Title: Structure in the Phase Space and Dark Matter Astronomy

Date: Sep 23, 2011 03:40 PM

URL: http://pirsa.org/11090081

Abstract:

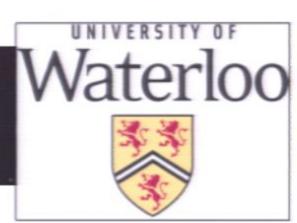
Pirsa: 11090081 Page 1/84

Unraveling Dark Matter Perimeter Institute September 23, 2011

Structure in the Phase Space and Dark Matter Astronomy

Niayesh Afshordi

Pirsa: 11090081


Page 2/84

Unraveling Dark Matter
Perimeter Institute
September 23, 2011

Triumph of Modified Newtonian Dynamics , and the demise of Dark Matter paradigm

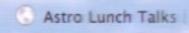
Niayesh Afshordi

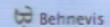
Pirsa: 11090081 Page 3/84

Unraveling Dark Matter Perimeter Institute September 23, 2011

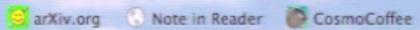
Structure in the Phase Space and Dark Matter Astronomy

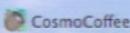
Niayesh Afshordi




Pirsa: 11090081

Page 4/84


Outline


- Introduction: Cold Dark Matter (CDM)
- Why phase space of CDM haloes is hierarchical
- Bound Structures & CDM detection
- Future Prospects for dark matter astronomy

88:C

Quoted from Persian literature

In old Persian literature, One of the poets (Ibn Yamin Faryumadi 🗗)(ابن يمين فريومدي), born 1286 in Faryumad, near Sabzevar; types of men[11][12]:

آنکس که بداند و بداند که بداند

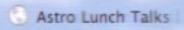
اسب خرد از گنید گردون بجهاند

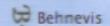
آئکس که بداند و نداند که بداند

بیدار کنیدش که بسی خفته نماند

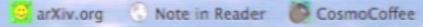
أنكس كه نداند و بداند كه نداند

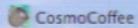
لنگان خرک خویش به منزل بر ساند

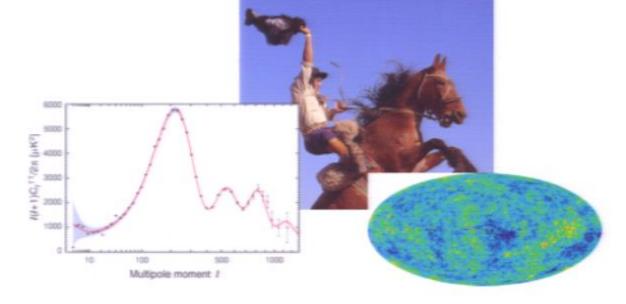

آنکس که نداند و نداند که نداند


در جهل مرکب ابدالتھر بماند

- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!


Pirsa: 11090081


Page 6/84

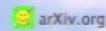


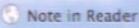
Quoted from Persian literature

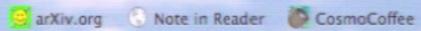
In old Persian literature, One of the poets (Ibn Yamin Faryumadi @)(ابن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

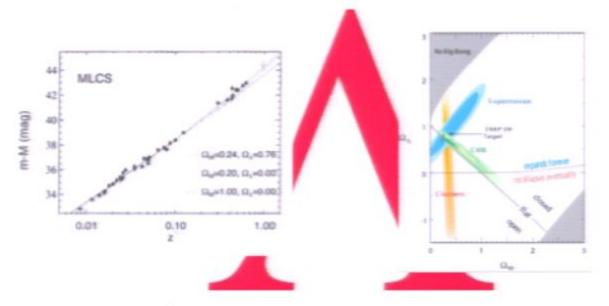
آنکس که بداند و بداند که بداند اسب خرد از گند گردون بجهاند آنکس که بداند و نداند که بداند بیدار کنیدش که بسی خفته نماند آنکس که نداند و بداند که نداند لنگان خرک خویش به منزل برساند آنکس که نداند و نداند که نداند در جهل مرکب ابدالتھر بماند



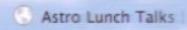

- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

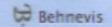

Pirsa: 11090081

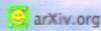
Page 7/84

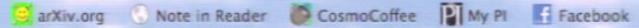

BBC

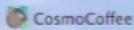
Quoted from Persian literature

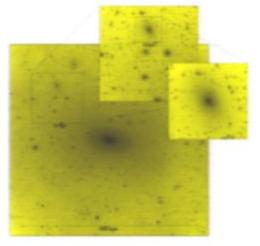

In old Persian literature, One of the poets (Ibn Yamin Faryumadi 🗗)(ابن يمين فريومدى), born 1286 in Faryumad, near Sabzevar;


types of men[11][12]:


آنکس که بداند و بداند که بداند اسب خرد از گنید گردون بجهاند آنکس که بداند و نداند که بداند بیدار کنیدش که بسی خفته نماند آنکس که نداند و بداند که نداند لنگان خرک خویش به منزل برساند آنکس که نداند و نداند که نداند تر جهل مرکب ابدالتھر بمان*د*

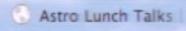


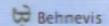

- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

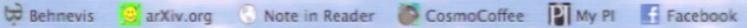


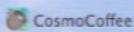
Quoted from Persian literature

In old Persian literature, One of the poets (Ibn Yamin Faryumadi ابن يمين فريومدي), born 1286 in Faryumad, near Sabzevar; types of men[11][12]:


آنکس که بداند و بداند که بداند اسب خرد از گنید گردون بجهاند آنکس که بداند و نداند که بداند بیدار کنیدش که بسی خفته نماند آنکس که نداند و بداند که نداند لنگان خرک خویش به منزل برساند آنکس که نداند و نداند که نداند بر جهل مرکب ایدالتھر بمان*د*




- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!


Pirsa: 11090081 Page 9/84

Quoted from Persian literature

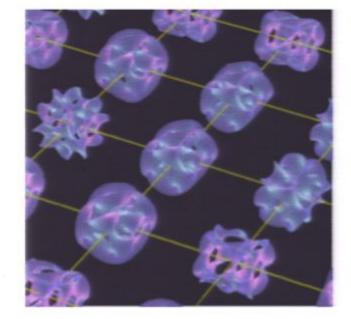
In old Persian literature, One of the poets (Ibn Yamin Faryumadi إبن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

آنکس که بداند و بداند که بداند

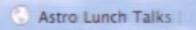
اسب خرد از گند گردون بجهاند

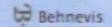
آنکس که بداند و نداند که بداند

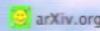

بیدار کنیدش که بسی خفته نماند

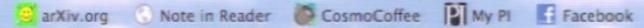
آنکس که نداند و بداند که نداند

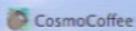
لنگان خرک خویش به منزل برساند

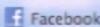

آنکس که نداند و نداند که نداند


در جهل مرکب ابدالدهر بماند




- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!


Page 10/84 Pirsa: 11090081



Quoted from Persian literature

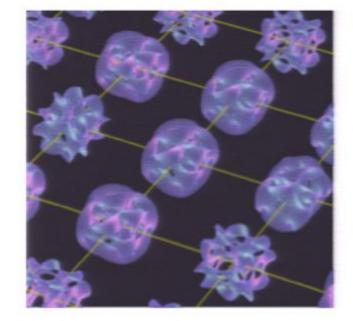
In old Persian literature, One of the poets (Ibn Yamin Faryumadi @)(ابن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

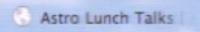
آنکس که بداند و بداند که بداند

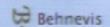
اسب خرد از گند گردون بجهاند

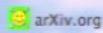
آنکس که بداند و نداند که بداند

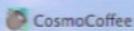

بیدار کنیدش که بسی خفته نماند

آنکس که نداند و بداند که نداند


لنگان خرک خویش به منزل برساند


آنکس که نداند و نداند که نداند


یر جهل مرکب ایدالتھر بماند


- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!



