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Abstract: I'll discuss how to systematically construct a (d+2)-dimensional solution of the vacuum Einstein equations that is dua to a
(d+1)-dimensiona fluid satisfying the incompressible Navier-Stokes equations with specific higher-derivative corrections. The solution takes the
form of a non-relativistic gradient expansion that is in direct correspondence with the hydrodynamic expansion of the dual fluid. The dual fluid has
nevertheless an underlying description in terms of relativistic hydrodynamics, with the unusual property of having a vanishing equilibrium energy
density. Using the gravitational results, as well as an interesting and exact constraint on its stress tensor, we identify the transport coefficients of the
dual fluid. A simple Lagrangian model is sufficient to realise its key properties.
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H(f)l(f);_‘\hl[)h\f

There is a general expectation, based on black hole physics, that any gravitational
theory should be holographic, i.e., it should admit a dual description in terms of
a non-gravitational quantum theory in one dimension less.

~ If gravitational theories are indeed holographic, one should be able to
recover generic features of quantum theories through gravitational

computations.
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Hvdrodynamics

= One such generic feature is the existence of a hydrodynamic description
capturing the long-wavelength behaviour near to thermal equilibrium.

= One then expects to find the same feature on the gravitational side, i.e.,
there should exist a bulk solution corresponding to the thermal state, and
nearby solutions corresponding to the hydrodynamic regime.
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In AdS/CFT

These expectations are beautifully realised in AdS/CFT:

Thermal state <  AdS black hole

Relativistic hydrodynamics <«  Relativistic gradient expansion
solution of bulk

~ Solutions describing non-equilibrium configurations are well approximated
by hydrodynamics at late times.

e.g., [Witten (1998)], [Policastro, Son & Starinets (2001)], [Janik & Peschanski
(2005)], [Bhattacharyya, Hubeny, Minwalla & Rangamani (2007)], [Chesler & Yaffe
(2010))..
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For vacuum Einstein gravity

For the case of vacuum Einstein gravity, we will see that:

Thermal state <  Rindler space
Incompressible Navier-Stokes < Non-relativistic gradient expansion
+ corrections solution of bulk

One may then use the properties of these solutions in order to obtain clues to

the nature of the dual theory.

Pirsa: 11090134 Page 6/70



[ )

an

© Equilibrium configurations

® From equilibrium configurations to hydrodynamics
® Solving for the bulk geometry

© The underlying relativistic fluid

©® A model for the dual fluid

® Conclusions and open questions
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Rindler spacetime

Let's start with flat space written in ingoing Rindler coordinates:

]

)
ds® = —rd7T” + 2d7dr 4+ dr;dx

]

i.e. Minkowski space ds* = —dT* + dX*
parametrised by timelike hyperbolae
X*—T% = 4r and ingoing null geodesics

)

N+T =e"/7,

Consider now the portion of spacetime bounded
by the surface Y. defined by r = r. and the
future horizon ‘H™.
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Rindler spacetime

Let's start with flat space written in ingoing Rindler coordinates:

)

)
ds® = —rdr” + 2d7dr + doda

]

i.e. Minkowski space ds* = —dT* + dX*
parametrised by timelike hyperbolae
X*—T7% = 4r and ingoing null geodesics

)

X+T =e"/°,

Consider now the portion of spacetime bounded
by the surface X, defined by r = r. and the

future horizon ‘H™.
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Equilibrium configurations

We can now generate general equilibrium configurations with arbitrary constant
p and u” by acting with diffeomorphisms.

We require that:

© The induced metric on Y. is preserved.
® The Brown-York stress tensor on X. remains that of a perfect fluid.

® The bulk metric remains stationary w.r.t. ¢, and homogeneous in the z'

directions.

One can prove that only two infinitesimal diffeomorphisms exist with all these
properties.
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Equilibrium configurations

Exponentiating, the corresponding finite diffeomorphisms are:

~ A constant boost

-

where v = (1 — 3%)7"/“ and f3; = v;//T¢.

~ A constant linear shift of r and re-scaling of T,
—-1/2

r— 7T —Th. T = (1l —=7rn/Te) T.

