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NY serious consideration of a physical
theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the' success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?” and (2) “Is
the description given by the theory complete?”
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one j every
element of the Physical reality must have a counter-
part in the physical theory.\We shall ca

EPR |

condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose \\fe shall be satisfied

EPRZ

sysiem, we can predict with cerlainty (i.e., wilh
probability equal to unity) the value of a physical
quann'ty, then tlzerc exisis an demcnl of pkysz'ca!

SECMS
exhausting aIl poss:ble ways of recognizing a
physical reality, at least provides us with one
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theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the' success of a
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tions: (1) “Is the theory correct?” and (2) “Is
the description given by the theory complete?”
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one j every
element of the physical reality must have a counter-
part in the physical theory.\We shall ca

EPR |

condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose \\fe shall be satisfied

EPRZ

sysiem, we can predict with cerlainty (i.e., wilh
probability equal to unity) the value of a physical
quantity, then there exists an element of physical

e.\haustmg aIl poss:ble ways of recognizing a
physical reality, at least provides us with one
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TABLE 1: The 8 PR papers with > 300 citations and with citation
age/paper age > 0.75,

Impact #
Rank Publication cites| Title Author(s)
1 DR1 107 749119321 GG C. Wi
T PR 47| 777 1935] 532 ! A. Emstein,
Considered Complete? L —— N. Rosen L —
v PR 56| 340] 1939] 350| Forces in Molecules T, Feynman
[ PR 821 103] 1951 678]Interaction between d-Shells in Transition Metals, 11, Ferromag- [C. Zener
netic Compounds of Manganese with Perovskite Structure
30 |PR[100] 545] 1955] 374[Neutron Diffraction Study of the Magnetic Properties of the |k, O, Wollan & W, C, Koehler
Series of Perovskite-Type Compounds [(1 = x)La,xCa]MnO4
37 |PR[100] 564] 1955] 302 Theory of the Role of Covalence in the Perovskite-Type Man-|J. B. Goodenough
ganites [La, M(11)]MnOs
19 [PR 1007 675] 1955] 483 Considerations on Double Exchange P. W, Anderson & ., Hasegawa
21 PR115] 141] 1960] 519|Effects of Double Exchange in Magnetic Crystals P-G. de Gennes
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Citation Statistics From MNore Than a Century of Physical Review

S. Redner*{f
' Center for Biolhymamics, Center for Polymer Studies,
and Department of Physics, Boston University, Boston, MA, 02215

We study the statistics of citations from all Physical Review journals for the 110-year period

1893 until 2003, We discuss basic properties of the citation distribution and find that the growth of

citations is consistent with linear preferential attachment
with time. There is a positive correlation between the number of citations to a g

age of citations., Citations from a publication have an exponentially decaving ag
is, old papers tend to not get cited
power-law age distribution, with an exponent close to =1 over a time range of 2

In contrast, the citations to a publication ar

We also investigate how citations evolve
d the average
st ribut
nsistent with a
20 yoars. We also

identify one exceptionally strong burst of citations, as well as other dramatic features in the time
history of citations to individual publications
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FIG. 9: Citation history of 3 classic highly-cited publications.
Each is identified by author initials (see text).

C‘!l‘ono‘ojt, f a “;\g&{?ng l9¢uuh7l)
(S-Rec\nef ) of- ct)

The paper with most citations in all PR journals is “Self-
Consistent Equations Including Exchange and Correla-
tion Effects”, Phys. Rev. 140, A1133 (1965) by W. Kohn
& L. J. Sham (KS), with 3227 citations as of June 2003
(see Appendix [A). It is amazing that citations to this
publication have been steadily increasing for nearly 40
vears. On the other hand, the paper “Can Quantum-
Mechanical Description of Physical Reality Be Consid-
ered Complete?”, Phys. Rev. 47, 777 (1935) by A. Ein-
stein, B. Podolsky, & N. Rosen (EPR) had 82 citations
before 1990 and 515 citations subsequently — 597 cita-

tions in total at the end of 2003. The longevity of EPR
is the reason for the appearance of this publication on the
top-10 citation impact list in Appendix [A] The current
interest in EPR stems from the revival of work on quan-
tum information phenomena. Finally, the citation his-
tory of “Theory of Superconductivity”, Phys. Rev. 108,
1175 (1957) by J. Bardeen, L. N. Cooper, & J. R. Schrief-
fer (BCS) peaked in the 60's, followed by a steady decay
through the mid-80’s, with a minimum in the naumber of
citations in 1985, the year before the discovery of high-
temperature superconductivity. It is worth emphasizing
that BCS is the earliest PR publication with more than
1000 citations (with 1388 citations at the end of 2003).
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Measure 5, on [ particle

Spin Up: |1")L|l"}n

SpinUp: P = sin® (9/2)

Spin Down: P cn;’(afz)

ll"n P ""(E)III'},,' ¢ m!{?)'l.}‘

ITa)y,

Spin Down: |lﬂ)L| TG)R

Spinup: P ros’(e/ﬂ
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e~ cos (E)lln)'-r" n!n(;)'l.)n

’ Probability of anti- correlation = 1 — sin?(/,) l
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Measure 5, on L particle

Spin Up: |1")L|l"}n

SpinUp: P = sin® (3/2)

Spin Down: p “’5?(6/2}

lngn o “"(;)Ill'}g. al® ml{E)l'g}.