Quoted from Persian literature

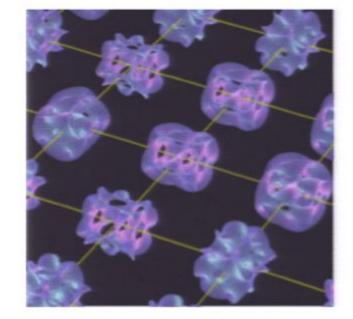
In old Persian literature, One of the poets (Ibn Yamin Faryumadi إبن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

آنکس که بداند و بداند که بداند

اسب خرد از گنید گردون بجهاند

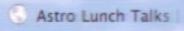
آنکس که بداند و نداند که بداند

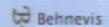

بیدار کنیدش که بسی خفته نماند

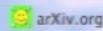
آنکس که نداند و بداند که نداند

لنگان خرک خویش به منزل برساند

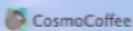
آنکس که نداند و نداند که نداند


در جهل مرکب ایدالتھر بماند




- . One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

Pirsa: 11090081


Page 12/84

Quoted from Persian literature

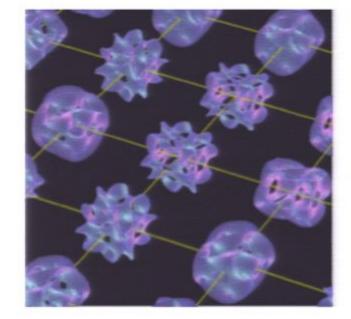
In old Persian literature, One of the poets (Ibn Yamin Faryumadi إبن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

آنکس که بداند و بداند که بداند

اسب خرد از گند گردون بحهاند

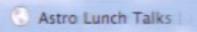
آنکس که بداند و نداند که بداند

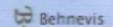

بیدار کنیدش که بسی خفته نماند

آنکس که نداند و بداند که نداند

لنگان خرک خویش به منزل برساند

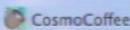
آنکس که نداند و نداند که نداند

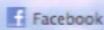

در جهل مرکب ایدالدهر بماند




- . One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

Pirsa: 11090081


Page 13/84



88:C

Quoted from Persian literature

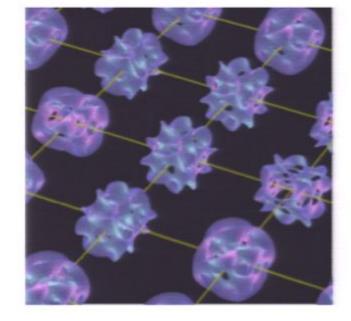
In old Persian literature, One of the poets (Ibn Yamin Faryumadi إبن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

آئکس که بداند و بداند که بداند

اسب خرد از گنید گردون بجهاند

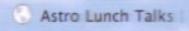
آنکس که بداند و نداند که بداند

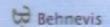

بیدار کنیدش که بسی خفته نماند

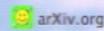
آنکس که نداند و بداند که نداند

لنگان خرک خویش به منزل برساند

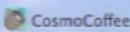
آنکس که نداند و نداند که نداند

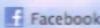

در جهل مرکب ایدالدهر بماند




- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

Pirsa: 11090081


Page 14/84



Quoted from Persian literature

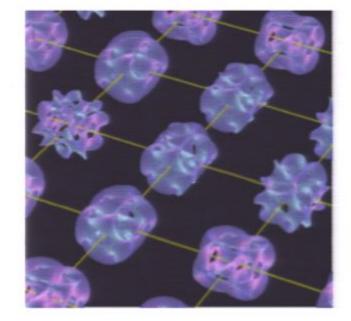
In old Persian literature, One of the poets (Ibn Yamin Faryumadi @)(ابن يمين فريومدي), born 1286 in Faryumad, near Sabzevar;

types of men[11][12]:

آنکس که بداند و بداند که بداند

اسب خرد از گنید گردون بجهاند

آنکس که بداند و نداند که بداند


بیدار کنیدش که بسی خفته نماند

آنکس که نداند و بداند که نداند

لنگان خرک خویش به منزل برساند

آنکس که نداند و نداند که نداند

یر جهل مرکب ایدالتھر بماند

- One who knows and knows that he knows... His horse of wisdom will reach the skies.
- One who knows, but doesn't know that he knows... He is fast asleep, so you should wake him up!
- One who doesn't know, but knows that he doesn't know... His limping mule will eventually get him home.
- One who doesn't know and doesn't know that he doesn't know... He will be eternally lost in his hopeless oblivion!

Pirsa: 11090081

Page 15/84

Collaborators

- Roya Mohayaee (IAP, Paris)
- Ed Bertschinger (MIT)
- Shant Baghram (Sharif U, Tehran → U-Waterloo)
- Kathryn Zurek (U-Michigan)
- Farbod Kamiab (U-Waterloo)

- Hierarchical Phase Space Structure of Dark Matter Haloes: Tidal debris, Caustics, and Dark Matter annihilation (NA, Mohayaee, Bertschinger): Phys.Rev.D79:083526,2009
- Hierarchy in the Phase Space and Dark Matter Astronomy (NA, Mohayaee, Bertschinger): Phys.Rev.D81:101301, 2010
- Prospects for Detecting Dark Matter Halo Substructure with Pulsar Timing (Baghram, NA, Zurek): Phys.Rev.D84:043511,2011

Pirsa: 11090081 Page 16/84

Outline

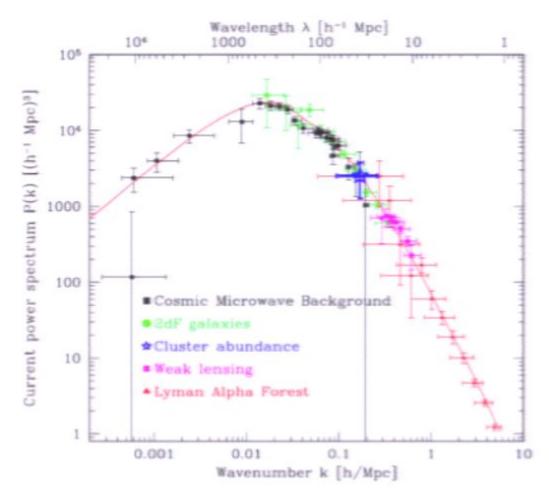
- Introduction: Cold Dark Matter (CDM)
- Why phase space of CDM haloes is hierarchical
- Bound Structures & CDM detection
- Future Prospects for dark matter astronomy

Pirsa: 11090081 Page 17/84

Dark Matter is Collisionless

Dark Matter is Collisionless

Bullet Cluster



Baryons (X-ray) Matter (lensing)

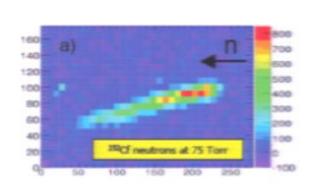
Pirsa: 11090081 Page 19/84

Dark Matter is Cold

Dark Matter is Cold

Indirect Detection

- Dark Matter can annihilate to
 - photons (Fermi)
 - electrons/positrons (PAMELA/Fermi/WMAP...Planck)
 - Neutrinos (*IceCube*)


$$\frac{dL_i}{dE_i} = \frac{\langle \sigma_{\rm ann} v \rangle E_i}{2m_\chi^2} \frac{dB_i}{dE_i} \Phi \qquad \Phi \equiv \int \rho^2(\mathbf{x}) d^3 \mathbf{x}$$