This second transformation shifts the position of the horizon to r = r;, re.
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Equilibrium configurations

Applying these two transformations, the resulting metric is

2 F [ r 2 \ 1 ( b
ds® = —_"HH,,!]J"#!I' +1Tab— P I — ,v',._}u(,r.r,u,_(l_.r"(l_f' )
Clearly, the induced metric on Y. is still v.5. Moreover, the Brown-York stress
tensor is that of a perfect fluid with
| p |
p =10, P = —, U :.7_‘(1.!',1.
VIie—Th VIie—U*

This solution therefore indeed describes an arbitrary equilibrium configuration

with constant p and v;. Note however the energy density is still zero.

We can also analyse the thermodynamics. The Rindler horizon is a Killing
. . ] - . .
horizon, and normalising £ = —1 on Y., the Unruh temperature satisfies

sT" = p where the entropy density s = 1/4G
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Equilibrium configurations

Applying these two transformations, the resulting metric is

’ [ 2 \ 1 b
ds® = —_’,n.r”']_r“tl;' + [Yab — P (T — Tc)Ua Up dae“da”.

Clearly, the induced metric on Y. is still v.5. Moreover, the Brown-York stress
tensor is that of a perfect fluid with

|
!J:U, pP = —, i :,j_‘(l.f';].

VTe —Th Ve — U
This solution therefore indeed describes an arbitrary equilibrium configuration

with constant p and v;. Note however the energy density is still zero.

We can also analyse the thermodynamics. The Rindler horizon is a Killing
. P ] - . .
horizon, and normalising £ = —1 on Y., the Unruh temperature satisfies

sT" = p where the entropy density s = 1/4G

Pirsa: 11090134 Page 16/70



[ )

an

© Equilibrium configurations

® From equilibrium configurations to hydrodynamics

® Solving for the bulk geometry
© The underlying relativistic fluid
©® A model for the dual fluid

® Conclusions and open questions

Pirsa: 11090134 Page 17/70



From equilibrium configurations to hydrodynamics

Having found equilibrium solutions with constant p and v;, let’s now allow

these variables to slowly vary:

) I

v; = ev;le”T.ed). P —

l

AK r,

L
Ple“T.el). c K 1.

]
-

‘)

Expanding in ¢, we find

ds® = —rdr® + 2d7dr + dz,;dz’

‘ r 1 “')f" [
—-2(1—- — ) v;dz’dr — dz'dr
r. e

' r o y ViU ] ‘v 2P 3
- (1 — —) [[f" + 2P)dr~ + dz'da’ | + (— + — ) drdr + O(e?),

r, J e r.

~ Satisfies I, = O(¢”) if we impose incompressibility, d;v" = O(¢?).

{ \ (3) . . . .
~ To solve to O(¢*), however, we need a new term g, containing derivatives

of vi. Such a term can't be found by expanding the equilibrium solution.
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From equilibrium configurations to hydrodynamics

Having found equilibrium solutions with constant p and v;, let’s now allow

these variables to slowly vary:

) I

v; — ev;le”T.ed). P —

l

AKX r

L
P(e“T. eX), c < 1.

]
-

‘)

Expanding in ¢, we find

ds? = —rdr? + 2d7dr + dz,;dz’

. r i 2f'r i
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)

r o | Vivj ] ve  2F 3
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From equilibrium configurations to hydrodynamics
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From Navier-Stokes to Einstein

Through independent considerations, Bredberg, Keeler, Lysov & Strominger
[arXiv:1101.2451] proposed the metric:

] )
ds® = —rd7T* + 2d7dr + da;da’

r 2v
- ( | — —) vida'dr — “datdr
. Fe | I,
)

r [ 5 , ;v v- 2P
+(l——) (v° +2P)d7r° + = "I.r-’.lr’}—(———).lr:]r
r, L r. r. r.

) )
(r= —r7) ) 1
—_ L 0%vda’dT + O(€)

This satisfies K, = O(e Y provided I’ and v; obey the incompressible
Navier-Stokes equations to O(e*)!

Pirsa: 11090134 Page 23/70



Incompressible Navier-Stokes

The incompressible Navier-Stokes equations read
‘ 7 4 Py ‘ y
drVi + V00 — noT v + &P =0. oiv = U,
and have the interesting non-relativistic scaling symmetry
‘ - ) 2/, 2 -
V; — €V;€°T,€x), P — ¢“P(e“T, €X).

Starting from relativistic fluid mechanics, one may recover the incompressible
Navier-Stokes equations, along with specific higher-derivative corrections, by
taking the hydrodynamic limit ¢ — 0.

~ The incompressible Navier-Stokes equations capture the universal
long-wavelength behaviour of essentially any fluid.

