.'Jt'x]){ .1;32/’(3.\)')2 v.7

o LR
) ) . - -
¢(p) (‘...':.U)
EinStom.A.(IQOS)."‘-’:\-r 10 vOon Qer n CKularaneuscne e dor YWar Neau
fuhenden Blussigkeiten suspendienien Teilenen ™, Annalen der Physik 17: 549-560, He actually used a more
thermodynamic argument.

f ol ] R
Mo QeIorGerri oy

I'he g von in

More generally, if we have a Hamiltonian, £(p,r), for the one-particle system, the
Maxwell-Boltzmann distribution takes the form

p(p,r)=exp[-[ &(p,n)]/Z.

where, the the simplest case the Hamiltonian is

&(p,r) = pl(2M) +U(r) but relativity or electrodynamics can change this expression

Maxwell and Boltzmann expected that, in appropriate circumstances, if they waited
long enough, a Hamiltonian system would get to equilibrium and they would end up
with a Maxwell-Boltzmann probability distribution

Question: Should we not be able to derive this distribution from classical mechanic
alone? Maybe we should have to assume that we must long enough to reach
equilibrium?

Something of the form v.7 is called by mathematicians a Git
Boltzmann distribution or often a Maxwell-Boltzmant
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Statistical and Hamiltonian Dynamics

We have that the equilibrium p=exp(=H)/Z. How can this arise from time dependence of
system? One very important possible time-dependence is given by Hamiltonian mechanics

dge. _ IH
dii ;:)[.J.,.
A I
Wi O,
The simplest case is a particle moving in a potential field with a Hamiltonian

H=p7/(2\]) + U(r) and consequently equations of motion

l
‘._I)- — T( f

The statistical mechanics of such situ Dy a probability density function
p(P,r.t) such that the probability of icle in a volume clement dp dr
about p,r at time tis p(p.r.t) dp d stion is, what is the time-
dependence of this probability density? w do we get equilibrium
statistical mechanics as a consequence
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Time Dependence of Dynamical systems:

A much more general problem

Instead of carrying around the variables p and q. let me do something with much simpler
formulas. I'm going to imagine solving the dynamical systems problem in which there is a
differential equation

dXuldt=Vi(X(1).0)

to get a solution X(z). Note that X(¢) is the solution vector while Xi(t) is one component of
that vector. On the other hand X is simply a vector of numbers haveing the same number
of components as X(t). | will made extensive use of a probability function p(x,t) dx which
is the probability that the solution will be in the interval dx= Iy dx. about x.

This p(x.¢) is a probability distribution because, when we start out, the initial data is not just
one value of x but a probability distribution, given by p(x,0). So the situation at a later time
must be described by a probability distribution then as well. So what is the time
dependence of the probability distribution? One way to approach this problem is to ask
what does the distribution mean. Specifically. if we have some function g(X) of the particle
coordinates at time ¢, that function has an average at time ¢ given by

Idx g(%) px.t). A formula that agrees with this definition is to take

pxy=< [ 8(eXu(t) >=<80eX())>
where the <... > is an average over the probability distribution for X(t). This definition

looks like.and is.a tautology but it works.  In particular it obeys that condition that p
must always be positive and most always obey the completeness relation

1=J.dx pXy= < JTL dxi O (xx - Xi()) > =1 good!

Page 47/88



Pirsa: 11100034 Page 48/88




Pirsa: 11100034

Time Dependence of Dynamical systems:

A much more general problem

Instead of carrying around the variables p and q. let me do something with much simpler
formulas. I'm going to imagine solving the dynamical systems problem in which there is a
differential equation

dXulde=Vi(X(1).)

to get a solution X(t). Note that X{t) is the solution vector while Xi(t) is one component of
that vector. On the other hand X is simply a vector of numbers haveing the same number
of components as X(t). | will made extensive use of a probability function p(x.t) dx which
is the probability that the solution will be in the interval dx= Iy dxs about x.