Springel, et al. 08

Pirsa: 11090081

Directional DM detection

- Solar system is moving towards the Cygnus constellation in the Milky Way, at 250 km/s
- → We should see a DM wind coming from Cygnus, which distinguishes it from any other background

Pirsa: 11090081

Page 23/84

• Gravitational evidence for DM comes from potential: $\int d^3x \; \rho(x)/|x\text{-}x'|$

Pirsa: 11090081 Page 24/84

- Direct detection: ρ(x) at solar system

- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²

- Gravitational evidence for DM comes from potential: $\int d^3x \ \rho(x)/|x-x'|$
- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²
- →WIMP detection is much more sensitive to DM substructure:

- Gravitational evidence for DM comes from potential: $\int d^3x \; \rho(x)/|x-x'|$
- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²
- →WIMP detection is much more sensitive to DM substructure:

$$Boost = \langle \rho^2 \rangle / \langle \rho \rangle^2 - 1$$

- Gravitational evidence for DM comes from potential: $\int d^3x \; \rho(x)/|x-x'|$
- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²
- →WIMP detection is much more sensitive to DM substructure:

$$Boost = /^2-1$$

→ Boost to annihilation signal (indirect detection)

(e.g., Taylor & Silk 2003)

- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²
- →WIMP detection is much more sensitive to DM substructure:

$$Boost = \langle \rho^2 \rangle / \langle \rho \rangle^2 - 1$$

→ Boost to annihilation signal (indirect detection)

(e.g., Taylor & Silk 2003)

→ Variance for direct detection

Pirsa: 11090081 Page 30/84

- Direct detection: ρ(x) at solar system
- Indirect detection (annihilation): ∫ d³x ρ(x)²
- →WIMP detection is much more sensitive to DM substructure:

$$Boost = /^2-1$$

→ Boost to annihilation signal (indirect detection)

(e.g., Taylor & Silk 2003)

→ Variance for direct detection

(e.g., Stiff, Widrow, & Frieman 2001)

Pirsa: 11090081 Page 31/84

Outline

- Introduction: Cold Dark Matter (CDM)
- Why phase space of CDM haloes is hierarchical
- Bound Structures & CDM detection
- Future Prospects for dark matter astronomy

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\text{CDM}}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\text{CMB}}}{T_{D\chi}} \right)^2$$

 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\text{CDM}}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\text{CMB}}}{T_{D\chi}} \right)^2$$

 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

 Phase space density remains constant in lieu of collisions (Liouville's Theorem):

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\rm CDM}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\rm CMB}}{T_{D\chi}} \right)^2$$

 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

- Phase space density remains constant in lieu of collisions (Liouville's Theorem):
 - At CDM freeze out:

$$f_{\rm CDM} \sim (\bar{\rho}_{\rm CDM}/m_{\chi})\delta v_{\rm CDM}^{-3} \sim 10^{-2} \ m_{\chi}^2 ({\rm GeV}) \ ({\rm cm/s})^{-3} ({\rm cm})^{-3}$$

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\text{CDM}}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\text{CMB}}}{T_{D\chi}} \right)^2$$

 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

- Phase space density remains constant in lieu of collisions (Liouville's Theorem):
 - At CDM freeze out:

$$f_{\rm CDM} \sim (\bar{\rho}_{\rm CDM}/m_{\chi})\delta v_{\rm CDM}^{-3} \sim 10^{-2} \ m_{\chi}^2 ({\rm GeV}) \ ({\rm cm/s})^{-3} ({\rm cm})^{-3}$$

Within our Galaxy:

$$\langle f_{\rm CDM} \rangle \sim \frac{(M_{\rm gal}/m_{\chi})}{(10 \text{ kpc})^3 (200 \text{ km/s})^3} \sim 10^{-22} m_{\chi}^{-1} (\text{GeV}) (\text{cm/s})^{-3} (\text{cm})^{-3}$$

1155

Page 36/84

Hierarchy in the Phase space

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\text{CDM}}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\text{CMB}}}{T_{D\chi}} \right)^2$$

 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

- Phase space density remains constant in lieu of collisions (Liouville's Theorem):
 - At CDM freeze out:

$$f_{\rm CDM} \sim (\bar{\rho}_{\rm CDM}/m_{\chi})\delta v_{\rm CDM}^{-3} \sim 10^{-2} \ m_{\chi}^2 ({\rm GeV}) \ ({\rm cm/s})^{-3} ({\rm cm})^{-3}$$

Within our Galaxy:

$$\langle f_{\rm CDM} \rangle \sim \frac{(M_{\rm gal}/m_{\chi})}{(10 \text{ kpc})^3 (200 \text{ km/s})^3} \sim 10^{-22} m_{\chi}^{-1} (\text{GeV}) (\text{cm/s})^{-3} (\text{cm})^{-3}$$

→ Most of the phase space is empty!

!!??

Hierarchy in the Phase space

- CDM is really cold
 - $-\delta v_{CDM} \sim 10^{-11} c$

$$\langle \delta v_{\text{CDM}}^2 \rangle \simeq \frac{3T_{D\chi}}{m_{\chi}} \left(\frac{T_{\text{CMB}}}{T_{D\chi}} \right)^2$$

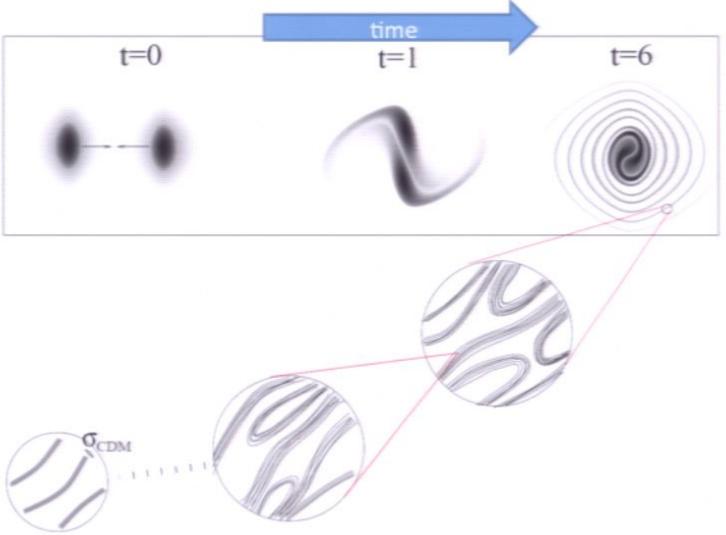
 $\simeq (0.07 \text{ cm/s})^2 (1+z)^2 m_{\chi}^{-2} (\text{GeV}),$

- Phase space density remains constant in lieu of collisions (Liouville's Theorem):
 - At CDM freeze out:

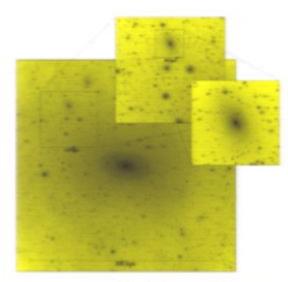
$$f_{\rm CDM} \sim (\bar{\rho}_{\rm CDM}/m_{\chi})\delta v_{\rm CDM}^{-3} \sim 10^{-2} \ m_{\chi}^2 ({\rm GeV}) \ ({\rm cm/s})^{-3} ({\rm cm})^{-3}$$

Within our Galaxy:

$$\langle f_{\rm CDM} \rangle \sim \frac{(M_{\rm gal}/m_{\chi})}{(10 \text{ kpc})^3 (200 \text{ km/s})^3} \sim 10^{-22} m_{\chi}^{-1} (\text{GeV}) (\text{cm/s})^{-3} (\text{cm})^{-3}$$

