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What's so interesting about clouds?

@ Local physical rules lead to large scale behavior
@ Similar behavior found in other complex systems

@ Phenomenon at the boundary between equilibrium and chaos
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Overview of discussion

Basic physical model of formation
Complexity in clouds
Self-organized criticality

Simple model of SOC
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Condensation

Most condensation occurs
Mole fraction of component 2

on the surface of a solute, | - "
such as NaCl '

dew point curve
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lowers the saturation
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A basic model for cloud formation

@ During condensation a small
amount of heat is released

@ The increase in temperature
leads to upward expansion

e Adiabatic cooling allows the
cloud to sustain a feedback

loop
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Figure: Cloud
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Structure of formation

@ Air currents allow neighbors to be brought into the
condensation cycle

@ [he result of this process is a scale invariant structure

Figure: Clouds
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Simulation of the condensation cycle

K Nagel and E Raschke
(1991) implemented a
discretized version of this
model in three dimensions

Simulation produced scale
invariant cloudlike structures
as desired

Although this may seem like
a coincidence, many scale
Invariant systems exist in
nature

Scale invariant systems are | |
caHeci“}” Figure: Clouds as simulated by

Nagel and Raschke
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Fjords of Norway display scale invariance
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Example of ¢ noise: Average Temperature

World's Longest Record of Thermometer Readings: Central England, Global Temperatures, 1880 to 2005
Adjusted tor Urban Warming,
Temperature
deviations In
dogrous F

51

| 50

49 bt

48

ﬂ

47

2Facts
1.0+ T T T
1880 1900 1920 1940 1960 1980 2000

46

-

]
} ZFacl,com
45 T T T T
1650 1700 1750 1800 1850 1900 1950 2000

Figure: Average global temperature

Figure: Average temperature in by year

central England by year
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Self-Organized Criticality as an example

o P Bak, C Tang, and K Wiesenfield presented an explanation
called self-organized criticality (1998)

@ Complex systems evolve towards a meta-stable
non-equilibrium self-organized “critical” state

@ In this state a small fluctuation may initiate an “avalanch” in
which a local effect propagates throughout the system

L Bover B e

Pirsa: 11080110 Page 15/19



Consider an grid with L (or
LxL) positions

Pieces of “sand” are placed
randomly on the grid

If sand is stacked too high
at position N, some sand
falls to N — 1 and N + 1 (if

Ini1 = Ly — 2)
Equivalent results may be
found for coupled pendulums

Figure: 1D sandpile as simulate

Bak et al.
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Conclusion

e Self-organized critical behavior may be found in other complex
dynamical systems

e May be applied to population growth, neurology, genetics, and
many other complicated systems
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