~ Higher-derivative corrections are naturally organised according to their
scaling with «.
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Solving to all orders

We can now construct the bulk metric to all orders using the gradient expansion

L ]
. ~ 1. J; ~ €, Oy ~ €

corresponding to the hydrodynamic limit.

T

» To do so, suppose first we have a solution at order ¢"~'. Let's now add a

. ( n . . .
new term to the metric g,, at order ¢". The Ricci tensor is

wn) ) i n)
/1,”, = {\Il“,. -1 /1“,, .

({ 1 . . . \ ) .
Here, 8 17,),/ is the contribution at order ¢" due to the new term ¢, /, while
)| )

{1 is the nonlinear contribution at order ¢" from the metric at lower orders.
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Solving to all orders

We can now construct the bulk metric to all orders using the gradient expansion

)
. ~ 1. J; ~ €, Oy ~ €

corresponding to the hydrodynamic limit.

T

» To do so, suppose first we have a solution at order ¢"~'. Let's now add a

. ( n . . .
new term to the metric g,, at order ¢". The Ricci tensor is

wn) ) i n)
/1,,,, = f\II“,. -1 /1“,. .

I,‘:Jll . | ~ l . i n i (mn) .
Here, 07,/ is the contribution at order ¢" due to the new term ¢, , while
ylmn)

{1 is the nonlinear contribution at order ¢" from the metric at lower orders.
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Solving to all orders

= We know 0 R,/ from the usual linearised formula. Since

Y .

(')r ~ |. ('){ ~ €. 1')‘_ ~ €~

we need only keep r-derivatives in this formula, since the rest are higher order.

This gives:

nl."ﬂ;” — —E{), ( r‘r'!,._q‘,:J .
"l:’l‘_’:l = —70 i’:” = —%r').,-.].r{i_:”.
Ry = —roR,Y = _% (’ (rge’) + 20rgv7) — Orgyl” + 207977 ) .
» We can now set R, = oR,)) + R,/ = 0 and solve for ¢,/ in terms of the

metric at lower orders.
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2
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Solving to all orders

» We know 01,/ from the usual linearised formula. Since

(')r ~ |. ('ff ~ €. 1')‘_ ~ r.'l

we need only keep r-derivatives in this formula, since the rest are higher order.

This gives:

.2

pn) e (n)
"I'rr - _:‘}r.‘f”

() ¢ [ 4 (7 )
dll’” — —:1)’ l.,rr.‘f,”” ).

(n) (mn) ,-"__1 ()
.1/."_} = —T70 |’” — _:‘)J'”,—, .

1 1 I é 1) ¢ {1 ) F \ ) _’ 1)
OR;Y = —rdRy = B (0r(rgen)) + 20ngy7 — Orgy” + 207077 ) .
\n) \ ) ( ) - ( ) = -
= We can now set R,/ = o0R,, + R,/ = 0 and solve for g, in terms of the

metric at lower orders.
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Solving to all orders

» We know 01,/ from the usual linearised formula. Since
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Integrability conditions

# For this to be possible, the following integrability conditions must be

satisfied:

0= (R —rRY = R, 0= R +rRY.

rr ra

#» The Bianchi identities at order ¢" give

o , yn) ) ywn) 1)

Ilf.-),l,la” -rR;..)) - R,
‘ / Hin) in) 1) in) (n )y =
||:.r),l,lll_” _'"’/'r.: = br g —~—f/},,, :‘f” (T.1).

» The vanishing of f,"/(7.7) follows from conservation of the Brown-York

stress tensor on X... Using the Gauss-Codazzi identity,

b () r b - - \ 1 r p 1 — (n —
ViTab| = 2V (KYab — Kap)]'™" = [-2R, N*]'™" = — fa* (7, &).
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Integrability conditions

# For this to be possible, the following integrability conditions must be

satisfied:

0= (R —rR) = R, 0=R" +rRY.

rr ra

= The Bianchi identities at order ¢" give

o , ) ) ywn) 1)

llf:?,(la” -rR,,.") — R, .
f ; () in) ) in) ) g =
||:t),-l,lll_” —'—.'!l,.” = br g —~—f/i,,, :‘f” (T.1).