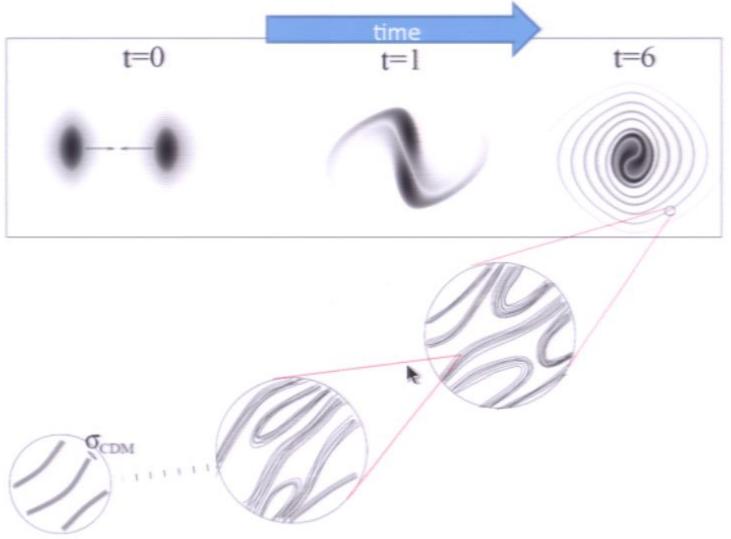

→ Most of the phase space is empty!

!!??

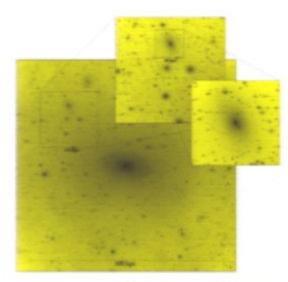

→ Structures on all scales

Page 38/84

Hierarchical Micro-Structure of the Phase Space


 Bound sub-haloes (cluster in real/phase space)

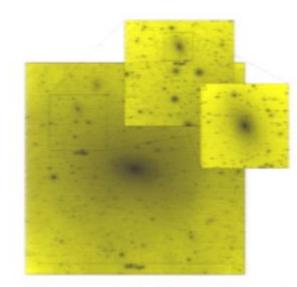
Kuhlen, Diemand, et al.


è

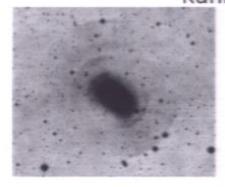
Hierarchical Micro-Structure of the Phase Space

Pirsa: 11090081 Page 41/84

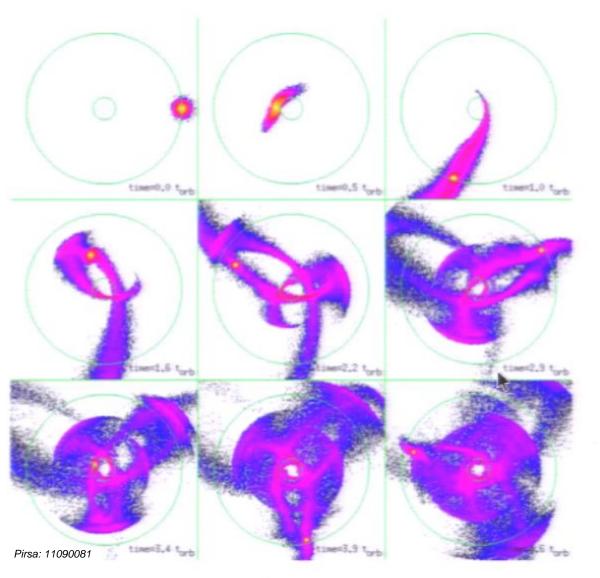
 Bound sub-haloes (cluster in real/phase space)

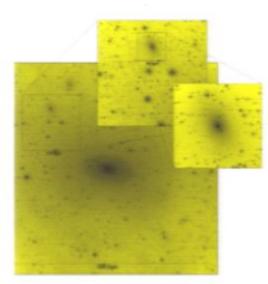


Kuhlen, Diemand, et al.

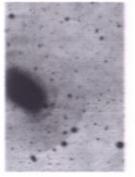


 Bound sub-haloes (cluster in real/phase space)


Tidal debris (cluster in initial conditions)

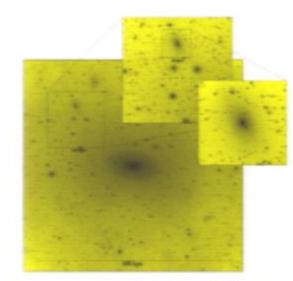


Kuhlen, Diemand, et al.

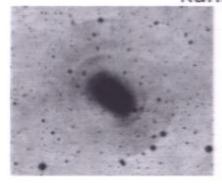


NGC 3923

Kuhlen, Diemand, et al.



NGC 3923


Page 44/84

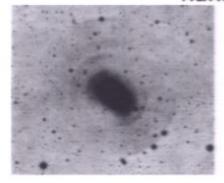
 Bound sub-haloes (cluster in real/phase space)

Tidal debris (cluster in initial conditions)

Kuhlen, Diemand, et al.

NGC 3923

Fundamental discreteness


analogous to galaxy shot noise

(NA, Mohayaee, Bertschinger 2009; Vogelsberger & White

 Bound sub-haloes (cluster in real/phase space)

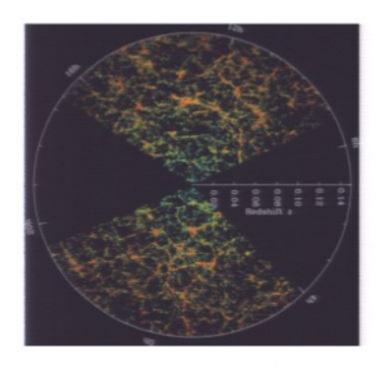
Tidal debris (cluster in initial conditions)

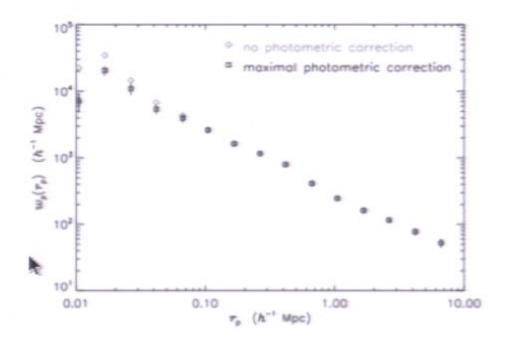
Kuhlen, Diemand, et al.

NGC 3923

Fundamental discreteness

analogous to galaxy shot noise

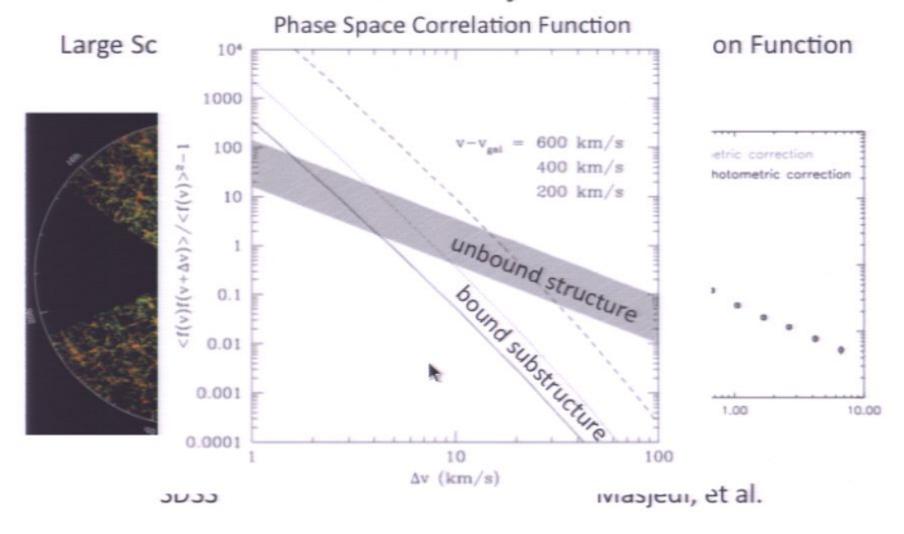

(NA, Mohayaee, Bertschinger 2009; Vogelsberger & White


Page 46/84

Correlation Functions quantify Hierarchy

Large Scale Structure

Projected Correlation Function

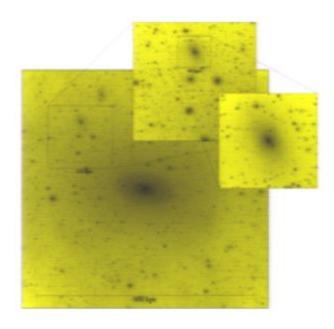

SDSS

Masjedi, et al.