This p(x.) is a probability distribution because, when we start out, the initial data is not just
one value of x but a probability distribution, given by p(x,0). So the situation at a later time
must be described by a probability distribution then as well. So what is the time
dependence of the probability ibution? One way to approach this problem is to ask
what does the distribution me ifically. if we have some function g(X) of the particle
coordinates at time ¢, that functi average at time t given by

_rdx g(x) p(x.t). A formula that agrees N definition is to take
pxy=< M. O(xiXi(t)) >=<d(x-X(1))>

where the <... > is an average over the pro for X(t). This definition

looks like. and is, a tautology but it works. ys that condition that p
must always be positive and most always obey t relation

1= [ dx pey= < [ T duS0a- Xu0) > =1
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Time Dependence of p(x,t)

To calculate the time-dependence, differentiate p(x.t) with respect to time,

holding the coordinate vector, X, fixed. Since p(x,t)=< I'L O(x=Xi(t)) >, we can
use the usual rules for differentiation to find

dp(xy=< &, [98(erX() 1M s Sxe-Xift)) >
==< Z, 0 X/(t) 0., nk (xe=Xi(1))>

The time derivative of X|(t) is V,(X(t).t). Thus we obtain
-<Z, 2, V(X0 T 8(xex)>

with the derivative on the left, | can replace the X inV by x
dip(x.t) + Z, 0x, Vi(x.1) <, O(xi-Xi(t))> =0 or more compactly

Op(x.Y) + Z, dx [ Vi(x.1) p(x.)] =0 or more compactly yet
O + V- [ Vp] =0

This result is of the form of a local conservation law with the jth. component of
the probability current being the velocity, V., times the probability, p.

Notice how the spatial gradient appears on the far left in the local conserva
law. This placement guarantees that the probability density will have a time-
independent integral. Why?

Page 50/88



Pirsa: 11100034 Page 51/88




Pirsa: 11100034 Page 52/88




Pirsa: 11100034 Page 53/88




Pirsa: 11100034 Page 54/88




Pirsa: 11100034 Page 55/88




Pirsa: 11100034 Page 56/88




Pirsa: 11100034 Page 57/88




Pirsa: 11100034

Time Dependence of p(x,t)

To calculate the time-dependence, differentiate p(x,t) with respect to time,

holding the coordinate vector, x, fixed. Since p(x.t)=< I'Ik O(x=-Xx(t)) > we can
use the usual rules for differentiation to find

dp(x.Y)=< Z, [0D(xX (1) ]I-Ik.,a(xk-ka) >
==< &, 3 X(1) 3, [T d(xeXu(t)>
The time derivative of X|(t) is V,(X(t).t). Thus we obtain
-<Z, 0, V(X(0.9 Tl 8(xu()>
with the derivative on the left, | can replace the X inV by x
Op(x.) + Z_. 0x, Vi(x.1) '=|-|-.t d(x-Xi(t))> =0 or more compactly

Op(x.y) + Z, dx [ Vi(x.t) p(x.)] =0 or more compactly yet
Op + R [ Vp] =0

8
This restfe®\of the form of a local co o0 law with the jth. component of
the probabiify:¢
“

Notice how the spatia ftin the local conservation
law. This placement guarant ensity will have a time-
independent integral. Why?
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Calculation Continued

When we expand out the derivative, our conservation law reads

yplaet) + p(.r'.!]Z(H, V)4 Z Vide plael) =0 v.9
I !

The last term on the left in eq.v9 is the direct result of the rate of change of each variable
X(t). That rate is simply V.

The second term on the left is more subtle. We call this result the dilation term. It
describes the change in the size of the volume element, dx, produced by the changes
caused by the time development. As the coordinate change, the volume element can shrink

or expand and this change has to be reflected in d:pyn order to keep the normalization
Jdx p =1.

