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Abstract: One of the most exciting, albeit slightly speculative, components of the Fermi mission is to search for evidence of energetic events related
to dark matter decay or annihilation. The best targets for this search a regions where we suspect there is dark matter, but see few conventional
gamma-ray sources such as molecular clouds, cosmic ray sources, or compact objects. Much emphasis has been placed on local dwarf satellitesin
particular, since many of these systems show evidence for relatively deep potential wells, but have few stars and no recent star formation. In thistalk
| will propose another possible target for indirect dark matter searches, among our nearby galactic neighbours.

Pirsa: 11090110 Page 1/50



-

Our self-annihilating neighbours

James Taylor + Niayesh Afshordi + Jesus Zavala
University of Waterloo

Page 2/50




The Bvidence for Dark Matter

Over the past three decades, growing evidence from many different scales and redshifts:
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2003-2006: WMAP confirms the presence of dark
matter on the largest scales
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2003-2006: WMAP confirms the presence of dark
matter on the largest scales
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But how to pin it down the identity of the DM particle?

Direct (lab) or Indirect (observational) detection

Direct detection: Identify DM particle in the laboratory
Indirect detection: Search for indirect products of dark matter

annihilation, decay or interaction,
e.g.

Positrons
-~
_ |
- high-energy gamma-rays . -

Electrons

in the 100 GeV — TeV range Medium-energy ~ © 7/ n )

- high-energy neutrinos ; ‘ - e -

Neutrinos
Leptons B Y N
- high energy cosmic-ray matter * e
- . Antipr n
or anti-matter particles : R
(electrons & positrons, protons) Supersymmetric . B L

neutralinos Basans Protons
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Annihilation signals in the Gamma-ray range

Majorana fermion WIMPs can annihilate with
one another, producing pairs of quarks,
leptons, photons, etc.

Direct (in-situ) photon production by various
mechanisms (see below).

e.g. quark-antiquark pairs = hadronization
=>pions

Resulting pion bump at ~ m_/25 ranges from
1-100 GeV depending on WIMP mass

Spectrum has sharp energy cutoff at m , so
very different from, e.qg., emission from power-
law cosmic-ray proton spectrum
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Bsltr Tavior & Wa 2007 - spectrum from DarkdSUSY /Pvbhea
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Photon yield

- In situ photons: Directly created in the annihilation process (annihilation channels).
L
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. Up-scattered photons: Background photons gain energy through Inverse Compton scattering with
electrons and positrons produced in the annihilation: e+e- injection spectra — e+e- equilibnum
solution — photon background — final IC photon spectrum.
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Photon yield (example)

my ~ 200 GeV', xx — bband (0v) ~ 6.2 x 107 em®s™

100.00 | Prompt emission
Up-scattered CMB
photons s ]
10.00 3
> .
‘ L]
S ; e+e-
e ' injection spectrum
., 1.00 .
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0.10
. e+e-
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The annihilation signal

The surface brightness of a distant CDM halo goes as:

flux/solid angle = J(z,y) x ®(AE)

e J(z,y) = ] P(z,y, 2)dz
d ] N.
e &(AE) = i(";‘) / i 27

J is the astrophysical factor, which depends only on the spatial distribution of CDM;
& is the particle physics factor, which depends on the candidate particle.

Because of the p? weighting, the annihilation signal will trace the densest parts of
the CDM distribution.

We can further distinguish two components to J, the contribution from smooth halos
oree: 110008070 the contribution from halo substructure.
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The annihilation signal

The surface brightness profile 2
from the smooth component 10 )
should be very centrally =
concentrated, while the '5
contribution from substructure *E 10° |
IS more extended. v “1.

L
Note that the relative =
normalization of the two < 1077 -
components depends on the <
smallest scale on which there o
is CDM substructure >

&)

2. 107 -
So how to look for this signal? a

o S S S .
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R/ 200
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The annihilation signal
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Gao et al. 2011 — "Phoenix” cluster simulations




Summer 2008: Successful launch of ~

the Fermi qamma-mg Space TGLCSODP& - armt,
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Summer 2008: Successful launch of
the Fermi gamma-ray Space Telescope

The Fermi Large Area Telescope (LAT):
FOV: 2.4 sr

Energy range: 20 Mev-300 Gev

effective area: ~ 8000-9000 cm?

energy resolution: ~10%

angular resolution: 0.15 deg at 10 GeV
0.6 deg at 1 GeV

&
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Where to look?
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The Aguanus simulation (Springel et al 2008) - a superabundance of satellite subhalos




IThe Signal from Local Satellites

Theoretical prediction
(Hayashi et al. 2003):

stripped satellites lose
mass from the outside-

in; system has a well-
defined density profile at
any time:

pir)

r/r,

Evolution of the density profile as satellites loses
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progressively more mass (Hayashi et al. 2003)