» The vanishing of f,"/(7.) follows from conservation of the Brown-York

stress tensor on X.. Using the Gauss-Codazzi identity,

b [(n) _ royerby g Y o | 2 o(n s\
VoTas|'™ = 2V (K Yab — Kap)]™ = [-2Ra N#]™ = ——— f(™) (7 7).
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Integrability conditions

# For this to be possible, the following integrability conditions must be

satisfied:

0= (R —rRMY = R, 0=R" +rRY.

rr ra

= The Bianchi identities at order ¢" give

o , () ) ywn) y 1)

Hf:),(lau —!ln,, fl},,,.
a f pDin) in) ) in) ) p . =
||:.r),l,lll_” _'"’!'r.; = br g —~—f/i,.,, :‘/,, (T.1).

» The vanishing of f,"/(7.7) follows from conservation of the Brown-York

stress tensor on X.. Using the Gauss-Codazzi identity,

b (m) [ b - - ‘1 r p 1 - (n —
VT |™ = 2V (K Yap — Kab)]™ = [=2Rau  N#]™ = ——— f") (7, 7).
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Integrability conditions

# For this to be possible, the following integrability conditions must be

satisfied:

0= (R —rRyY) = R, 0=R" +rRY.

rr ra

#» The Bianchi identities at order ¢" give

i | y(mn) ) y(mn) ()

Ilf:),(la” -rR,,.") — R, .
‘ / yl 1) in) 1) in) (N )y =
||:t),-l,lll_” —'—.'!I,” = b —~—f/i,,, :‘f” (T.1).

» The vanishing of f,"/(7.7) follows from conservation of the Brown-York

stress tensor on X.. Using the Gauss-Codazzi identity,

b (n) [ b - - % r p 1 = o —p
v l”;*-\_ — _’T “(\ Yab — !\,rh.lrlu‘ _ l——)l'}u;: \.n‘wnl — Al,,ﬂllf_."'f.
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Solving to all orders

= Thus, conservation of the Brown-York stress tensor on Y. is necessary for

the bulk equations to be integrated.

# From the perspective of the dual fluid, conservation of the Brown-York
. . . . . )

stress tensor is equivalent to incompressibility (at ¢~ order) and the

Navier-Stokes equation (at ¢* order). At higher orders in ¢ we obtain

corrections to these equations.

» To complete our integration scheme, we choose the gauge ¢,,,’ = 0 and
impose boundary conditions such that the metric on Y. is preserved, and that
the solution is regular on the future horizon H™. (This suppresses the

appearance of divergent logarithmic terms in the metric).
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|m(-;;mti(i)n scheme

~ Qur final integration scheme is thus

(n)

- 0,
Yru
T "o
(n) . -\ / " ) ) ‘ ()
g = (1 = r/r)F™ (1, %) + dr dr” (R}, — rRY — 2R\Y),
g1 7 i T 7
Jr J !
"4 "¢
(n) W) — p ! ’ ( )
g..' = (1 =r/r)F " (1,%) — 2 dr dr”" R,
. T 1 i r
/
J gy Jr

", | -
(n) é / 'l (mn)

_f,[”r = —2 / dr — / dr /:’”: :
' Jr " Jo '

. . Y 1 W71 ) .
where the arbitrary functions F-"’ and F'"’ encode the freedom to redefine P
and v, at order ¢"
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Integration scheme

~ Qur final integration scheme is thus

(mn)

Ory = ).

" e
) ) —\ ’ 1" ) o p(n)
_r;f,:' =(1-7r i',-ll“l“'{.’..!'l -+ / dr / dr 1/:’{’” = l"ll",':_' = _’H‘,_:\
Jr J 1

", .
(n) Wn) - p / 1 ( )
g..' = (1 =r/r)F} " (1,%) — 2 dr dr" R,
ST | rt

!
U | Jr
.r, 1 "p
(mn) p / 1 (n)
g Ve 29 dr’ — dr” R\,
J17 r! t]
Jr J0O

where the arbitrary functions F;"’ and I''"’ encode the freedom to redefine P

and v, at order ¢"
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Fluid gauge conditions

This remaining freedom may be fixed by choosing appropriate gauge conditions
for the dual fluid.

(n) . " " .
~ I'/"" may be fixed by imposing Landau gauge on the fluid:
i( 1 f’
0= u"Tyh,

I.e. the momentum density 7, vanishes in the local rest frame.

This is effectively a definition of the fluid velocity u“.

(n) - . . . . . ;
~ ;" is fixed by imposing that there are no corrections to the isotropic part
of the stress tensor:

I.i,'. :( | N ‘,' )"”’

1] o
VALK I,

This effectively defines the pressure fluctuation to be exactly P.