Pirsa: 11090081

Page 47/84

Correlation Functions quantify Hierarchy


Pirsa: 11090081 Page 48/84

Outline

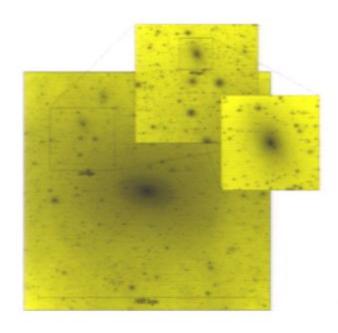
- Introduction: Cold Dark Matter (CDM)
- Why phase space of CDM haloes is hierarchical
- Bound Structures & CDM detection
- Future Prospects for dark matter astronomy

k

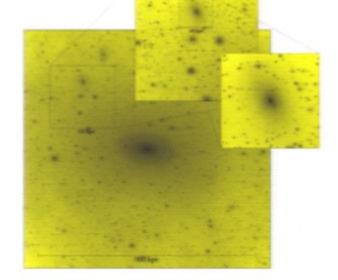
Pirsa: 11090081 Page 49/84

k

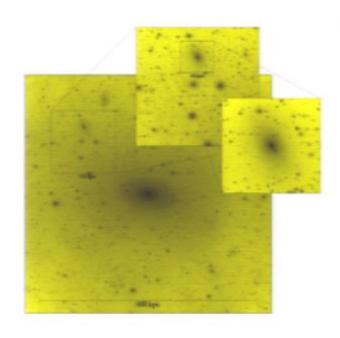
Pirsa: 11090081 Page 50/84


 Small sub-haloes become resilient to tidal stripping

Ł


- Small sub-haloes become resilient to tidal stripping
- Stable clustering hypothesis:

of pairs at small physical separation remains constant (Davis & Peebles 77)



- Small sub-haloes become resilient to tidal stripping
- Stable clustering hypothesis:
- # of pairs at small physical separation remains constant (Davis & Peebles 77)
- We extend this to the phase space

- Small sub-haloes become resilient to tidal stripping
- Stable clustering hypothesis:
- # of pairs at small physical separation remains constant (Davis & Peebles 77)
- We extend this to the phase space
- Unlike the halo model,
 captures the full hierarchy: subhaloes, sub-sub-haloes, etc. (also much fewer parameters)

Pirsa: 11090081 Page 54/84

Why Stable Clustering?

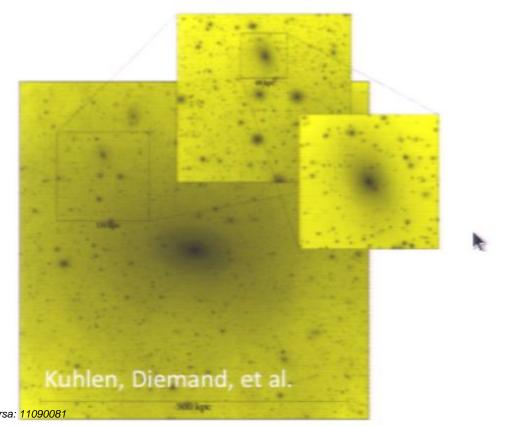
 Tidal Forces can only do finite work on tightly bound objects:

$$|\Delta v_i| < |\Delta x_i| \int dt (\partial_i \partial_j \phi)| \lesssim |\Delta x_i| \int dt \nabla^2 \phi$$

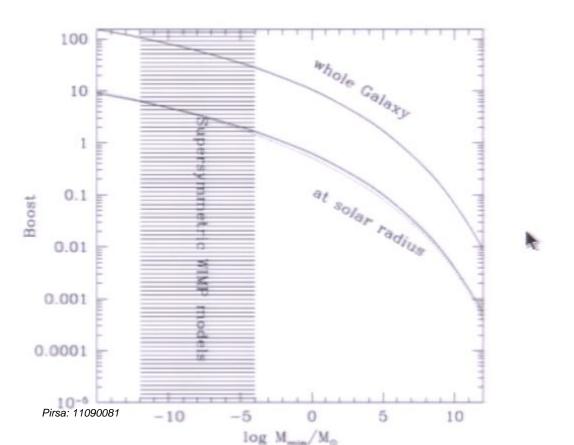
$$= 4\pi G |\Delta x_i| \int dt \ \rho_{vir}(t) \propto |\Delta x_i| \int dt/t^2 \to \text{const.} \times |\Delta x_i|$$

Why Stable Clustering?

 Tidal Forces can only do finite work on tightly bound objects:

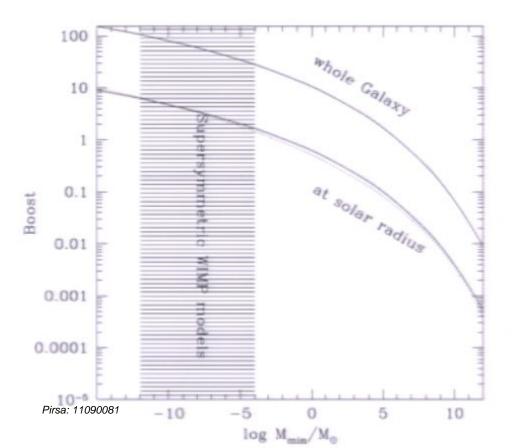

$$|\Delta v_i| < |\Delta x_i| \int dt (\partial_i \partial_j \phi)| \lesssim |\Delta x_i| \int dt \nabla^2 \phi$$
$$= 4\pi G |\Delta x_i| \int dt \ \rho_{vir}(t) \propto |\Delta x_i| \int dt/t^2 \to \text{const.} \times |\Delta x_i|$$

$$\frac{\partial f(E)}{\partial t} + \dot{E} \frac{\partial f(E)}{\partial E} = ??$$



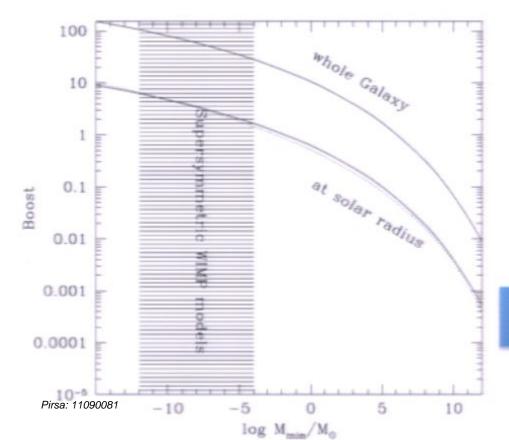
in progress, with Farbod Kamiab

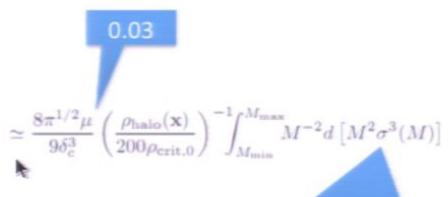
 Stable clustering in phase space can be used to describe bound subn-halo hierarchy