Where to look?
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The Aguanus simulation (Sprnngel et al 2008) - a superabundance of satellite subhalos




IThe Signal from Local Satellites

Theoretical prediction
(Hayashi et al. 2003):

stripped satellites lose
mass from the outside-
in; system has a well-
defined density profile at
any time:

p(r)

r/r,

Evolution of the density profile as satellites loses
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progressively more mass (Hayashi et al. 2003)
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The Signal from Local Satellites 15

F fx 3
WE**ses %2 o 7
* Also there is observational S 3
evidence that these objects are S
indeed dark matter-dominated: oF > leo 3
velocity dispersions imply mass- - i o 2 e
to-light ratios of 100 or more e E 3
b l} - L | i | =
* Sizes well-suited to angular g PE R s
resolution of LAT (half-light radii of E 10 . =
0.05-1.3 deg) £ s =y E
= = =
- 0 - . s 3 | L | -
be—i 15 E ¥y T frrjJrrreJyrrrrry
! .-l L " L 'I' L3 L3 L] 'I:' w L] L '[ Lj L] L I L3 L L I 'I- .§ :_ m‘ _:
u - s 10 —— -
: - 0 ) - E'" =
Ty -~ _"' SE =
: - : g - L 3 3 1 ¢ 3 3 4 1 3 i -
f : - - . d 15 I ' sex E
I 1 L— - -_-‘ . . -'_ I(} _:
r " ' - - 5 - a3 & . — 3
3 :- - ——— ; E
: r;'-'-“ '''''''' : 0 g ¢+ ¢+ ¢ 0 4 L | L")
r - 9 0.0 05 1.0 15
= = R
F‘ i a4 I [ [ [l l i i ip I i 2 i I 'l i Il l l‘. [kgl
pirsz1090110 =10 -12 - -4 -18 -8 Strlgﬂn et al. 20 %% 19/50

Mateo 19Q8




The Signal from Local Satellites

Abdo et 2010: _m— — =
* search for an annihilation 10° g —— Fomen
signal from 14 dwarf 10° Sculptor -+=- Bootes | J
satellites of the MW e
; - —_—
* no detection, only 2 WZE’ NS
constraint on cross-section = .-
-
v o1

* limit depends on specific
WIMP model, but roughly

<gv>>105-10%cm s
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IThe Signal from Local Satellites

But are satellites the best place to look?

S/N calculation for a single source: (Springel et al 2008, Gao et al. 2011)

1/2
. ‘_ tAetr | F

Where B is the background, F is the source flux, Aeff is the effective area
and t is the exposure time

Result: local dwarfs 6x10-° - 5x10-3 times S/N,,,,

versus massive galaxy clusters 2x10-3 - 1.3x102 times S/N,,,,

Also another problem with satellites: which subhalos do they trace?
N.B. finds that M31 has a an expected S/IN 9x10-3 times S/N,,

so why not look at giant galaxies?
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The main contributor to gamma-rays:

cosmic-ray/ISM interactions

Milky Way Center

|
L)
e — >

Blazar 3CA454.3

Vela Pulsar

Cosmic-ray protons collide with ISM protons, producing gamma-rays. Thus the gamma-
ray flux traces both star formation (the source of cosmic ray protons) and dense gas in

Pirsa: 110

the 1SM (HI or molecular gas).
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The detection of M3 |

Abdo et al. 2010 detect M31 in 2 years of Fermi data at So significance, using 100 um
template. Equivalent flux ~ 10-° photons/cm< /s
Fail to detect M33.
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The detection of M3 |

Abdo et al. 2010 detect M31 in 2 years of Fermi data at So significance, using 100 um
template. Equivalent flux ~ 108 photons/cm? /s
Fail to detect M33.
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Scaling Relations

Abdo et al. 2010 also find a tight
correlation between the star
formation rate and the gamma-

ray flux.

In this case, the gamma-rays
from star formation become the
dominant noise source in

attempting to measure the
annihilation flux.

But what about galaxies with
litle or no star formation?
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Other Targets? SDSS

Local ellipticals have star
formation rates of
0.1 Mg yr'or less.

Thus we can stack 10s
or 100s of them before
the contamination from
cosmic rays and the ISM
becomes a problem.

May also be able to cut
further, e.q. fast vs. slow
rotators. &

log(sSFR) (yr™')

9.5 10.0 105 11.0 11.5 12.0
log(Mass) (Mg)
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Scaling Relations of

B P NGC253
Abdo etal. 2010 alsofind atight -, w0 - .
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The detection of M3 |

Abdo et al. 2010 detect M31 in 2 years of Fermi data at So significance, using 100 um
template. Equivalent flux ~ 108 photons/cm? /s
Fail to detect M33.
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The detection of M3 |

Abdo et al. 2010 detect M31 in 2 years of Fermi data at So significance, using 100 um
template. Equivalent flux ~ 10-® photons/cm? /s
Fail to detect M33.
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Scaling Relations

Abdo et al. 2010 also find a tight
correlation between the star
formation rate and the gamma-

ray flux.