~ With all gauge freedom now fixed, we have a unique solution for the bulk
metric in terms of v; and .
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Fluid gauge conditions

This remaining freedom may be fixed by choosing appropriate gauge conditions
for the dual fluid.

dn) . . » "
~ I'/"" may be fixed by imposing Landau gauge on the fluid:
( Y b
0= u"Tyh,

i.e. the momentum density 7, vanishes in the local rest frame.

This is effectively a definition of the fluid velocity u“.

(n) - . . . . . .
~ ;" is fixed by imposing that there are no corrections to the isotropic part
of the stress tensor:

I.i,'. _( | N ‘,' )“”’

L —
VAN r.

This effectively defines the pressure fluctuation to be exactly F.

~ With all gauge freedom now fixed, we have a unique solution for the bulk
metric in terms of v; and .
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Bulk solution

We computed this bulk solution through to ¢” order, for arbitrary spacetime
dimension.

3 -
e For example, at ¢~ order, the only nonzero term is:

(3) (7" — T¢) ) 20 ) ~2
g,, = ———|\V + 2P)— + lriﬁl'---i,r‘ Lr o
o _'f I, ]

' 1

(4) (4)
e At ¢! order, the nonzero terms are ¢, and 95 -

e At ¢” order, only ¢, is nonzero. [See arXiv:1103.3022]

This behaviour makes sense since all scalars and tensors constructed from v,, P’

and their derivatives are of even order in ¢, while all vector quantities are odd.

~ Interestingly, [arXiv:1101.2451] noted the solution is Petrov type Il at leading
non-trivial order. This appears not to extend to higher order however.

)

3 )= 12 e
(1° — 27.J% is nonzero at order ¢'*))
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Sulk solution

We computed this bulk solution through to ¢” order, for arbitrary spacetime
dimension.

3 .
e For example, at ¢” order, the only nonzero term is:

. . Oy
(3) (r —r7re) 2 24 . -2
g\, = ———=|(v* 4+ 2P)— + 40; P—(r + r;)0°v;
. T 1 "!' r_

( <

1) 1)
e At ¢ order, the nonzero terms are ¢ and ‘qjj :
e At ¢” order, only ¢ is nonzero. [See arXiv:1103.3022

This behaviour makes sense since all scalars and tensors constructed from v,, P’

and their derivatives are of even order in ¢, while all vector quantities are odd.

~ Interestingly, [arXiv:1101.2451] noted the solution is Petrov type Il at leading
non-trivial order. This appears not to extend to higher order however.

3 o= 2 i
(1% — 27.J% is nonzero at order ¢'%))
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Integration scheme

~ Qur final integration scheme is thus

{n)

.’:’r',u = U,

"y ‘Te
(n) . -\ / " ) ) ‘ (1)
_r;_,: =(1—-7r/r |I‘T|“'{T..!',I -+ / dr / dr 1/1"”” — I'H‘,T_ — ._’IJ’L.: ).
Jr Jy

. -
{n) iln) — p / ' | )
g..) =(1 =r/r)F. " (1,2) — 2 dr dar'R.’,
ST ] rt
Jr Jr!

where the arbitrary functions -’ and F'"’ encode the freedom to redefine P

and v, at order ¢"
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3ulk solution

We computed this bulk solution through to ¢” order, for arbitrary spacetime
dimension.

3 .
e For example, at ¢” order, the only nonzero term is:

' . ny
(3) (7" — T¢) 2 Uy ) )
g, = ————|(v + 2PV —— 4+ 40, P—(r 4+ r
JTi 9

=, I’

( <

1) 1)
e At ¢ order, the nonzero terms are ¢ and ‘qjj .
e At ¢” order, only ¢ is nonzero. [See arXiv:1103.3022]

This behaviour makes sense since all scalars and tensors constructed from v,, P’

and their derivatives are of even order in ¢, while all vector quantities are odd.

~ Interestingly, [arXiv:1101.2451] noted the solution is Petrov type Il at leading
non-trivial order. This appears not to extend to higher order however.

3 o= 2 i
(1° — 27.J% is nonzero at order ¢'*))
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Recovering Navier-Stokes and incompressibility

From our unique bulk solution, we recover the Navier-Stokes and
incompressibility equations, along with a specific set of corrections.