 Stable clustering in phase space can be used to describe bound subn-halo hierarchy

NA, et al. 2010

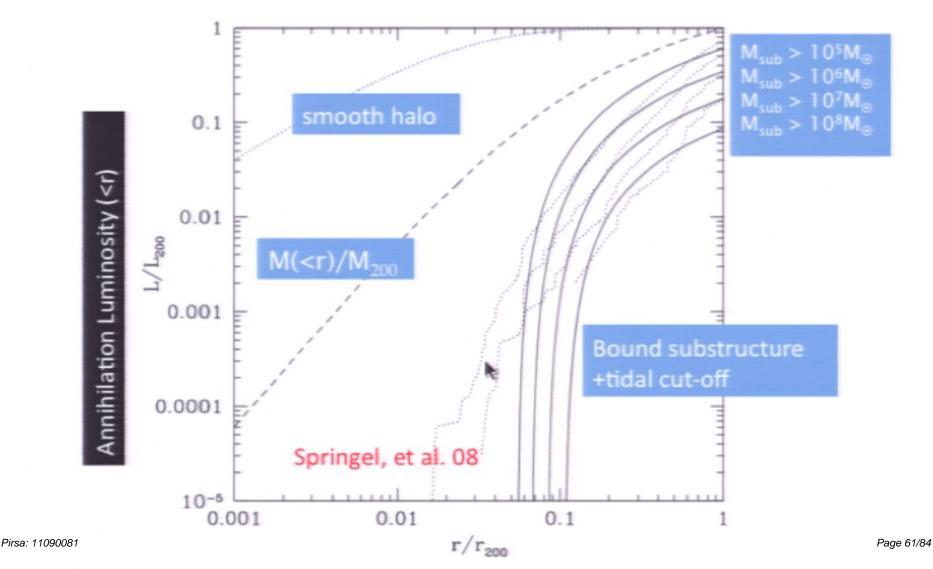

 Stable clustering in phase space can be used to describe bound subn-halo hierarchy



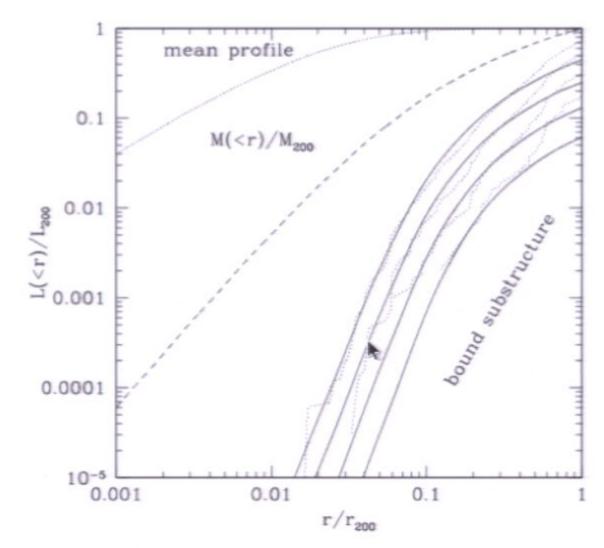
$$\simeq \frac{8\pi^{1/2}\mu}{9\delta_c^3} \left(\frac{\rho_{\rm halo}({\bf x})}{200\rho_{\rm crit,0}}\right)^{-1} \int_{M_{\rm min}}^{M_{\rm max}} M^{-2} d \left[M^2 \sigma^3(M)\right]$$

NA, et al. 2010

 Stable clustering in phase space can be used to describe bound subn-halo hierarchy

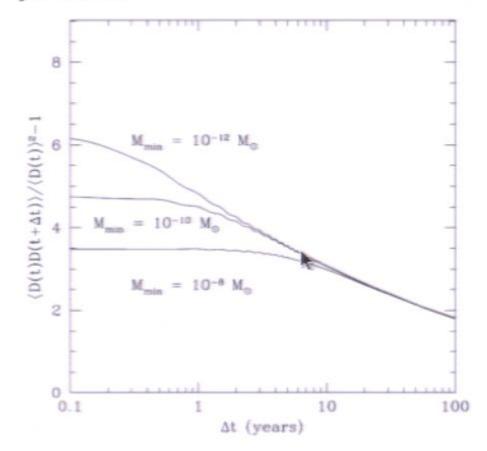

Standard deviation of linear overdensity on mass scale M

NA, et al. 2010

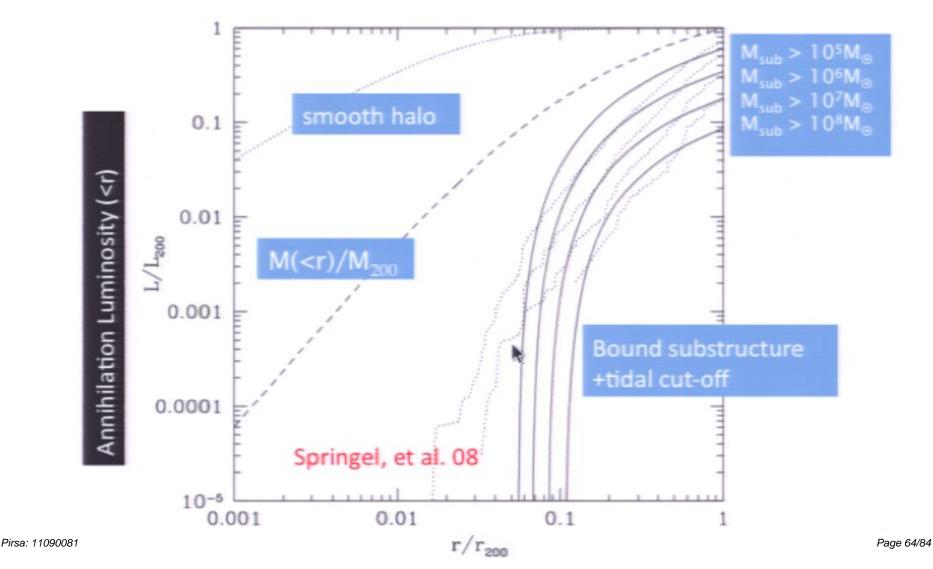

Page 60/84

DM annihilation profile:

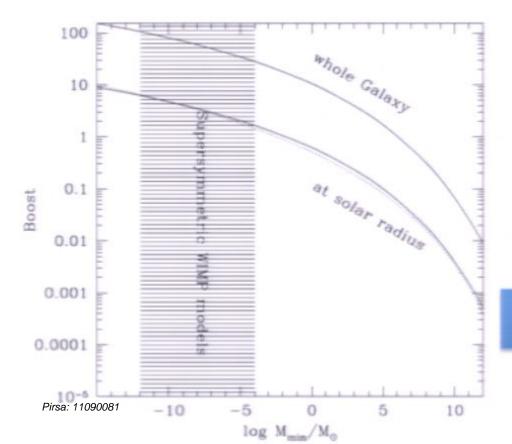
stable clustering vs. simulations

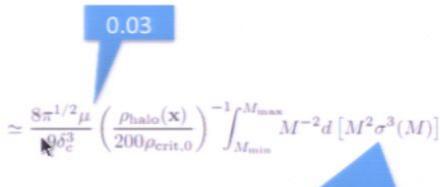


Massaging the tidal stripping prescription ...


sub-haloes in Direct Detection!