In this case, the gamma-rays
from star formation become the
dominant noise source in
attempting to measure the
annihilation flux.

But what about galaxies with
little or no star formation?
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Other Tar‘ge‘rs? SDSS

Local ellipticals have star
formation rates of
0.1 Mg yr'or less.

Thus we can stack 10s
or 100s of them before
the contamination from
caosmic rays and the ISM
becomes a problem.

May also be able to cut
further, e.g. fast vs. slow
rotators.

log(sSFR) (yr™')

9.5 10.0 10.5 11.0 11.5 12.0
log(Mass) (My)
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The Atlas3D Sample Capellan et al. 201 |)

A volume-limited sample of Early-type galaxies from within 42 Mpc
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The Atlas3D sample (Capellari et al. 201 1)

Sample has M, , but how to estimate halo mass?

First, assume constant M/L,_

Then try abundance matching to
predictions for the equivalent volume
(1.16e5 Mpc?), i.e. 6th brightest

elliptical lives in 6th most massive

halo

Then remove a number of the
most massive systems, since
these correspond to clusters

Pirsa: 11090110
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The Atlas3D sample (Capellari et al. 201 1)
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The Atlas3D sample (Capellari et al. 201 1)

Calculating S/N as:

S/N ~ F/6 ~ LUD4R/D) ~ M/
D, we find most sources
are around 0.1x the S/N of

M31

The advantage, however,
is that we have hundreds of
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Gain in sensitivity relative to M3 |

—_—_—
The gain in sensitivity

depends on whether we
can use all halos or only

those below some mass ol 1 log M, < 13.6
limit (colours), and also on ]
whether we use ATLAS3D 3 )
or an all-sky sample. : M 1 )
2l =]
In principle, we may be =
able to attain a sensitivity & log M, < 1.3 -
of 5x M31, i 2+ -
or <ov>~ 103 cm3 s el [~ & oeeeem——==—— 1
1 - log M, < 126
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Let the Search Begin!

N1023 region cmap.fits 0

we are now starting to
search through the
ATLAS3D sample

e.g. NGC1023 (left)

Nothing so far (this is a
good thing); the next
step after eliminating
AGN is to start stacking.

RA (deg) <
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Caveats

* We have ignored the contribution from SFR in satellite
galaxies; these can be masked or subtracted off, but
the area we can integrate over

* Ellipticals may also harbour AGN; probably want to exclude these from
target list

* Backgrounds and point sources may also limit the number of usable objects
or the integration region around each one

* We have ignored variations in concentration in our scaling arguments

* We have ignored the energy dependence of the psf, the backgrounds etc.
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Conclusions

The search for emission from annihilating
dark matter remains an important part of the

mission

* Much of the initial focus was on dwarf satellites

as potential sources.

* More recent work (Gao et al. 2011; Pinzke et al. 2011) has

shown that clusters are a more promising target.

* Nearby early-type galaxies may be an even better target, increasing the
sensitivity by a factor of 5 relative to the constraint from M31

* Should get limits competitive with other sources, e.g. clusters
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Caveats

* We have ignored the contribution from SFR in satellite
galaxies; these can be masked or subtracted off, but
the area we can integrate over

* Ellipticals may also harbour AGN; probably want to exclude these from
target list

* Backgrounds and point sources may also limit the number of usable objects
or the integration region around each one

* We have ignored variations in concentration in our scaling arguments

* We have ignored the energy dependence of the psf, the backgrounds etc.
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Let the Search Begin!

N1023 region cmap.fits 0

we are now starting to
search through the
ATLAS3D sample

e.g. NGC1023 (left)

Nothing so far (this is a
good thing); the next
step after eliminating
AGN is to start stacking.

RA (deg) b
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Gain in sensitivity relative to M3 |

—
The gain in sensitivity

depends on whether we
can use all halos or only

those below some mass i ] log M, <136
limit (colours), and also on q
whether we use ATLAS3D 3 .
or an all-sky sample. 1: o | 1
- ]
In principle, we may be =
able to attain a sensitivity a [ Iog M, < 1.3 0
of 5x M31, -5 2+ -
or <ov> ~ 1025 cm?® s sl (— +  oeeee—mm-- '
i log M,, < 12.6
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The Atlas3D sample (Capellari et al. 201 1)

Calculating S/N as:

S/N ~ F/6 ~ LIDAR/D) ~ M/
D, we find most sources
are around 0.1x the S/N of

M31

The advantage, however,
is that we have hundreds of
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The Atlas3D sample (Capellari et al. 201 1)

L
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S

Resulting total-to-stellar mass ratio
agrees well with other determinations
compiled by Leauthaud et al. 2011,

so these should be a good estimate <
of individual halo masses 2 %
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