These arise from the momentum constraint on X..:

!) 1 Ii|. o P \
0=V’T, = 2V (K~ — Kap)

.-
At even orders in ¢ we recover the incompressibility equation plus corrections,

‘ ‘ Y Py ‘ Gy
Oivi = —v; P — v;0 Vi + 2000005 + O(e),
I

while at odd orders we recover Navier-Stokes plus corrections,

)

D JO

D1 4
’

. . al ‘ n4 AL ¢
OrVi 4+ 00V — re0°vi + P = (- : A v +=2rovnd v + .00+ 0(e').
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Recovering Navier-Stokes and incompressibility

From our unique bulk solution, we recover the Navier-Stokes and
incompressibility equations, along with a specific set of corrections.

These arise from the momentum constraint on X..:

b 1 b - - \
0=V"1, = 2V (K o — Kgp)

-
At even orders in ¢ we recover the incompressibility equation plus corrections,

‘ ‘ Y Py ‘ Gy
Oivi = —v; G P — v;0 Vi + 2000005 + O(e),
I

while at odd orders we recover Navier-Stokes plus corrections,

V0l
I 4 a2, P
v +2roved” o +..0)+ 00 ).

9}
drVi + V000 — 1red™ Vi + P = (- _
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The underlying relativistic fluid

As the e-expansion is non-relativistic, T,;, appears to be non-relativistic. In fact,

however, there is an underlying relativistic stress tensor which, when expanded
out in ¢, reproduces our above results.

e Agrees with expectation that the dual holographic theory should be
relativistic.

e The relativistic stress tensor is much simpler: all information is encoded in
only a few transport coefficients.
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C

raracterising the dual fluid

In general,

- 1 aprl
[ab = pugup + phap + 1133, ull;; =0,

where 11;; represents dissipative corrections and may be expanded in fluid
gradients.

One unusual feature compared to standard relativistic hydrodynamics, however,

is that the equilibrium energy density vanishes:

From our bulk solution, the energy density in the local rest frame is given by

b l

J a L i Y Y
P = f”,r,H u = — Ti;Tij +— (e ), Ti: = 200:0

— Y1

) [
EAY, T s

This vanishes when v; is constant, and is otherwise negative!
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Characterising the dual fluid

In general,

1 L Al
[ab = pugup + phap + 1133, u“ll;, = 0.

where 1l;; represents dissipative corrections and may be expanded in fluid
gradients.

One unusual feature compared to standard relativistic hydrodynamics, however,

is that the equilibrium energy density vanishes:

From our bulk solution, the energy density in the local rest frame is given by

b l

J a L i Y o
pP = f”,r,H u = — Ti; T + (e ), T, = ’()_: 3

This vanishes when v; is constant, and is otherwise negative!
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Characterising the dual fluid

We may understand this curious property as follows. First, we note that the

Hamiltonian constraint on X. imposes

)

r ab 2
AT, T =T7.

Inserting our relativistic decomposition, we find
_ 1 1 ryLlab 1.2
||:J:J(|¢/—[P;J+'_)¢I[J+2“ )+f“|,,;,” j — (II7)~.

This determines p in terms of p and 1l;;. (Note there are two solution

branches: here, we need the one corresponding to p = 0 + O(07)).

The Hamiltonian constraint therefore plays the role of an equation of state.
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Characterising the dual fluid

We may understand this curious property as follows. First, we note that the

Hamiltonian constraint on ¥. imposes

)

- ab 92
dT T =T".
Inserting our relativistic decomposition, we find
ke _Ll'iii -t ._]
||:IJ(|¢/—[}/J+’_’d/[f+2“_)Jrr/“,,;,“ — (117)~.

This determines p in terms of p and Il,;. (Note there are two solution

branches: here, we need the one corresponding to p = 0 + O(07)).

The Hamiltonian constraint therefore plays the role of an equation of state.

Pirsa: 11090134 Page 53/70



Characterising the dual fluid

We may understand this curious property as follows. First, we note that the

Hamiltonian constraint on X. imposes

)

r ab 2
AT T =T°.
Inserting our relativistic decomposition, we find
1 L rylab 1.2
0=p((d—=1)p+2dp +2117) + dl 117" — (I17)".

This determines p in terms of p and 1l;;. (Note there are two solution

- p »
branches: here, we need the one corresponding to p = 0 + O(07)).