ITa)

Spin Down: |l,,)L| 1")1!

Spinup: P (‘os’(e/ﬂ

Spin Down: p 5“‘2(6/2)

e "% cos (E)lln)nvr" n!n(;)'l.)n

’ Probability of anti- correlation = 1 — sin?(9/,) l
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SpinDown: P = sin? (9/2)
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Aspect’s Experiment
The switches are placed at about 6 metres from the calcium source, the state of the
swiatches selects which of the differently orientated polansers are linked by proper
locality to the source and which of the photo multipliers wall interact with the source,

imndicating an interaction has occurred. Finally the coincidences between the channels 18
monitored
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FIG. 4. Average normalized coincidence rate as a
function of the relative orientation of the polarizers.
Indicated errors are + 1 standard deviation, The dashed
curve {s not a fit to the data but the predictions by quan-
tum mechanies for the actual experiment.
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Two runs have been performed in order to test
Bell's inequalities. In each run, we have chosen
a set of orientations leading to the greatest pre-
dicted conflict between quantum mechanics and
Bell’s inequalities [(&,0) =(b,a’) =(a’,b’) =22.5%
(@,b’)=67.5°]. The average of the two runs yields

Sexpr =0.101£0.020,

violating the inequality S <0 by 5 standard devia-
tions. On the other hand, for our solid angles
and polarizer efficiencies, quantum mechanics
predicts Sy =0.112,

We have carried out another run with different
orientations, for a direct comparison with quan-
tum mechanics. Figure 4 shows that the agree-
ment is excellent.
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1, Two runs have been performed in order to test
Bell's inequalities. In each run, we have chosen
a set of orientations leading to the greatest pre-
i) dicted conflict between quantum mechanics and
- Bell’s inequalities [(&,b) =(b,a’) =(@a’,b’) =22.5%
v @,b") =67.5°]. The average of the two runs yields

' Sexpr =0.101£0.020,

@ + + - violating the inequality S <0 by 5 standard devia-
39 60 3@ tions. On the other hand, for our solid angles
and polarizer efficiencies, quantum mechanics
FIG. 4. Average normalized colncidence rate as a predicts Sy =0.112,
function of the relative orientation of the polarizers. We have carried out another run with different
Indicated errors are + 1 standard deviation, The dashed orientations, for a direct comparison with quan-

curve {s not a fit to the data but the predictions by quan- tum mechanics. Figure 4 shows that the agree-
tum mechanies for the actual experiment. ment is excellent,
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1, Two runs have been performed in order to test
Bell's inequalities. In each run, we have chosen
a set of orientations leading to the greatest pre-
i) dicted conflict between quantum mechanics and
- Bell’s inequalities [(&,b) =(b,a’) =(@a’,b’) =22.5%
: (@,b’)=67.5°]. The average of the two runs yields

' Sexpr =0.10120.020,

8 + + - violating the inequality S <0 by 5 standard devia-
30 62 90 tions. On the other hand, for our solid angles
and polarizer efficiencies, quantum mechanics
FIG. 4. Average normalized colncidence rate as a predicts Sy =0.112,
function of the relative orientation of the polarizers. We have carried out another run with different
Indicated errors are + 1 standard deviation, The dashed orientations, for a direct comparison with quan-

curve {s not a fit to the data but the predictions by quan- tum mechanics. Figure 4 shows that the agree-
tum mechanies for the actual experiment. ment is excellent.
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Violation of Bell's inequality under strict Einstein locality conditions

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger
Institut fiir Experimentalphysik, Universitit Innsbruck,
Technikerstrafie 25, A-6020 Innsbruck, Austria
(February 1, 2008)

We observe strong violation of Bell's inequality in an Einstein, Podolsky and Rosen type experiment
with independent observers. Our experiment definitely implements the ideas behind the well known
work by Aspect et al. We for the first time fully enforce the condition of locality, a central assumption
in the derivation of Bell's theorem. The necessary space-like separation of the observations is
achieved by sufficient physical distance between the measurement stations, by ultra-fast and random
setting of the analyzers, and by completely independent data registration.