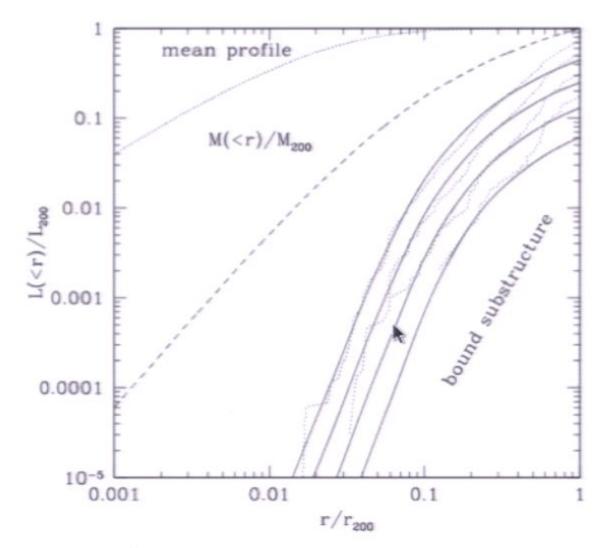
 Temporal auto-correlation of DM detection in several years...




DM annihilation profile:

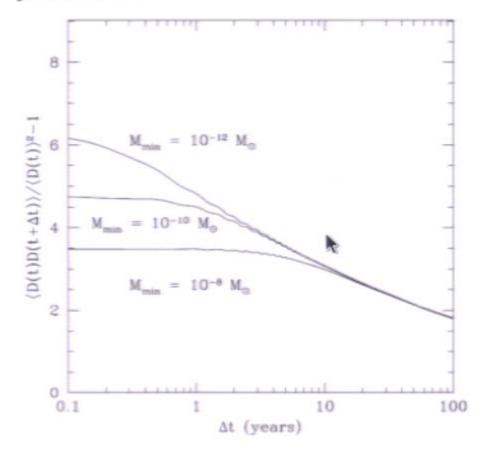
stable clustering vs. simulations

 Stable clustering in phase space can be used to describe bound subn-halo hierarchy



Standard deviation of linear overdensity on mass scale M

NA, et al. 2010


Page 65/84

Massaging the tidal stripping prescription ...

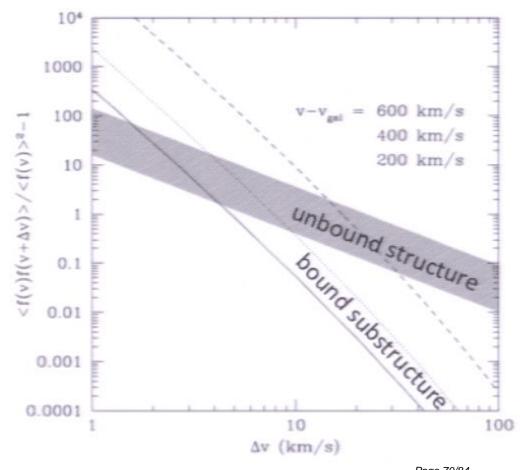
sub-haloes in Direct Detection!

 Temporal auto-correlation of DM detection in several years...

From bound subhaloes:

Boost = O(1) = density variance @ solar radius

- Local DM wind may NOT come from the direction of Cygnus!
- Phase space correlation will be probed by directional DM detection

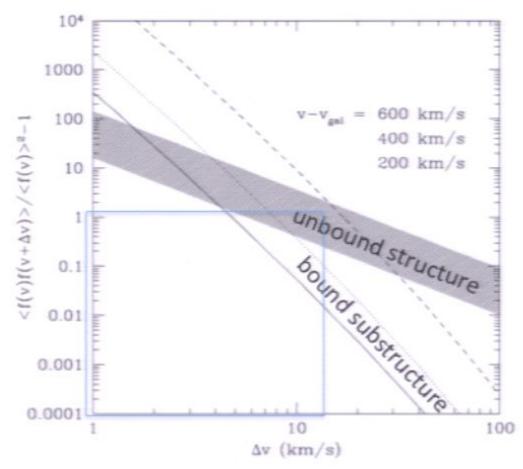

Pirsa: 11090081

age 69/84

From bound subhaloes:

Boost = O(1) = density variance @ solar radius

- Local DM wind may NOT come from the direction of Cygnus!
- Phase space correlation will be probed by directional DM detection

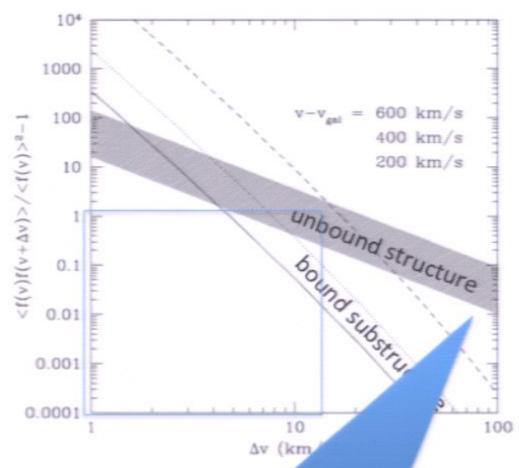

Pirsa: 11090081

Page 70/84

From bound subhaloes:

Boost = O(1) = density variance @ solar radius

- Local DM wind may NOT come from the direction of Cygnus!
- Phase space correlation will be probed by directional DM detection
- Sommerfeld En.


Pirsa: 11090081

Page 71/84

From bound subhaloes:

Boost = O(1) = density variance @ solar radius

- Local DM wind may NOT come from the direction of Cygnus!
- Phase space correlation will be probed by directional DM detection
- Sommerfeld En.

Pirsa: 11090081

Page 72/84

Hansen et al. 2005, Vogelsberger et al. 2009, Kuhlen et al. 2010

Two Cautionary Notes...

Pirsa: 11090081

Two Cautionary Notes...

What about baryons?

Pirsa: 11090081

Two Cautionary Notes...

- What about baryons?
 - They can enhance CDM structures through adiabatic contraction, or destroy them via gravitational collisions/heating
 - Real haloes are almost certainly more complicated!

Pirsa: 11090081 Page 75/84

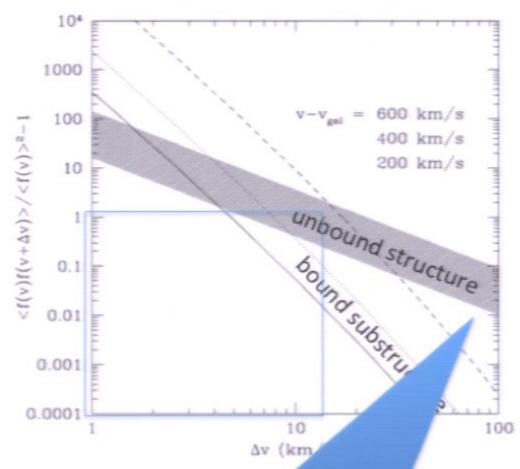
Final Word

Pirsa: 11090081

Final Word

- We used a novel analytic formalism to show that hierarchical sub-structure of CDM haloes can yield:
 - Boost in DM annihilation
 - Time dependence in direct detection signal
 - Rich structure for directional DM detection
 - Potentially detectable Pulsar Timing residuals
- Correlation Function in Phase Space is a Powerful tool