The Hamiltonian constraint therefore plays the role of an equation of state.
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Characterising the dual fluid

We may understand this curious property as follows. First, we note that the

Hamiltonian constraint on ¥. imposes

)

- ab 92
AT T =T7.

Inserting our relativistic decomposition, we find
1 ryLlab 1,2
0=p((d=1)p+2dp + 2117) + dlI 117 — (I17)*.

This determines p in terms of p and Il,;. (Note there are two solution

branches: here, we need the one corresponding to p = 0 + O(07)).

The Hamiltonian constraint therefore plays the role of an equation of state.
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First-order relativistic hydrodynamics

At first order in fluid gradients,
[ = —2nKap + O(97), Ko = hShi g,

Note there is no bulk viscosity term KX ap, since K = d,u” and the fluid is
. : o cshen o e a2\
incompressible: 0 = u* 0" Ty, = —pdu” + O(07).

Expanding 7, in ¢ we find 1) = 1, hence /s = | /4m.

The ‘equation of state’ fixes

=1 «ab a3
p= — L KK + 0(0%).
f}
Expanding in ¢, we recover
| (8
fj__, l_‘_rT”rT”—f—( (€ )
2\/T
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First-order relativistic hydrodynamics

At first order in fluid gradients,
[, = =2nKap + ( )7, Koy = /f:,/f}fr'l,-, Uy .

Note there is no bulk viscosity term KX ap, since K = d,u” and the fluid is
. : o b o . a2\
incompressible: 0 = u* 0" Ty, = —pdu® + O(07).

Expanding 7, in ¢ we find 1) = 1, hence /s = 1 /4m.

The ‘equation of state’ fixes

)
2n° .. . -ab 431
p=- Kan K™ + O(07).

/)

Expanding in ¢, we recover
| (8
p=— : ._._rT”rTU 4+ (J(e )
2\/T
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Second-order relativistic hydrodynamics

The full expansion for I1;; to second order in gradients is

_L p - i - a{ { { l.r. i
IIHL — 7—,'fkl!}’ 4ﬁ‘rllkukf"J +('2A\”(")4 hl + r-:;S'z!] g-)l"l +(‘|/f”/fbf),|‘)l]lll )
/ /

+ e5Kap DInp + ce Dy Inp Dy Inp + O(5°),
where D+ = h%0, and D = u®d, and the vorticity Qup = hShio uy .

~ There are six second-order transport coefficients: ¢y, ¢2, etc.

Expanding this expression in ¢ and comparing with 1,5 from our gravity
calculation we find:

N = ]. '_’('] =Cp =03 =04 = — ]\f

These five simple terms encode our entire T, to ¢’ order!

(To fix ¢5 and ¢ we need to go beyond ¢” order).
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Second-order relativistic hydrodynamics

The full expansion for I1;; to second order in gradients is

_L p - - . " { i l.r. i
]|‘,;, — *_’IK.,;,+f'|K,,K,-;,+t'3)\‘,,(_.)4 b) +r':;ﬂ_),, f.’,-;,+t‘|h”/ibr3,f»‘,;lll )
/ /

+sKar DInp +ce Dy Inp Dy Inp + 0.
where D+ = h%0, and D = u®d, and the vorticity Qup = hShio uy .

~ There are six second-order transport coefficients: ¢y, ¢2, etc.

Expanding this expression in ¢ and comparing with 7,5 from our gravity
calculation we find:

N = ]. '_’('] =Cp =03 =04 = — ]\f

These five simple terms encode our entire T, to ¢’ order!

(To fix ¢5 and ¢g we need to go beyond ¢” order).
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A model for the dual fluid

We now propose a simple Lagrangian model for the dual fluid.
We focus on the non-dissipative part of the stress tensor,
[ab = phab = p(Yab + Uals),

describing a fluid with nonzero pressure but vanishing energy density in the

local rest frame.

(To get the dissipative part would need to couple to a heat bath.)
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A model for the dual fluid

Consider the action:

5 = /iIJ*IJ'\/—‘ \ —(””'"3.

cf. cuscuton model! [Afshordi, Chung, & Geshnizjani (06)]
The field equations describe potential flow

a {‘)ri" ’ y D)
V%u, =0, U = ——, XN = —(09)".
The stress tensor is of the required form
F'ab = VXYab + —=0a 0O = VX hap, lLe. p=V N.
vV A
One way to obtain this sqrt action is to start with £(.X. ¢) then impose
B an i ob .
) a b L . DA O oL .
H:,::f,,p_ufu — -2 + Nap L | ————— = 2X - — L
i ab \ r\,\
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A model for the dual fluid

~ The equilibrium configuration with p = 1/,/rc in the rest frame
corresponds to taking

so v; ~ J;¢» = 0. This breaks Lorentz invariance, as does any choice of u,.