Now we have the general result for the time developmeny

probability density,. We
next look at the Hamiltonian case, which is rather special
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Calculation concluded

dplet) + plat) D (D0, V) + D Ve, plarit) = 0
J ]

The Hamiltonian case is special. There are two kinds of coordinates
X=qewithVi=d, H and x=p. withV, = =dq,. H. In that case, the
dilation term is

(dq. dp, H -dy, dq.H)p which, of course, vanishes

This result, called Liouville's theorem, says that the size of the volume element
is independent of time. As a result the the probability density obeys a special
equation, with no dilation.

dplpoq.t) 4 Z:(H,,__ H)y, = (O H )., :;t[p. (Fed )= A v.10
Compare this to the result for a function of P and Q

R = 5 (@, H) @, X) — (Do, H) (2. X))

why is there a difference in notation (p.q) versus (PQ)-
why is there a difference in sign?
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Poisson Bracket
The Poisson Bracket is Defined by

= Z [,f’_)f RITERNOYROT ]

e, Apy, e, Ape,

i

It then follows immediately that the probability density obeys di 1 = | H.p |

Also, for any, X(p.q). that is a function of p's and g's, with no explicit time-
dependence, the time-dependence of X is given by
dXIdt={X H}

These Poisson brackets are rather like the commutators of quantum mechanics. For example
they satisfy the identities

{fg} = -{af

Leibnitz rule {fg.h}= f{g.h}+ {fh}g

and also Bianchi identity  {{fg}.h}+ {{h.fl.g}*+ {{g.h}.f}=0.

The same relations are true for operators in quantum theory with { and } replaced by

[and ]. Why are these relations important?

The bracket relations for classical time-dependence are very much like the time-dependence
of operators and density matrices in quantum theory, and also of Lie derivatives. This
relation between quantum mechanics and the canonical version of classical mechanics is quite
surprising and turns out to be quite deep.
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Why are brackets important

Brackets can be used to describe symmetries. For example the total
momentum, P acts as the translation operator within the brackets
{P.X(PQ)} = Z; (d/dx) X(PQ)

Similarly the center of mass coordinate is a displacement operator for
the momentumn. Similarly the angular momentum operators serve to
rotate the coordinates and the momenta. Similarly the Hamiltonian

serves as a time translation operator
We have

{PL} = -{L.P} Operations of symmetries upon one another is as in
quantum theory. e.g. {P2,L3}=0, (px y - by X) ~ p«

Leibnitz rule {HXY}={H.X}Y +X {H.Y } XY is a product. His a
symmetry operation. H acts like a derivative operator. We can talk
about symmetry operations applied to products

and also Bianchi identity  {{X.YLH}+ {{H.X},Y}+ {Y.H}.X}=0.
H also acts like a derivative when applied to a bracket therefore we can

talk about symmetry operations applied to brackets, ¢.g other symmtry
operations.

These identities mean we have a complete algebra of symmetries.
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Poisson Bracket
The Poisson Bracket is Defined by

gy =>" [-“-f i “f]

g e, e, dp,

It then follows immediately that the probability density obeys dip = H.p|

Also, for any, X(p.q). that is a function of p's and q's, with no explicit time-
dependence, the time-dependence of X is given by
dX/de={X,H}

These Poisson brackets are rather like the commutators of quantum mechanics. For example
they satisfy the identities

gt = -{ef

Leibnitz rule {fg.h}= f{g.h}+ {fh}g

and also Bianchi identity  {{fg}.h}+ {{h.fl.g}* {{g.h}.f}=0.

The same relations are true for operators in quantum theory with { and } replaced by

[and ]. Why are these relations important?

The bracket relations for classical time-dependence are very much like the time-dependence
of operators and density matrices in quantum theory, and also of Lie derivatives. This
relation between quantum mechanics and the canonical version of classical me

chanics is quite
surprising and turns out to be quite deep.
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Liouville’s Theorem and conservation of functions of
the energy

Dp(pe g )+ D[y H)dy, — (D 1), ) p(peget) = 0

If p(p.q.0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z'exp[- BH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. p(p.q.0)=f(H(p.q)) implies that p(p.q.t)=f(H(p.q)) for any f.

Further. if p is any function of a time-independent H and of any other conserved functions of

p and g, with no explicit time-dependence, then p will be a solution of our equation. Thus,

not only is the Maxwell- Boltzmann distribution function a solution describing the equilibrium
time-dependence of a Hamiltonian system, there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something else is needed in addition.

Give some examples of functions of H with and without explicit ume-dependence.
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