Final Word

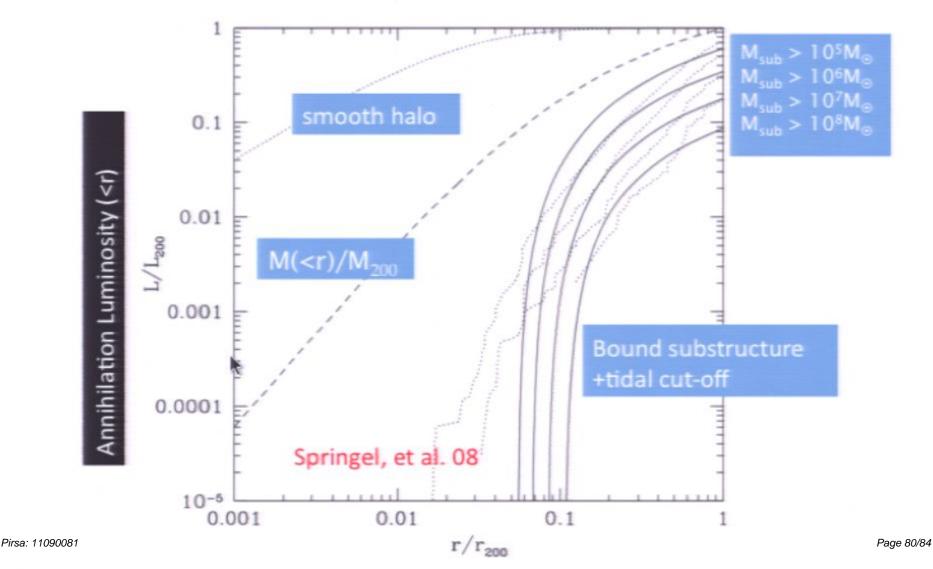

- We used a novel analytic formalism to show that hierarchical sub-structure of CDM haloes can yield:
 - Boost in DM annihilation
 - Time dependence in direct detection signal
 - Rich structure for directional DM detection
 - Potentially detectable Pulsar Timing residuals
- Correlation Function in Phase Space is a Powerful tool
- If/when we detect Dark Matter particles, Dark
 Matter Astronomy will be just around the corner

Dark Matter Astronomy?

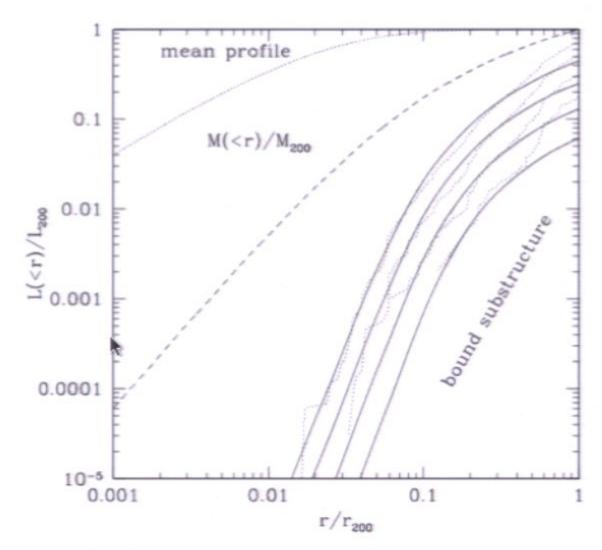
From bound subhaloes:

Boost = O(1) = density variance @ solar radius

- Local DM wind may NOT come from the direction of Cygnus!
- Phase space correlation will be probed by directional DM detection
- Sommerfeld En.

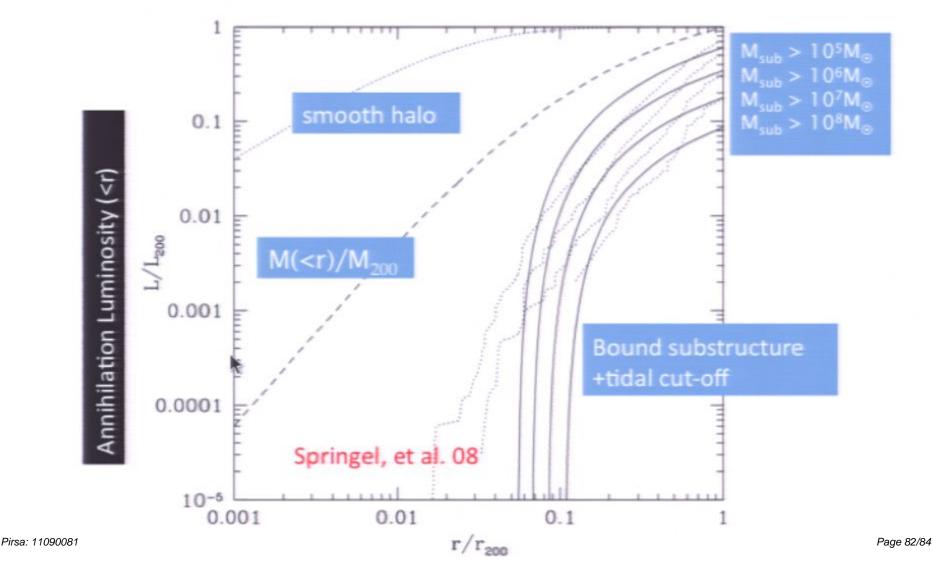

Pirsa: 11090081

Page 79/84

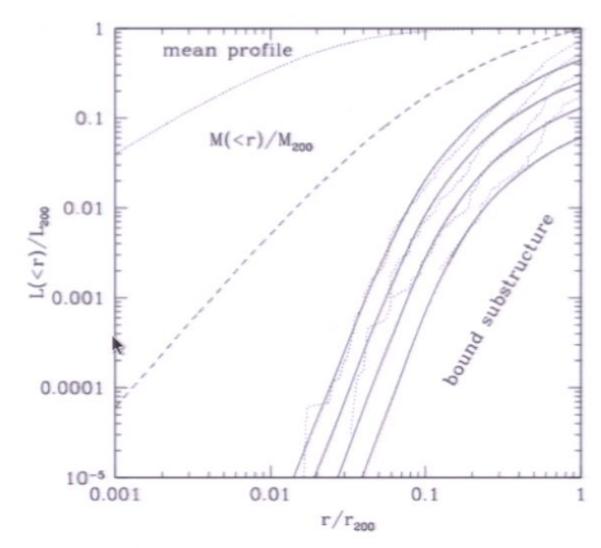

Hansen et al. 2005, Vogelsberger et al. 2009, Kuhlen et al. 2010

DM annihilation profile:

stable clustering vs. simulations

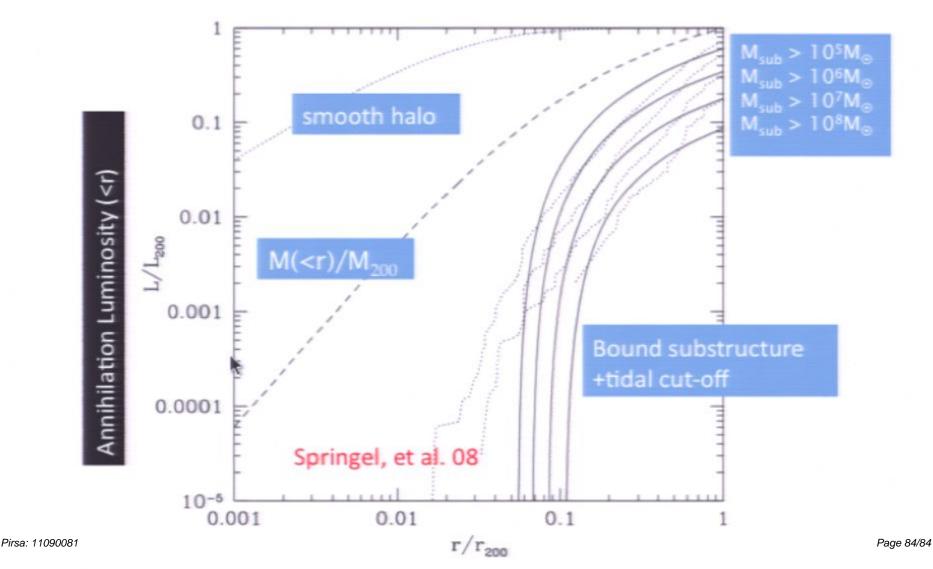


Massaging the tidal stripping prescription ...



DM annihilation profile:

stable clustering vs. simulations



Massaging the tidal stripping prescription ...

DM annihilation profile:

stable clustering vs. simulations