~ To model small fluctuations about this background we set

T+ 0o(T.7).

() =

One can then solve for the 3-velocity v; and pressure fluctuation I’:

n"( F‘F). I y 1/2 1

: I

Y= —— [’:,r‘l ll—l;—'_jdr:—-—ahf—,r‘rf\JJ_‘r)rJ.’:l .
l|+f\ra|| L |
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A model for the dual fluid

=~ The equilibrium configuration with p = 1/,/7¢ in the rest frame
corresponds to taking

so v; ~ J;¢» = 0. This breaks Lorentz invariance, as does any choice of u,.

~ To model small fluctuations about this background we set

r 4+ 0D(T.7).

() =

One can then solve for the 3-velocity v; and pressure fluctuation I’:

I, F‘F’.’ [ ) 1/2 Ij

= —— [’:,r" ll—+—'_3;3r:—-—ah}——f‘rf\JJ_‘r)rJ.,} .
(1 + ) L J
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A model for the dual fluid

=~ The equilibrium configuration with p = 1/,/7¢ in the rest frame
corresponds to taking

so v; ~ J;¢» = 0. This breaks Lorentz invariance, as does any choice of u,.

~ To model small fluctuations about this background we set

T =+ OOl I"_T'J,

() ==

One can then solve for the 3-velocity v; and pressure fluctuation I:

I, O« ) 4 [ ) 1/2 Iﬁ

P, = - — [’:,-' ‘1+'__);\rl—-—1)ii——f‘rr\IJ“lj!J.r} )
Il “+ OD) L |
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Remarks

~ The action is nonlocal: the expansion around the background solution

involves an infinite number of derivatives.

~ One can easily couple to other types of matter (W, &, A,), provided one

expands around zero background values of these fields.

~ Connection with brane action? e.g. (d + 1)-dim brane embedded in
(d + 2)-dim Minkowski target space In static gauge this is

S=-=-T / ll‘!+l.r'\ | - (Y )2,

where Y is the transverse coordinate to the brane. Taking the tensionless
limit T" — 0 while keeping ¢ = T'Y fixed,

.s‘. — — /{I‘]*].i’\ [l')(r)")'

Still missing minus sign inside sqrt — use target space signature (d. 2)?
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Remarks

~ The action is nonlocal: the expansion around the background solution

involves an infinite number of derivatives.

~ One can easily couple to other types of matter (W, &, A,), provided one

expands around zero background values of these fields.

~ Connection with brane action? e.g. (d + 1)-dim brane embedded in
(d + 2)-dim Minkowski target space In static gauge this is

S = —l-/ll‘!+l.r'\ | - (Y )2.

where Y is the transverse coordinate to the brane. Taking the tensionless
limit I" — 0 while keeping ¢ = T'Y fixed,

.H. = - /{I‘]*].i’\ [l')(r]""

Still missing minus sign inside sqrt — use target space signature (d. 2)?
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Conclusions

~ There is a direct relation between (d + 2)-dimensional Ricci-flat metrics and
(d 4+ 1)-dimensional fluids satisfying the incompressible Navier-Stokes equations,

corrected by specific higher-derivative terms.

= The dual fluid has vanishing equilibrium energy density but nonzero pressure.
There is an underlying relativistic hydrodynamic description. We computed the
viscosity and four of the six second-order transport coefficients ‘holographically’.

~ A simple sqrt Lagrangian captures the non-dissipative properties of the fluid.
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Open questions

Many questions remain:

~ |s there a manifestly relativistic construction of the bulk metric? Does the

solution exist globally? What if we add matter to the bulk?

~ Does the correspondence extend beyond the hydrodynamic regime on the
field theory side, and/or the classical gravitational description on the bulk side?
Is there a string embedding? Can we get the sqrt action from branes?

~ How far can flat space holography be developed? |s there a holographic
dictionary relating bulk computations to quantities in the dual field theory on
N7

—

~ By the equivalence principle, our construction should hold locally in any
small neighbourhood. Can one patch together such a ‘local’ holographic
description of neighbourhoods to obtain a global holographic description of

general spacetimes?
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