Phys.Rev.Lett. 81 (1998) 5039-5043

Pirsa: 11090080

ﬂ m ? N L

Page 47/56




Pirsa: 11090080 Page 48/56




Pirsa: 11090080 Page 49/56




File Edit View Insert Actions

Tools Help

D w Pl OO € reoven - [[J[L -0 - Dt P -
B/ AHNEEEEEN BN B w )RS
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FIG. 1. Spacetime diagram of our Bell experiment. Select-
ing a random analyzer direction, setting the analyzer and fi-
nally detecting a photon constitute the measurement process,
This process on Alice’s side must fully lie inside the shaded
region which is, during Bob's own measurement, invisible to
him as a matter of principle. For our setup this means that
the decision about the setting has to be made after point “X”
if the corresponding photons are detected at spacetime points
“Y" and “Z” respectively. In our experiment the measure-
ment process (indicated by a short black bar) including the
choice of a random number only took less than a tenth of the
maximum allowed time. The vertical parts of the kinked pho-
ton world lines emerging from the source represent the fiber
coils at the source location.
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FIG. 2. One of the two observer stations. A random num-
ber generator is driving the electro-optic modulator. Silicon
avalanche photodiodes are used as detectors. A “time tag”
is stored for each detected photon together with the corre-
sponding random number “0" or “17 and the code for the
detector “+" or “=" corresponding to the two outputs of the
Wollaston prism polarizer. All alignments and adjustments
were pure local operations that did not rely on a common
source or on communication between the observers,

The actual orientation for local polarization analy-
sis was determined independently by a physical random
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Violation of Bell's inequality under strict Einstein locality conditions

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger
Institut fiir Experimentalphysik, Universitit Innsbruck,
Technikerstrafie 25, A-6020 Innsbruck, Austria
(February 1, 2008)

We observe strong violation of Bell's inequality in an Einstein, Podolsky and Rosen type experiment
with independent observers. Our experiment definitely implements the ideas behind the well known
work by Aspect et al. We for the first time fully enforce the condition of locality, a central assumption
in the derivation of Bell's theorem. The necessary space-like separation of the observations is
achieved by sufficient physical distance between the measurement stations, by ultra-fast and random
setting of the analyzers, and by completely independent data registration.

Phys.Rev.Lett. 81 (1998) 5039-5043
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Proc. Natl.
Acad. Sci.
USA 107,
19708 (2010)
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Violation of local realism with freedom of choice

Thomas Scheidl’, Rupert Ursin®, Johannes Kofler**’, Sven Ramelow'?, Xiao-Song Ma®?, Thomas Herbst®,
Lothar Ratschbacher*”, Alessandro Fedrizzi**, Nathan K. Langford**, Thomas Jennewein** & Anton Zeilinger**"

! Institute for Quantum Optics and Quantum Information (IQOQI), Austrion Academy of Sciences,
Boltzmanngasse 3, 1090 Vienna, Austric

¥ Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

* present address: Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge
CB3 OHE, United Kingdom

* present address: Department of Physics and Centre for Quantum Computer Technologies, Universi-
ty of Queensland, Brisbane QLD 4072, Australia

* Present oddress: Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road,
Oxford, OX1 3PU, United Kingdom

* present address: Institute of Quantum Computing, University of Waterloo, 200 University Ave. W,
Waterloo, ON, N2L 3G1, Canada

" Correspondence: johannes. kofler@univie.oc.at; anton.zellinger @univie.ac.at

Bell's theorem shows that local realistic theories place strong restrictions on observable correlations
between different systems, giving rise to Bell's inequality which can be violated In experiments using
entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the
freedom to choose between measurement settings. In experimental tests, “loopholes” arise which al-
low observed violations to still be explained by local realistic theories. Violating Bell's inequality
while simultaneously closing all such loopholes is one of the most significant still open challenges in
fundamental physics today. In this paper, we present an experiment that violates Bell’s inequality
while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole,
also closing the latter within a reasonable set of assumptions. We also explain that the locality and
freedom-of-choice loopholes can be closed only within non-determinism, i.e. in the context of sto-
chastic local realism.
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Polarizer settings a, b 0, 22.5* 0,67.5° 45°%, 22.5° 45°,67.5°
Correlation E(a,b) 0.62 £+ 0.01 0.63 £ 0.01 0.55+0.01 -0.57 £ 0.01
Obtained Bell value 5”* 2.3720.02

Table 1: Experimental results. We measured the polarization correlation coefficients E(a.b) to test the CHSH inequality
under locality and freedom-of-choice conditions, Combining our experimental data, we obtained the value of §* = 2,37 ¢
0.02. Assuming statistical errors and relying only on the fair-sampling assumption, this value implies a violation of local
realism by more than 16 standard deviations, thereby simultaneously closing both the locality and the freedom-of-choice
loopholes.
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